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Abstract

We optimize the diagnostic data from a full-
response fault dictionary of a given test set. Com-
paction is done without loss of diagnostic resolution
of a test set. We give an integer linear program
(ILP) formulation using fault diagnostic table. The
complexity of the ILP is made manageable by two
innovations. First, we define a generalized indepen-
dence relation between pairs of faults to reduce the
number of fault pairs that need to be distinguished.
This significantly reduces the number of ILP con-
straints. Second, we propose a two-phase ILP ap-
proach. An initial ILP phase, which uses existing
procedures, selects a minimal detection test set. In
a final phase, additional tests are then selected for
the undiagnosed faults using a new diagnostic ILP.
The overall minimized test set may be only slightly
longer than a one-step ILP optimization, but has ad-
vantages of significantly reduced computation com-
plexity and reduced test time. Benchmark results
show potential for very small diagnostic test sets.

Keywords - Fault diagnosis, integer linear pro-
gramming, generalized independence, fault dictio-
nary, test minimization.

1. Introduction

The process of determining the cause of failure of
a chip is known as failure analysis. Failure analysis
often leads to improvement in the design of the chip
and/or the manufacturing process. Fault diagnosis
is the first step in failure analysis which by logical
analysis gives a list of likely defect sites or regions.
Basically, fault diagnosis narrows down the area of
the chip on which physical examination needs to be
done to locate defects.

Diagnosis algorithms are broadly classified into
two types: effect-cause fault diagnosis and cause-
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effect fault diagnosis. As the name suggests the
effect-cause algorithm directly examines the syn-
drome of the failing chip and then derives the fault
candidates [1] using path-tracing algorithms. The
fault candidate here usually is a logical location or
area of the chip.

On the other hand, the cause-effect algorithm
starts with a particular fault model and compares
the signature of the observed faulty behavior with
the simulated signatures for each fault in the cir-
cuit. A fault signature (or syndrome) is a list of
failing vectors and the outputs at which errors are
detected. A cause-effect algorithm can further be
classified as static, in which all fault simulation is
done in advance and all fault signatures are stored
as a fault dictionary or, as dynamic, where simula-
tions are performed only as needed during the di-
agnosis process. As the cause-effect algorithms are
based on a fault model and real defects on the chip
may not behave according to the fault model used,
the observed signature may not match with any of
the simulated signatures. In such cases sophisti-
cated techniques are used to select a set of signa-
tures that best match the observed signature [11].

Despite its overwhelming data requirements, the
fault dictionary based diagnosis has been popular
as it facilitates faster diagnosis by comparing the
observed behaviors with pre-computed signatures in
the dictionary [4]. The most detailed form of fault
dictionary which can provide all the information for
a given test set is the full-response dictionary. It
consists of all output responses of each fault for each
test. On the other hand the most compact form of
fault dictionary is a pass-fail dictionary which stores
a single pass or fail bit for a fault-vector pair. The
disadvantage with pass-fail dictionaries is that since
the failing output information is ignored, faults that
fail same set of tests but at different outputs cannot
be distinguished [12]. Thus pass-fail dictionaries are
not commonly used for fault diagnosis.

There has been a lot of work done to reduce the
size of the full-response dictionary [5, 12, 15]. Most
of these techniques concentrate on reducing the size
by managing the organization and encoding of the
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dictionary. Dictionary organization is the order and
content of the information, and dictionary encoding
is the data representation format in the dictionary.
Very little work has been done on reducing the size
of the dictionary by compaction of the diagnostic
test set [8]. In this work we explore the idea of
using a minimal test set for fault diagnosis.

We give an integer linear program (ILP) formula-
tion to minimize test sets for a full-response dictio-
nary based diagnosis. The ILP solution is a test set
with diagnostic characteristics identical to that of
the original unoptimized test set. Having a smaller
test set not only reduces the dictionary size, but also
reduces the time for debugging the faulty chip. An
ideal test set for diagnosis is one which distinguishes
all faults. Thus during diagnostic test set minimiza-
tion it should be ensured that the resulting test set
consists of at least one vector to distinguish every
pair of faults. Notice that the number of fault pairs
is proportional to the square of the number of faults.
This results in a very large number of constraints in
the ILP. We define a new diagnostic fault indepen-
dence relation to reduce the number of fault pairs to
be considered. Finally a two-phase method is pro-
posed for generating a minimal diagnostic test set
from any given test set. In the first phase we use ex-
isting ILP minimization techniques [17] to obtain a
minimal detection test set and find the faults not di-
agnosed by this test set. In the second phase we use
the diagnostic ILP to select a minimal set of vectors
capable of diagnosing the undiagnosed faults from
Phase-1. The resulting minimized test set combined
with the minimal detection test set of Phase-1 serves
as our complete diagnostic test set.

