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a b s t r a c t

An algorithm is proposed for computing which sensor additions make a diagnosis requirement
specification regarding fault detectability and isolability attainable for a given linear differential-algebraic
model. Restrictions on possible sensor locations can be given, and if the diagnosis specification is
not attainable with any available sensor addition, the algorithm provides the solutions that maximize
specification fulfillment. Previous approaches with similar objectives have been based on the model
structure only. Since the proposed algorithm utilizes the analytical expressions, it can handle models
where structural approaches fail.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Systematic methods for fault diagnosis and process supervision
are important in many industrial applications. To be able to
perform model based supervision, some redundancy is needed
and this redundancy can be provided by mounting sensors on
the process together with a model description of the process
behavior. Scientific attention has mainly been devoted to design of
a diagnosis systemgiven amodel of a process equippedwith a fixed
set of sensors. Not as much attention has been devoted to decide
which sensors to include in the process. The topic of this paper
is to decide where to put sensors so that a given fault isolation
performance specification is attainable, based on a differential-
algebraic model.
An example of related previous work is Basseville, Benveniste,

Moustakides, and Rougé (1987) where sensor location for optimal
detection performance is studied. In Debouk, Lafortune, and
Teneketzis (2002) a minimal cost solution is sought, given a pre-
specified algorithm for determining if a set of sensors achieves
a desired fault isolation performance specification. The objective
in this paper is to compute all sensor additions that achieve
a specified isolability requirement from a linear differential-
algebraic model, and this is the main contribution compared to
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previous works. Other related works are Commault, Dion, and
Agha (2006), Raghuraj, Bhushan, and Rengaswamy (1999) and
Travé-Massuyès, Escobet, and Olive (2006) who all have a similar
objective but, contrary to this paper, utilize a structural description
of the model instead of the analytical equations. In Wang, Song,
and Wang (2002), the structural method for the sensor selection
proposed in Raghuraj et al. (1999) is used togetherwithmonitoring
techniques based on Principal Component Analysis (PCA). Since the
algorithm developed in this paper utilizes the analytical model,
it can handle models where structural approaches do not give a
complete answer and provide a weaker result.
The basic principles of the algorithm developed in this paper

are the same as in the structural algorithm presented in Frisk and
Krysander (2007) and Krysander and Frisk (2008). The objective
here is the same, but since we now consider analytical models,
other theoretical tools have to be applied and basic algorithmic
steps are fundamentally different. The motive for this analytical
approach is that structural methods might give incorrect answers
for some models. The example in Section 5 is taken from Murota
(2000) where the reasons for shortcomings of structural methods
are investigated. References Frisk and Krysander (2007) and
Krysander and Frisk (2008) includes a discussion on how different
structural approaches for sensor placement relate to each other.
This is also relevant here due to the relationship between the
structural work in Frisk and Krysander (2007) and Krysander and
Frisk (2008) and the analytical work here.
The proposed solution is straightforward to implement in soft-

ware packages like Mathematica, Maple, or Matlab, and a Math-
ematica implementation can be downloaded from the authors’
website http://www.fs.isy.liu.se/Software/LinSensPlaceTool/.
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2. Problem formulation

Before the main objective of the paper is formally presented, a
small example is discussed that illustrates fundamental problems
in sensor placement for fault diagnosis. The example is modeled
by a fifth order linear system of ordinary differential equations.
This example will be used throughout the paper and consists of
the following equations:

e1: ẋ1 = −x1 + x2 + x5
e2: ẋ2 = −2x2 + x3 + x4
e3: ẋ3 = −3x3 + x5 + f1 + f2
e4: ẋ4 = −4x4 + x5 + f3
e5: ẋ5 = −5x5 + u+ f4
where xi are the state variables, u a known control signal, and fi the
faults we want to detect and isolate.
Faults are modeled by fault signals that are included in the

model equations and fi 6= 0 indicates a fault. From now on fi will
be used to denote both the fault signal and the corresponding fault
mode. Let F denote the set of faults. A detectability performance
specification is then a set Fdet ⊆ F specifying the detectability
requirement and an isolability requirement is a set I of ordered
pairs (fi, fj) ∈ F × F , meaning that fi is isolable from fj. If a fault
fi is isolable from fj then fi is also detectable. Thus, without loss of
generality, it is assumed that

(fi, fj) ∈ I⇒ fi ∈ Fdet .

