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Particle Filtering Based Likelihood Ratio Approach
to Fault Diagnosis in Nonlinear Stochastic Systems

Ping Li and Visakan Kadirkamanathan

Abstract—This paper presents the development of a particle fil-
tering (PF) based method for fault detection and isolation (FDI)
in stochastic nonlinear dynamic systems. The FDI problem is for-
mulated in the multiple model (MM) environment, then by com-
bining the likelihood ratio (LR) test with the PF, a new FDI scheme
is developed. The simulation results on a highly nonlinear system
are provided which demonstrate the effectiveness of the proposed
method.

Index Terms—Extended Kalman filter (EKF), fault diagnosis,
likelihood ratio (LR) test, Monte–Carlo technique, nonlinear sto-
chastic system, particle filter (PF).

I. INTRODUCTION

T HE PROBLEM of fault detection and isolation (FDI)
in dynamic systems has attracted considerable attention

world-wide and been theoretically and experimentally inves-
tigated with different types of approaches, as can be seen
from the survey papers [3], [4], [9], [11], [12], [14], [22],
[29], and the books [5], [23], [24]. This development has been
mainly stimulated by the trend in automation toward systems
with increasing complexity and the growing demands for
fault tolerance, cost efficiency, reliability, and security which
constitute fundamental design features in modern control sys-
tems. The FDI approaches appeared in literature fall into two
major categories, i.e., the model-based approaches which make
use of the quantitative analytical model of the system to be
monitored and the knowledge-based or model-free approaches
which do not need full analytical modeling and allow one to
use qualitative models based on the available information and
knowledge of the system to be monitored. Clearly a perfect
analytical model (if available) represents the deepest and most
concise knowledge of the system, hence, in the case of infor-
mation-rich systems where the dynamic behavior of system
can be well-described by mathematical models, the analytical
model-based methods are by nature the most powerful fault
diagnosis methods.

For all model-based approaches, the decision of a fault
is based on available input–output (I/O) measurements and
a mathematical model of the system to be monitored. One
of the main difficulties in FDI of dynamic systems is due
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to the presence of unknown and unmeasured state variable
. Two approaches are commonly used to deal with them:

estimationand elimination. The estimation of is usually
performed with observers for deterministic systems, or filters
for stochastic systems, which lead to the observer-based
and the innovation-based FDI approaches respectively. The
elimination of directly explores the analytical redundancy
embodied in the mathematic model. For linear system, this
leads to the well-known parity space (or parity equation)-based
FDI approach. However, the literature addressing analytical
model-based FDI for nonlinear systems is not extensive, the
main reason being that the estimation of the state or measure-
ment vector of a nonlinear system is not easy and analytically
performing the manipulations to eliminateis often impossible
for general nonlinear dynamic systems. The model-based FDI
for nonlinear system is known as a difficult problem and very
few results are available.

In this paper, we address the FDI problem in general non-
linear stochastic systems, which has been investigated to a lesser
extent. When restricted to systems described by a stochastic
state space model, much of the development in FDI schemes has
relied on the system being linear and the noise and disturbances
being Gaussian. In such cases, the Kalman filter is usually em-
ployed for state estimation. The innovation from the Kalman
filter is then used as the residual, based on which some statis-
tical hypothesis tests are carried out for fault detection (FD)[21],
[29]. Fault isolation (FI) is usually achieved by employing the
observer/filter scheme [11], or using the multiple model (MM)
and generalized likelihood ratio (GLR) methods [27].

The idea used in the linear case mentioned above has been
extended to some nonlinear stochastic systems with additive
Gaussian noise and disturbance by employing the linearization
and Gaussianization techniques, and in this case, the Kalman
filter is usually replaced by the extended Kalman filter (EKF)
[26], [28], [32]. Although this EKF-based approach appears per-
fectly straightforward, there are no general results to guarantee
that such approximation will work well in most case and the
FDI performance of this approach depends very much on the
particular application as indicated in [27]. The FDI problems
in general nonlinear non-Gaussian stochastic systems are still
open.