The rest of the paper is organized as follows. Sec-
tion 2 gives the diagnostic ILP formulation and il-
lustrates its complexity. Section 3 introduces a new
diagnostic fault independence relation to reduce the
number of constraints in the diagnostic ILP. Sec-
tion 4 describes the two-phase method for generat-
ing a minimal diagnostic test set. Section 5 gives
the results and Section 6 gives the conclusion.

2. ILP for Diagnostic Test Set Mini-

mization

Integer linear programming (ILP) is an effective
mathematical method for test optimization. It gives
global optimization and has been used for both com-
binational and sequential circuits [6, 7] as well as for
minimizing N-detect tests [9]. In [17], a primal-dual
ILP algorithm is given for generating minimal de-
tection test sets based on identifying independent
faults, generating tests for them, and minimizing

t1 t2 t3 t4 t5
o1 o2 o1 o2 o1 o2 o1 o2 o1 o2

f1 1 0 1 0 1 0 1 0 0 0
f2 1 1 1 1 1 0 1 1 0 0
f3 1 1 1 1 1 0 0 0 0 0
f4 0 1 0 1 0 0 0 1 0 0
f5 0 0 0 0 0 1 0 0 1 1
f6 0 0 0 0 0 1 0 0 0 0
f7 0 0 0 0 0 1 0 0 0 1
f8 0 0 1 0 1 0 1 0 0 0

Figure 1. Full-response fault dictionary.

t1 t2 t3 t4 t5

f1 1 1 1 1 0
f2 2 2 1 2 0
f3 2 2 1 0 0
f4 3 3 0 3 0
f5 0 0 2 0 1
f6 0 0 2 0 0
f7 0 0 2 0 2
f8 0 1 1 1 0

Figure 2. Fault diagnostic table.

the tests. All of these ILP formulations use a fault
detection table which contains information about
faults detected by each vector. The fault detection
table is obtained by fault simulation without fault
dropping. Note that the information in a fault de-
tection table is similar to that in the pass-fail dic-
tionary.

2.1. Fault Diagnostic Table for Diagnostic ILP

The ILP formulation for minimizing test sets
used for full-response dictionary based diagnosis re-
quires a matrix representation that not only tells
which tests detect which faults, but also at which
outputs the discrepancies were observed for each
fault-test pair. For this reason we use a fault di-
agnostic table. We illustrate the construction of a
fault diagnostic table with the following example.

Let us consider a circuit with 2 outputs, having
8 faults detected by 5 test vectors. A sample full
response dictionary for such a circuit is shown in
the Figure 1. Here ‘0’ stands for pass and ‘1’ stands
for fail.

We use integers to represent the output response
for each test vector. As faults detected by differ-
ent test vectors are already distinguished, there is
no need to compare the corresponding output re-
sponses. Hence we assign indices for the failing out-
put responses for each test vector. In the example,
for test t1 the 3 different failing output responses
(“10”, “11”, and “01”) are indexed by integers 1, 2
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and 3 respectively in the fault diagnostic table as
shown in Figure 2. The largest integer needed to
index an output response in the worst case is equal
to minimum(2No. of output pins − 1, highest number
of faults detected by any test vector). However it
should be noted that output responses to a partic-
ular vector are likely to repeat across a fault set
as faults in the same output cone can have identi-
cal output responses for a particular test. For this
reason the largest integer needed to index an out-
put response observed in our experiments was much
smaller than the highest number of faults detected
by any test vector.

2.2. Diagnostic ILP Formulation

Suppose a combinational circuit has K faults.
We are given a vector set V of J vectors and we
assign a [0, 1] integer variable vj , j = 1, 2, . . . ,
J to each vector. The variables vj have the follow-
ing meaning: If vj = 1, then vector j is included in
the selected vector set. If vj = 0, then vector j is
discarded.