To fulfill a fault isolability specification, we later show that it
may be necessary to addmore than one sensormeasuring the same
variable. Therefore, when sets of sensors are considered, multisets
are used. A multiset is a set where multiple instances of a member
are allowed. Generalizations of the standard set operations like
union and intersection are straightforward.
Since the fault isolability capability always increases when

adding new sensors, there are minimal elements in the family of
sensor sets that achieve a certain level of fault isolability. Therefore,
we defineminimal sensor set as a minimal set of sensors to add, to
achieve a specified performance specification.

Definition 1 (Minimal Sensor Set). Let P be the set of possible
sensor locations (i.e. the set of measurable variables) and let S
be a multiset defined on P . Given a detectability and isolability
specification, S is aminimal sensor set if the specification is fulfilled
when the sensors in S are added, but not fulfilled when any proper
subset of S is added.

These minimal sensor sets are of interest for at least two
reasons. It is quite naturally of interest (e.g. for economic reasons)
to minimize the number of sensors to mount on a process. Also,
since all supersets of aminimal sensor set also achieve the specified
isolability performance, the minimal sensor sets characterize all
sensor sets for a given specification. This may be of interest since
a minimal sensor set may not, when evaluating a design on a
real process, give the required false alarm or detection probability.
Thus, more sensors, in addition to a minimal sensor set, may be
required to increase, for example, detection performance, to a
required level.
Returning to the example, a first question is, then, what are

the minimal sensor sets achieving detectability of all faults? Here
it is assumed that sensors measure a state-variable or a function
thereof. It can be shown, using conditions for fault detectability in
linear systems (see e.g. Nyberg (2002)) that {x1}, {x2}, {x3, x4} are
minimal sensor sets achieving detectability.
Another requirement is to not only require detectability, but

also isolability properties. Here, isolability refers to isolability as
it is commonly used in FDI and the consistency based diagnosis
AI community, see e.g. Cordier et al. (2004). See Section 3 for
details on how isolability is defined in this paper. It can be shown
that there are 5 minimal sensor sets that achieve maximal fault
isolation: {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, and {x3, x4}. Thus,
adding sensors measuring all the variables in any of these sets, or
a superset of the variables, achieves maximum fault isolability.
Now, it is of course the case that the new sensors may also

become faulty. If we also want faults in the new sensors to be
isolable from the other faults, we may have to add additional
sensors. In this case, if maximum fault isolability is also desired for
faults in the new sensors, there are 9 minimal sensor sets where
one sensor set is two sensors measuring x1 and one for x3, i.e. the
multiset S = {x1, x1, x3} is a minimal sensor set. The example has
illustrated some aspects of the sensor placement problem which
leads to the problem formulation of the paper which is stated as:

Given a model, possible sensor locations, and a detectabili-
ty/isolability performance specification, find all minimal sensor
sets with respect to the required specification. In case the spec-
ification is not feasible, minimal sensor sets that achieve maxi-
mum performance should be found.

Note that the specification may also specify if faults in new
sensors should be detectable and isolable. The method developed
in the sections that now follow, addresses this problem for general
linear differential-algebraic models.

3. Detectability and isolability analysis

This section will formally introduce the model class used in the
paper and state some basic results on fault detectability and fault
isolability for linear systems that will be used in the development
of the algorithm. The results in this section are primarily based
on the presentation in Nyberg and Frisk (2006) that uses a model
description similar to what is used in the behavioral approach to
systems theory (Polderman&Willems, 1997). However, equivalent
results can be derived for any other linear model description.

3.1. The model

The class of models considered, is written as

H(p)x+ L(p)z + F(p)f = 0 (1)

where x(t) ∈ Rnx , z(t) ∈ Rnz , f (t) ∈ Rnf . The matrices H(p), L(p),
and F(p) are polynomial matrices in the differentiation operator p.
If discrete time systems are considered, the differentiation
operator can be replaced by the time shift operator. The vector x
contains all unknown signals, which include internal system states
and unknown inputs. The vector z contains all known signals
such as control signals and measured signals, and the vector f
contains the fault-signals. Let the sets X, Z, and F represent the
set of unknown variables, known variables, and fault variables,
respectively.
The theoretical development in this paper will be done under

twomild assumptions on themodel (1). The first assumption states
that if there exists a solution x(t) to the model Eq. (1), given a fault
f (t) and an observation z(t), then x(t) is unique. In polynomial
algebra this translates into that matrix H(s) has full column rank
where s is a complex variable. Throughout the text, p will be used
in the matrices when they are considered as operators and s is
used when operations from polynomial matrix theory is used. It
is not restrictive to assume that H(s) has full column rank, since
any complete physical model will, given an initial condition, have
a unique solution. The second assumption is that, for any given
fault signal f (t) there exist signals z(t) and x(t) consistent with
themodel Eq. (1), i.e. themodel imposes no restrictions on feasible
f (t). Formally this is equivalent to that for all columns Fi(s) in F(s),
it holds that