Recently, theparticle filter, (PF) a Monte–Carlo technique-
based method for nonlinear non-Gaussian state estimation, has
attracted much attention [6], [8], [13], [16]. This interest stems
from the great advantage of the PF being able to handle any
functional nonlinearity and system or measurement noise of any
probability distribution. Our early work [15], represents the first
attempt to introduce PF into the field of FDI. More recently,
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we developed a particle filtering based MM approach to FDI by
combining PF with Bayesian inference [20].

In this paper, the PF is employed to develop a new method for
solving the FDI problem in general nonlinear and non-Gaussian
systems. The paper is organized as follows. In Section II, the
FDI problem is formulated in the MM environment followed by
a description of the PF in Section III. Then, the particle filtering
technique is combined with the likelihood ratio (LR) test and
a new approach to FDI in nonlinear non-Gaussian systems is
developed in Section IV. Experimental results from simulations
are provided in Section V with conclusions and further work in
Section VI.

II. PROBLEM STATEMENT

The problem of FD consists of making the decision on the
presence or absence of faults in the monitored system and the
problem of FI consists of deciding the present faulty mode
among a number of possible modes. In this section, the FDI
problem in the stochastic nonlinear systems is formulated in the
MM environment. The MM method was originally developed
for system identification, adaptive state estimation and control
[19]. The use of MM method in FDI is reviewed in [29] and
[31] (see also [20], [27], and [28]). Throughout this paper, it is
assumed that the normal behavior and all possible faults of the
physical system to be monitored can be described by a given
finite set of nonlinear stochastic state space models indexed by

(1)

(2)

where
state vector;
zero mean white noise vector independent of past and
current state;
vector-valued nonlinear state transition function;
output measurement vector;
zero mean white measurement noise vector, indepen-
dent of past and present states and the system noise

;
vector-valued nonlinear measurement function.

The probability density functions (pdfs) of and are both
assumed to be known. Note that the dimensions of the state
vector may be different for different (corresponding to
assuming that a fault may lead to a change in the order of the
system dynamics) and, the disturbance and noise need
not necessarily enter additively.

After having established the mathematical models of the
system, we can now express the FDI problem through a model
based approach. Initially, the system works normally and its
behavior is governed by the given normal model described as
in (1) and (2) (indexed by ), but the model may change
at an unknown time subject to the initiation of a fault. Thus
the FDI problems can be stated as follows.

Problem 1 (Problem of FD):FD is to decide a model shift, or
more specifically, detecting a jump from the normal (fault-free)
model (indexed by ) to the faulty models (indexed by

) and perhaps estimating the timeat which
this jump takes place.

Problem 2 (Problem of FI):Fault isolation is to determine
which of the possible faulty models the system has jumped
to.

III. PARTICLE FILTERS

In this section, we give a brief explanation of the PF that forms
the basis for the development of the new FDI method for general
nonlinear non-Gaussian systems. A detailed description of the
PF can be found in [13] and [16]. We begin with the Bayesian
solution to the dynamic state estimation problem which involves
the construction of the pdf of the current state, given the
measurements up to time. If is denoted to be the set of
measurements up to time, i.e., , then
the Bayesian solution would be to calculate the pdf .
This pdf will encapsulate all the information about the state
which is contained in the measurements and the prior pdf
of . Once is known, the estimates of functions of
the state conditional on measurements , can be made. For
example, the minimum mean squared error estimate ofgiven

is

(3)

The key to calculating the conditional pdf is Bayes
theorem, the recursive formulas for the estimation of the pdf

are formed by the following two steps, (e.g., [17] and
[25]).

1) Prediction: Assuming knowledge of the posterior pdf for
the state at time : , the one-step ahead
predictive pdf at time , can be obtained
by

(4)

where is defined by (1) and the known statis-
tics of .

2) Filtering: Based on predictive pdf , the pos-
terior pdf at time given measurement , can
be computedvia Bayes rule

(5)

where the conditional pdf is defined by (2) and
the known statistics of .