Without loss of generality, we assume that all
K faults are detected by vector set V and are also
distinguishable from each other. Our problem then
is to find the smallest subset of these vectors that
distinguish all the fault pairs. We simulate the fault
set and the vector set without dropping faults and
the fault diagnostic table is constructed as explained
in the previous section. In this table, an element
akj ≥ 1 only if fault k is detected by vector j. The
diagnostic ILP problem is stated as,

Minimize

J∑

j=1

vj (1)

subject to,

J∑

j=1

vj aij ≥ 1; for i = 1, 2, ...,K (2)

J∑

j=1

vj |akj − apj | ≥ 1 (3)

for, k = 1, 2, ..,K − 1 and p = k + 1, ..,K

vj ∈ integer[0, 1], j = 1, ..., J (4)

The constraint set given by (2) consists of K
constraints - called detection constraints which en-
sure that every fault is detected by at least one
vector. The constraint set given by (3) consists
of K(K − 1)/2 constraints - one constraint for ev-
ery fault pair. These are called the diagnostic con-
straints. A diagnostic constraint consists of vector
variables corresponding to non-zero |akj − apj |, i.e.,
the vectors that produce different output responses
for the kth and pth faults. It allows at least one
of those vectors to be selected since the inequality
is greater than or equal to 1. Thus the diagnostic
constraint set insures that kth fault is distinguished
from the pth fault by at least one vector in the se-
lected vector set. Additionally, the provable ability
of the ILP to find the optimum provided its execu-
tion is allowed to complete guarantees the smallest
size test set. Note that the total number of con-
straints here is K(K + 1)/2, which is proportional
to the square of the number of faults.

3. Generalized Fault Independence

One clear disadvantage of the diagnostic ILP is
that the number of constraints is a quadratic func-
tion of the number of faults. Thus, for large circuits
the number of constraints would be unmanageable.
To overcome this, we define a relation between a
pair of faults which allows us to drop the diagnos-
tic constraints in the ILP corresponding to many
fault pairs. We have generalized the conventional
fault independence relation given in the literature
by considering the detection of faults at different
primary outputs and relative to a vector set. Con-
ventionally [3], a pair of faults is called independent
if the faults are not detected by any common vector.
This definition does not account for the detection of
the faults at specific outputs. Also, it implies “ab-
solute” independence, which is with respect to the
exhaustive vector set. We generalize the definition
of fault independence by saying that two faults de-
tected by the same vector can still be called inde-
pendent, provided the output responses of the two
faults to that vector are different.

Definition: Generalized Fault Independence - A
pair of faults detectable by a vector set V are said to
be diagnostically independent with respect to vector
set V, if there is no single vector that detects both
the faults and produces an identical output response.

Note that the generalized independence relation
is conditional to a vector set. Thus, the conven-
tional independence can be viewed as a special case
of the generalized independence, for a single output
circuit and conditional to an exhaustive vector set.
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t1 t2 t3 t4

f1 1 0 1 0
f2 1 1 0 0
f3 0 0 1 1

Figure 3. Fault detection table.

Table 1. Independence relation.
Fault Independence Reason
pair relation

f1, f2 NO Both faults
detected by t1

f1, f3 NO Both faults
detected by t3

f2, f3 YES No vector detects
both faults

Example: Consider a fault detection table with 3
faults and 4 test vectors as shown in Figure 3. The
independence relation between every fault pair is
given in Table 1.

Now consider a fault diagnosis table for the same
set of faults and vectors as shown in Figure 4. Re-
call that the fault diagnosis table takes in to account
the output responses for each fault-vector pair. It is
constructed as explained in Section 2.1. The gener-
alized independence relations for all pairs of faults
are given in Table 2.

In the context of the diagnostic ILP, the diagnos-
tic independence relation plays an important role
in reducing the number of constraints to be used in
the formulation. When two faults are diagnostically
independent, any vector that detects either of the
faults will be a distinguishing vector. Thus, in set
(3), a constraint for a diagnostic independent fault
pair will have vector variables corresponding to all
the vectors that detect any one or both the faults.
In the presence of detection constraints of set (2)
which guarantee a test for every fault, a diagnostic
constraint for an independent fault pair is redun-
dant. Also, such a constraint will be covered by
other diagnostic constraints corresponding to non-
independent fault pairs containing a fault from the
diagnostic independent fault pair.

The graph in Figure 5 shows the reduction in the
constraint set sizes by considering diagnostic inde-
pendent faults for a 4 bit ALU and few ISCAS85
benchmark circuits.

It can be seen that there is an order of magni-
tude reduction in the constraint set sizes on elim-
inating constraints corresponding to diagnostic in-
dependent faults. However the constraint set sizes
still are large and need to be reduced to manageable
proportions.

t1 t2 t3 t4

f1 1 0 1 0
f2 2 1 0 0
f3 0 0 1 1

Figure 4. Fault diagnostic table.

Table 2. Generalized independence rela-
tion.

Fault Generalized Reason
pair indep. relation

Different output
f1, f2 YES responses for t1

detecting both faults

Identical output
f1, f3 NO responses for t3

detecting both faults

f2, f3 YES No vector detects
both faults

4. Two-Phase Minimization

Given an unoptimized test set, we proceed
as [16]:

Phase 1: Use existing ILP minimization tech-
niques [17] to obtain a minimal detection test set
from the given unoptimized test set. Find the faults
not diagnosed by the minimized test set.