Fi(s) ∈ Im
[
H(s) L(s)

]
. (2)
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Example 1. As an example, consider a model given by the
following descriptor equations:

Eẇ = Aw + Buu+ Bdd+ Bf f (3a)

y = Cw + Duu+ Ddd+ Df f (3b)

where y is the vector of existing outputs, u the inputs, w the
unknown state–space variable, d unknown disturbances to be
decoupled, and f the faults. Letting E = I in the equations above,
an ordinary state–space description is obtained. In general, E can
be singular and even non-square. Also, there is no requirement that
(3a) is regular, i.e. that the matrix pencil sE − A is invertible.
In a sensor placement analysis, there is a need to define possible

sensor locations. Here the convention is used that possible sensors
measure single variables in the set of unknown variables X. For
cases where there are possible sensors that measure a linear
function of more than one variable, include the equation

yp = Cpw

and add yp to the set of unknown variables. In matrix form, the
model equations become[
0 −(pE − A) Bd
0 C Dd
I −Cp 0

](
yp
w
d

)
+

[
0 Bu
−I Du
0 0

](
y
u

)
+

[
Bf
Df
0

]
f = 0

where X is the set of variables in (yp, w, d) and possible sensor
locations are a subset of these variables. �

3.2. Basic results on detectability and isolability

It will be convenient to define the set of observations z that is
consistent with different behavioral modes. For example, the set of
observations consistent with the fault-free model is written as

O(NF) = {z|∃x : H(p)x+ L(p)z = 0}. (4)

The observations consistent with the case of fault mode fi are the
observations where there exists a fault signal representing fault i,
here denoted by g to avoid notational mix-up with the fault mode
fi, and a signal x such that the model is consistent, i.e.

O(fi) = {z|∃x, g : H(p)x+ L(p)z + Fi(p)g = 0}.

With this notation, a definition on detectability is immediate.

Definition 2. Fault fi is detectable in (1) if

O(fi) 6⊆ O(NF). (5)

Although intuitive, a detectability condition directly related to the
model matrices is given next.

Theorem 1. Fault fi is detectable in (1) if, and only if,

Fi(s) 6∈ Im H(s).

This result is proved in Nyberg and Frisk (2006) and this is the
formal step where condition (2) is needed.
Detection is a special case of isolation, i.e. a fault is detectable

if the fault is isolable from the no-fault mode. By noting this
similarity, the following definition is natural.

Definition 3. Fault fi is isolable from fault fj in (1) if

O(fi) 6⊆ O(fj). (6)

Similarly as for detectability, a condition for fault isolability
directly related to the model matrices is given by
Theorem 2. Fault fi is isolable from fault fj in (1) if, and only if,

Fi(s) 6∈ Im
[
H(s) Fj(s)

]
. (7)

Proof. The result follows from Theorem 1 and observing that

O(fj) =
{
z|∃x, g : [H(p) Fj(p)]

(
x
g

)
+ L(p)z = 0

}
which is in the form (4) with H(p) replaced by [H(p) Fj(p)]. �

Note that both detectability and isolability are defined as
model properties and not as properties of a given set of residual
generators. Later in the paper, we will use the notion that fault
isolability on the set of detectable single faults is a symmetric
relation, and this is proved next.

Corollary 1. Let fault fi and fj be two detectable faults. Fault fi is
isolable from fault fj if, and only if, fault fj is isolable from fault fi.

Proof. Assume that Fi(s) ∈ Im[H(s) Fj(s)], i.e. there exist rational
functions x1(s) and x2(s) such that

Fi(s) = H(s)x1(s)+ Fj(s)x2(s).

Since fi is detectable, x2(s) 6≡ 0 according to Theorem 1 and

Fj(s) = Fi(s)x−12 (s)− H(s)x
−1
2 (s)x1(s).