The above equations for Bayes recursive estimation (4) and (5)
can only be analytically solved for a small class of problems,
the most important example of such a class of problems is that
with linear system and measurement equations, and Gaussian
additive noise, in which the pdf can be summarized by the mean
and covariance. Then, the Kalman filter is used to propagate and
update the mean and covariance of the pdf. For general non-
linear, non-Gaussian systems described by (1) and (2), there is
no simple way to proceed.
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PFs were proposed as a new way of representing and re-
cursively generating an approximation to the conditional pdf

[13], [16]. The key idea is to represent the required
pdf by a swarm of points called “particles,” rather than by a
function over the state space. For example, the predictive pdf

is expressed or approximated by a set ofpar-
ticles , and is approxi-
mated by a set of particles . These
particles can be considered as the realizations or random sam-
ples from the required pdfs and, as the number of particles in-
creases, they effectively provide a good approximation to the
required pdf.

It can be shown that these particles can be obtained recur-
sively by the following filtering algorithm [13], [16].

1) Assume that there is a set of random samples (par-
ticles) from the pdf

.
2) Prediction: Sample values

from the pdf of system noise . Use these sam-
ples to generate new swarm of points

which approximate the predicted pdf
where

(6)

3) Update: Assign each a weight for
, after measurement is received. The

weights are given by

(7)

This defines a discrete distribution over
, which assigns probability mass to

the element and results in the posterior pdf
being represented in terms of weighted sam-

ples (particles).
4) Resample: Resample independently times from

the above discrete distribution. The resulting particles
which satisfies

Pr for all (8)

form an appropriate sample (with equal weight to each
element) from the posterior pdf .

5) The prediction, update and resample steps form a single
iteration and is recursively applied at each time.

IV. FDI V IA PARTICLE FILTERING AND LIKELIHOOD

RATIO APPROACH

The starting point for the LR approach is the logarithm of the
likelihood ratio (LLR), which is a function of random variable
, defined by

(9)

where is a pdf parameterized by. The key
statistical property of this ratio is as follows [2]. Let and

denote the expectations of the random variables with dis-
tributions and respectively, then

and

In other words, any change in parameteris reflected as a
change in the sign of the mean value of the LLR. If the obser-
vations with a pdf are independent of
each other, the joint LLR for the observations fromto can
be expressed as

and (10)

Suppose before change, and after change,
then the typical behavior of this joint or cumulative LLR
shows, on average, a negative drift before change, and a posi-
tive drift after change. This behavior can be used for detecting
any change between two known pdf and , and several de-
tection algorithms based on the LLR test have been developed,
see, e.g., [2], [7], and [30].

A. Change Detection Based on LLR

To develop the particle filtering based LLR approach to FDI,
let us first consider a simple change detection problem in ob-
servation . The detection problem, given the
observations up to time, consists of testing between two hy-
potheses which can be written as

No change hypothesis

Change hypothesis

where is the unknown change time. The LLR between these
two hypotheses is defined by (10). Replacing the unknown
change time by its maximum likelihood estimate (MLE)
under , i.e.,

(11)

the following change detector can be obtained

(12)

where is the decision function and is a threshold. In
other words, decide whenever exceeds , and other-
wise. The fault alarm is set at the timedetermined by

(13)

and the MLE of change onset time after a change has been
detected is equal to the timeat which the maximum in (12) is
reached. This estimate can be computed as

(14)
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If the parameter after change is unknown, then the cumu-
lative LLR defined in (10) is a function of two unknown inde-
pendent parameters, namely the unknown change timeand the
value of the parameter after change. In this case, (10) should
be written as

(15)

One of the solution to the above change detection problem is to
replace by its MLE which results in the generalized likeli-
hood ratio (GLR) algorithm. Thus, the decision function of the
GLR change detector, which involves the double maximization,
is given by

(16)

The corresponding detection rule (or the way to determine the
alarm time ) is the same as in (13), and the conditional MLEs
of the parameter and change onset time after detection are
given by

(17)

B. Particle Filtering-Based LLR Approach to FDI

Willsky and Jones [30] combined the LLR test with Kalman
filter and developed the so-calledgeneralized likelihood ratio
(GLR) method for detecting and isolating the faults which are
modeled as additive changes in linear dynamical systems de-
scribed by linear state space models. Motivated by this, here we
combine the LLR test with PF and present a particle filtering
based LLR method for FDI in general nonlinear non-Gaussian
systems.