Phase 2: Run the diagnostic ILP on the remain-
ing unoptimized test set to obtain a minimal set of
vectors to diagnose the undistinguished faults from
Phase-1. The resulting minimized test set combined
with the minimal detection test set of Phase-1 serves
as a complete diagnostic test set.

In the context of diagnostic ILP of Phase-2, the
Phase-1 along with the generalized independence re-
lation helps in reducing the number of constraints to
manageable levels. This is because diagnostic con-
straints are now needed only for the undiagnosed
fault pairs of Phase-1. Also, there will be a further
reduction in the number of diagnostic constraints
due to diagnostically independent fault pairs that
could be present. We can also drop the detection
constraints as we have started with a detection test
set that detects all targeted faults.

There is an additional benefit of the test set ob-
tained by the two-phase approach [16]. For all good
chips, testing can be stopped at the end of Phase-1
detection test set, which is of minimal size. Only for
bad chips whose number will depend on the yield,
we need to apply the remaining tests for diagnosis.

107



 

0

200000

400000

600000

800000

1000000

1200000

1400000

ALU and Benchmark Circuits

N
um

be
r 

of
 C

on
st

ra
in

ts


Initial Constraints 231 25,651 125,751 271,953 392,941 1,308,153

Final Constraints 61 3,074 14,162 133,698 48,761 106,448

c17 4 alu c432 c499 c880 c1908
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5. Results

In our experiments we have used the ATPG ATA-
LANTA [13] and fault simulator HOPE [14]. We
have used AMPL package for ILP formulation.

Results of Phase-1 are given in Table 3. First
column lists the names of the ISCAS85 circuits.
The next column gives the number of faults in the
target fault list. These faults are equivalence col-
lapsed single stuck-at faults, excluding the ones that
were identified as redundant or were aborted by the
ATPG program. We have used the minimal detec-
tion test sets obtained using the primal-dual ILP
algorithm [17]. The primal-dual ILP algorithm cre-
ates unoptimized test sets which essentially consist
of N-detect tests, and then minimizes them to give
the minimal detection test sets. The sizes of the
unoptimized and minimized vector sets are given
in columns 3 and 4 of the table. The subsequent
columns give the diagnosis statistics of the minimal
detection test sets. We say a fault is uniquely di-
agnosed if it has a unique syndrome. On the other
hand a fault whose syndrome is shared by other
faults is said to be undiagnosed. Column 5 gives the
number of undiagnosed faults. Faults with identical
syndromes are grouped into a single set called an
equivalent fault set. Note that such an equivalent
fault set is dependent on the vector set used for diag-
nosis, thus it is called a Conditional Equivalent Fault
Set (CEFS). The column, No. of CEFS gives the
number of such sets. There is one CEFS for every
non-unique syndrome consisting of the undiagnosed
faults associated with that syndrome. Maximum
faults per syndrome give the maximum number of
faults associated with a syndrome. Diagnostic res-
olution (DR) defined in [2] gives an average number

of faults per syndrome. It is obtained by dividing
the total number of faults by the total number of
syndromes. These two parameters quantify the ef-
fectiveness of diagnosis since DR indicates how well
faults are distributed among all syndromes and the
Maximum faults per syndrome indicate the worst
distribution among all syndromes. The undiagnosed
faults obtained in this step are the target faults in
Phase-2 of our algorithm.

Table 4 gives the results for Phase-2 in which di-
agnostic ILP is used to minimize the tests for the
undistinguished fault pairs of Phase-1. In this step
we have used the unoptimized test sets (exclud-
ing the minimal detection tests) of Phase-1. The
No. of Faults here are the undiagnosed faults from
Table 3. The next column gives the number of con-
straints generated during the ILP formulation. It
can be seen that the constraint set size is very small
even for the larger benchmark circuits like c7552 and
c6288. The column Minimized Vectors gives the re-
sult of the diagnostic ILP. These vectors combined
with the minimal detection vectors of Phase-1 con-
stitute the complete diagnostic test set. The last
column gives the CPU time for the diagnostic ILP
runs. It is evident that the complexity of the diag-
nostic ILP is greatly reduced. All CPU times are for
a SUN Fire 280R 900MHz Dual Core machine. For
cases in which the ILP complexity is high, reduced-
complexity ILP variations described in [10] can be
used.