The above proves that Fi(s) ∈ Im[H(s) Fj(s)] implies that Fj(s) ∈
Im[H(s) Fi(s)] and, by symmetry, the converse implication follows
analogously. �

Note that this result also implies that the relation that a fault
is not isolable from another fault, is a symmetric relation. The
relationship is also reflexive since a fault is trivially not isolable
from itself. Below we show that this relation is also a transitive
relationship. Thismeans that the relation is an equivalence relation
and that the faults can be partitioned into sets such that two faults
are isolable if, and only if, they belong to different sets. For related
results for structural models, see Krysander, Åslund, and Nyberg
(2008).

Corollary 2. Let fault fi, fj, and fk be detectable faults. If fi is not
isolable from fj and fj is not isolable from fk then fi is not isolable
from fk.

Proof. The result follows fromTheorem2 and the observation that
if Fi(s) ∈ Im[H(s) Fj(s)] and Fj(s) ∈ Im[H(s) Fk(s)] then Fi(s) ∈
Im[H(s) Fk(s)]. �

4. Sensor placement analysis

Theoretical results and an algorithm to solve the problem
posed in Section 2 are formulated here. In Sections 4.1–4.3 sensor
placement for achieving maximum detectability and isolability is
considered, not taking into consideration that the added sensors
may fail. The approach is extended in Section 4.4 to handle the
possibility that new sensors also may become faulty. In Section 4.5
themaximum isolability requirement is replaced by a specification
of a desired fault isolation performance.

4.1. Sensor placement for detectability

A basic building block in the final algorithm will be to find all
minimal sensor sets that achieve detectability of faults in a set of
equations where the matrix H(s) in (1) has full column rank. A
key step in determining which sensors to add is formalized in the
following lemma in a constructive and algorithmic fashion.
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Lemma 1. Let X be the set of unknown variables, fi ∈ F a non-
detectable fault, and X(s) the unique solution to

H(s)X(s) = Fi(s). (8)

Then fault fi becomes detectable if, and only if, any unknown in the set
{xj ∈ X|Xj(s) 6= 0} is measured.

Proof. It is straightforward to show that extended system, with
the sensor equation ynew = Cx added, also fulfills condition (2).
The set of possible sensor locations are the set of unknownsX and
C is therefore a selection matrix. According to Theorem 1, fault fi
becomes detectable if, and only if,[
Fi(s)
0

]
6∈ Im

[
H(s)
C

]
. (9)

Hence, fi becomes detectable if, and only if, there is no solution X(s)
to the equations

H(s)X(s) = Fi(s)
CX(s) = 0.

If X(s) is the unique solution of (8), then CX(s) 6= 0 if, and only
if, any unknown in the set {xj ∈ X|Xj(s) 6= 0} is measured. This
proves the lemma. �

The result above did not take into consideration that one may
have a restriction on possible sensor locations. Thus, based on
the result, let P ⊆ X be a set of possible sensor locations and
introduce the detectability set

D(fi) = {xj ∈ P |Xj(s) 6= 0 ∧ H(s)X(s) = Fi(s)}. (10)

For a fault fi that is not detectable, the setD(fi) is the set of variables
such that detectability is achieved if, and only if, any variable in the
set is measured. If P is a proper subset of X then D(fi) might be
empty for a non-detectable faultwhichmeans that it is not possible
to achieve detectability of the fault by adding any sensors in P .
For a detectable fault, there is no solution to H(s)X(s) = Fi(s) and
D(fi) = ∅.
Lemma 1 characterizes which sensors to add to achieve

detectability of a specific fault in case of P = X. The following
theorem summarizes which sensors to add to achieve maximum
fault detectability when a restriction P is included.

Theorem 3. Let F be the set of faults in the model M, P ⊆ X the
set of possible sensor locations, and MS the equations corresponding
to adding a set of sensors S. Then maximum detectability of faults F
in M ∪ MS is obtained if, and only if, S has a non-empty intersection
with D(f ) for all f ∈ F with D(f ) 6= ∅.

Proof. Faults f with D(f ) = ∅ are either detectable without
additional sensors or cannot be made detectable with any sensor
addition. Therefore, the maximum detectability is achieved if all
faults with a non-empty detectability set are made detectable by
adding sensors S. It follows from Lemma 1 that this is achieved
if, and only if, S ∩ D(f ) 6= ∅ for all non-empty detectability sets
D(f ). �

The above result can be summarized in an algorithm that, given
a model M , faults F , and a set of possible sensor locations P ,
computes the family of detectability setsD .