As stated in Section II, the actual system is governed by one
of models given by (1) and (2), where corresponds
to normal operation situation and correspond
to faulty situations respectively, and a PF described in pre-
vious section is implemented for each of these models to obtain
the sample-based posterior pdf of the states. For simplicity, it
is also assumed that the measurement noisehas the same di-
mensionality as the measurementand, for each model, given
the state and the measurement , the measurement noise

is uniquely determined by , where
is the vector-valued inverse function of

with respect to and has aJacobiandenoted by .
The key idea of our method is to compute the joint like-

lihood of the observations conditional on each hypothesized
model through Monte–Carlo estimation which uses the com-
plete sample-based pdf information provided by PF, and then
activating in parallel LLR tests for
versus . More specifically, the joint LLR to be computed in
the present case is as follows.

(18)

where the likelihood of the observation give its past values
, i.e., is precisely

the one step output prediction density based on which is
defined by the th measurement model and the known statis-
tics of . If the pdf of is denoted by , the

can then be expressed as

(19)

where is the one step state prediction given and
based on th model. In the linear Gaussian case, the quan-
tity defined by (19) is just the innovation likelihood which can
be derived from the Kalman filter equations based on theth
model [27]. For the general nonlinear non-Gaussian model (1)
and (2), there is no general analytical means to perform the
calculation. However, with the PF, this quantity can be esti-
mated by utilizing the complete pdf information of the pre-
dicted state represented by a swarm of particles, this is
achieved by reusing the likelihood of each predicted state par-
ticle computed during particle filtering, more specifically, since

can be considered as the samples
from , the required quantity defined by (19)
can be computedvia the Monte–Carlo integration as follows:

(20)

where the likelihood of each predicted state sample
from PF is given by

(21)

The decision function for FD is then given by

(22)

The fault alarm time is determined by (13) where the
threshold is chosen to provide a reasonable tradeoff
between false and missing alarms. Fault isolation is achieved
by finding out the faulty model index which, along with the
MLE of fault onset time, is given by

(23)

The full implementation of the above particle filtering-based
LLR detector requires a linearly growing number of calcula-
tions, as must be calculated for , andall
possible fault onset times up to the present, i.e., .
The standard method to avoid this problem is to constrain the
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Fig. 1. Sum of LLR computed with the new algorithm proposed in this paper.

search in a fixed width (say ) “sliding window” of the most
recent past observations, the decision function is then given by

(24)

If the window is sufficiently wide to insure detection and iden-
tification of all important faults, this approximation avoids the
aforementioned difficulty.

It is most difficult to make any precise and provable statement
on the optimal properties of the above proposed method in the
general nonlinear non-Gaussian case. However, for a closely re-
lated change detector, the window-limited GLR detector intro-
duced by Willsky and Jones [30] in the context of detecting addi-
tive changes in linear Gaussian state space models, Lai and Shan
[18] have recently shown that, with an appropriate choice of the
threshold and the window size, this GLR detector is asymptoti-
cally optimal. The detector proposed in this paper can be consid-
ered as an extention of the Willsky–Jones’ GLR detector to the
general nonlinear non-Gaussian case through particle filtering
and Monte-Carlo integration.

V. NUMERICAL EXAMPLE AND SIMULATION RESULTS

A. System Description

To illustrate the operation of the proposed particle filtering-
based LLR algorithm for FDI developed in this paper, an ex-
ample is presented in this section. In the following simulation
study, the data are artificially generated by a set of uni-
variate state space models described below with different types
of system and measurement noise

(25)

where and are system and measurement noise respec-
tively and they are assumed to be uncorrelated. The param-
eter values for nominal system model (indexed by )
are and which were taken from [13]
and [17]. Two kinds of fault are considered (i.e., ), the
component fault (indexed by ) is modeled by a jump in
the parameter of system state equation, in which is shifted
to while the parameter in measure-

Fig. 2. Sum of LLR computed with the EKF-based GLR algorithm.