Table 5 gives the results and statistics of the fault
dictionary obtained by using the complete diagnos-
tic test set. The total diagnostic vectors are the
combined vector sets from Phase-1 and 2. Notice
that these test sets are just a little bigger than the
minimal detection test sets of Table 3. Thus failed
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chips can be diagnosed very quickly as the detec-
tion tests would have already been applied during
testing. Column 3 gives the number of faults in
the target fault list. Column 4 gives the number of
uniquely diagnosed faults. The remaining columns
have similar meaning to that of Table 4. It can be
seen that there is an improvement in the diagnostic
resolution from that of Phase-1 due to the diagnosis
vectors from Phase-2.

The unoptimized test sets used in our experi-
ments are essentially N-detect tests. It should be
noted here that using an unoptimized test set con-
sisting of diagnostic ATPG vectors [18] will be more
effective in achieving a good diagnostic resolution,
as these vectors are generated for the sole purpose
of distinguishing pairs of faults.

Table 6 gives a comparison between the two-
phase minimization and another test compaction
algorithm for pass-fail dictionary [8]. For both al-
gorithms an initial unoptimized set of 1024 random
vectors is used. The authors of [8] measure the di-
agnostic effectiveness of the compacted test set in
terms of number of undiagnosed fault pairs. The
pass-fail dictionaries have inherently lower resolu-
tion than the full-response dictionaries. Thus, there
may not be a one-to-one comparison between the
two results. However, we still notice the compact-
ness of the diagnostic test sets and the computing
efficiency of the two-phase method.

6. Conclusion

We have presented an integer linear program
(ILP) formulation for compaction of the test set
used in full-response dictionary based fault diag-
nosis. The compaction is carried out without any
compromise on the diagnostic resolution of the ini-
tial test set. The newly defined generalized inde-
pendence relation between pairs of faults is very
effective in reducing the number of constraints in
the diagnostic ILP. Finally we have proposed a two-
phase approach for generating a minimal diagnostic
test set. The diagnostic test sets obtained are very
small because of which there can be a significant
reduction in the fault dictionary size and also the
diagnosis time. Also, the minimized fault dictio-
nary can be further compacted by other compaction
techniques that employ encoding of the data in the
dictionary.

Recent work on N-model test minimization [19]
shows how a single detection table can be con-
structed for tests of multiple fault models. One may
use that idea to create a fault dictionary for multiple
fault models and then use the two-phase approach

to minimize the diagnostic vector set. Such a fault
dictionary would be more effective in diagnosing real
defects.
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Table 5. Diagnosis with complete diagnostic test set.
1 2 3 4 5 6 7 8 9

Total No. of Uniquely No. of Undiag. No. of Maximum Diagnostic
Circuit Diag. Faults Diag. CEFS faults Synd. Faults per Resolution

Vectors Faults (3 - 4) (4 + 5) Syndrome (3 / 7)

4b ALU 18 227 227 0 0 227 1 1

c17 6 22 22 0 0 22 1 1

c432 51 520 488 16 32 504 2 1.032

c499 54 750 726 12 24 738 2 1.016

c880 33 942 832 55 110 887 2 1.062

c1355 86 1566 397 532 1169 929 3 1.686

c1908 127 1870 1380 238 490 1618 8 1.156

c2670 121 2630 2027 263 603 2290 11 1.149

c3540 122 3291 2720 234 571 3033 8 1.085

c5315 105 5291 4496 381 795 4877 4 1.085

c6288 28 7710 5690 1009 2020 6699 3 1.151

c7552 153 7419 5598 848 1821 6446 7 1.151

Table 6. Two-phase minimization versus previous work [8].
Pass-fail dictionary compaction [8] Two-phase approach (this work)

Circuit Fault Minim. Undist. CPU* Fault Minim. Undist. CPU**
coverage vectors fault s coverage Vectors Fault s

% pairs % pairs

c432 97.52 68 93 0.1 98.66 54 15 0.94

c499 - - - - 98.95 54 12 0.39

c880 97.52 63 104 0.2 97.56 42 64 2.56

c1355 98.57 88 878 0.8 98.6 80 766 0.34

c1908 94.12 139 1208 2.1 95.69 101 399 0.49

c2670 84.4 79 1838 2.8 84.24 69 449 8.45

c3540 94.49 205 1585 10.6 94.52 135 590 17.26

c5315 98.83 188 1579 15.4 98.62 123 472 25.03

c6288 99.56 37 4491 1659 99.56 17 1013 337.89

c7552 91.97 198 4438 33.8 92.32 128 1289 18.57

*Pentium IV 2.6 GHz machine **SUN Fire 280R, 900 MHz Dual Core machine
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