Fig. 3. Sum of LLR computed with the new algorithm proposed in this paper.

ment equation remains unchanged, i.e., .
The sensor fault ( ) is modeled as a jump in the pa-
rameter of measurement equation, in which is shifted to

while . Two types of
simulation are conducted. In the first type of simulations,
and are assumed to be Gaussian so as to facilitate the perfor-
mance comparison between the proposed method and the EKF
based GLR method, whereas in the second type of simulations,

and are assumed to be non-Gaussian which demonstrate
the broad applicability of the proposed method.

B. Experimental Results with Gaussian Noise

In this type of simulations, and are assumed to be zero
mean Gaussian white noise with variance and
, respectively. Two Monte–Carlo simulation experiments have

been carried out. In the first experiment, the component fault is
simulated to occur at time at which the system model
is shifted from (nominal model) to (component
fault). In the second experiment, the sensor fault is simulated to
occur at time at which the system model is shifted from

to (sensor fault). The PF-based LLR algorithm
for FDI developed in this paper is used to detect and isolate these
two faults. For comparison, the well-known EKF-based GLR
method [27], [28] is also applied.

The sum of LLR computed by PF-based method and by EKF-
based method in these two experiments are shown in Figs. 1 and
3 and Figs. 2 and 4, respectively. In the calculations of the deci-
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Fig. 4. Sum of LLR computed with the EKF-based GLR algorithm.

sion function , the search for the discrete maximization over
the fault onset time is constrained within a sliding window of
fixed width . The results from these simulations show
that the PF-based algorithm is able to detect the faults in time
and to identify the faults correctly. We can see, from Figs. 1 and
3, the sum of LLR computed with the new algorithm proposed
in this paper remains steady below zero before the onset of the
fault, and jumps significantly over zero after the fault occurs.
While the sum of LLR computed by EKF-based algorithm (see
Figs. 2 and 4) changes frequently over zero before the fault ac-
tually takes place which indicates a high false alarm rate in fault
detection.

In addition to the correct fault detection and isolation, the new
method is also able to give a relatively accurate estimate of fault
onset time . In our simulation experiments, the threshold for
decision making is chosen as , with the new method, the
component fault is detected at in the first experiment,
and the sensor fault is detected at in the second exper-
iment, the estimates of the fault onset time are in first
experiment and in the second experiment (true fault
onset times in both experiments are ).

C. Experimental Results With Non-Gaussian Noise

Simulations are now performed with non-Gaussian system
noise and non-Gaussian measurement noise. Two
Monte–Carlo simulation experiments have been carried out,
both with the component fault occurring at time as
described previously. In the first experiment, and are
assumed to have the following distributions:

where is a mixture of Gaussian noise. The sum of LLR com-
puted with the new algorithm is shown in Fig. 5. In the second
experiment, and are distributed as follows:

where is a mixture of Gaussian noise. The corresponding sum
of LLR is shown in Fig. 6. These figures clearly shown that, in
both cases, the fault can be detected and isolated with the new
method. In the implementation of both simulation experiments,
the threshold for decision making is chosen as before ( ),

Fig. 5. Sum of LLR computed with a non-Gaussian (Gaussian mixture) system
noisew .

Fig. 6. Sum of LLR computed with a non-Gaussian (Gaussian mixture)
measurement noisev .

the component fault is detected at in both experiments,
the estimates of the fault onset time are in first exper-
iment and in the second experiment.

VI. CONCLUSION

By combining the particle filtering algorithm with the
log-likelihood ratio test in the multiple model environment,
we have proposed a new FDI scheme for general nonlinear
non-Gaussian dynamic systems, the FDI performance of the
proposed methods is compared with that of the well-known
EKF-based GLR method on a highly nonlinear system. The
results from simulation experiments show clearly that the FDI
performance of this new method is superior to the EKF-based
one. This result stems from the fact that the complete pdf
information of the estimated state is utilized for FDI in the
new method, whereas, onlyapproximatemean and covarance
are used in EKF-based method. Furthermore, the proposed
schemes provide an uniform framework for FDI in general
nonlinear systems with non-Gaussian noise and disturbance.
Further work is being carried out to investigate the robustness
with the proposed method.
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