1 function D = Detectability(M ,F ,P )
2 D = {D(fi)|fi ∈ F ∧ D(fi) 6= ∅};

Our objective was not to compute the set of detectability sets D ,
but rather minimal sensor sets. A hitting set for a family of sets, is
a set that has non-empty intersection with each set in the family.
Thus, aminimal hitting set algorithm (de Kleer, 1987; Reiter, 1987)
applied to the family of sets D can be used to find all minimal
sensor sets.
Example 2. Consider again the example from Section 2. The
example model is, without any additional sensors, an exactly
determinedmodel with 5 equations and 5 unknown signals where
no fault is detectable. Following the result in Lemma 1, the
equationsH(s)X i(s) = Fi(s) are solved for X i(s). The solutions have
the following structure

[
X1(s) X2(s) X3(s) X4(s)

]
=


? ? ? ?
? ? ? ?
? ? 0 ?
0 0 ? ?
0 0 0 ?


where a ? indicates a non-zero element. In this examplewe assume
that P = X and it follows from Eq. (10) that the detectability sets
for each fault can be identified directly from the non-zero elements
in the corresponding column, i.e.

D(f1) = D(f2) = {x1, x2, x3}
D(f3) = {x1, x2, x4}
D(f4) = {x1, x2, x3, x4, x5}.

Theorem 3 implies that the minimal sensor sets that achieve
detectability of all faults have a non-empty intersection with all
four detectability sets. A minimal hitting set algorithm can then be
applied to compute the minimal solutions

{x1}, {x2}, {x3, x4}

which are consistent with the description in Section 2. �

The critical step in the computation of the detectability sets
is to solve the equation H(s)X(s) = Fi(s) and check for zero
entries in the solution X(s). If a computer algebraic tool, like
Maple or Mathematica is used, this is straightforward, since only
a linear system of equations with polynomial elements needs to be
solved. If a numerical tool is used to solve the polynomial equation,
care has to be taken to avoid problems due to limited precision
accuracy. Oneway to form a solution is to reformulate the problem
into a null-space computation by writing the rational solution as
X(s) = b(s)/a(s) where a(s) is a scalar polynomial and b(s) is a
polynomial column vector. Now the computation of a(s) and b(s)
can be reformulated as a null-space computation, as[
H(s) −Fi(s)

] (b(s)
a(s)

)
= 0

and zero entries in b(s) correspond to zero entries in X(s).
Detailed discussions about underlying polynomial algorithms
can be found in Kailath (1980) and Henrion and Sebek (2000).
For first order matrices (e.g. when the underlying model is a
state–space or descriptor model), the polynomial algorithms in
the literature are numerically sound, but for high-order systems
(i.e. when second order derivatives or higher appear in the model)
numerical problems might occur. These numerical difficulties can
be mitigated by rewriting the high order model into a first order
descriptormodel. A high-ordermodel is avoided at the expense of a
slightly larger model. It is also worth noting that, in case themodel
is a descriptor or state–space model, all computations are done
directly on the state–space matrices and no numerically sensitive
polynomials like characteristic polynomials are used.
To illustrate how the approach can be formulated without

having to utilize specialized polynomial matrix algebra, it is
straightforward to formulate a result, corresponding to Lemma 1,
where only operations on constant matrices are considered. This
means that the approach can easily be implemented in standard
software packages like Matlab.



368 E. Frisk et al. / Automatica 45 (2009) 364–371
Corollary 3. Make the same assumptions as in Lemma 1, let W (s) =
[H(s) − Fi(s)] =

∑n
i=0Wis

i and ρj denote the column degree of
the j:th column. Then there exists an integer k ≤

∑
ρj such that the

solution to

W0 0 . . . 0
W1 W0 0 0
...

...
. . . 0

Wn
...

. . . 0

0 Wn
. . . W0

... 0
...

0 · · · 0 Wn




b0
a0
...
bk
ak

 := W̃kX̃k = 0 (11)

gives the polynomials a(s) =
∑
aisi and b(s) =

∑
bisi that define the

unique solution X(s) = b(s)/a(s) toH(s)X(s) = Fi(s). Measuring any
of the variables in the set {xj ∈ X|Xj(s) 6= 0} then gives detectability
of fault fi.

Proof. If the numerator of the solution X(s) is b(s) and the
denominator a(s), the equation H(s)X(s) = Fi(s) can be
reformulated as

W (s)
[
b(s)
a(s)

]
= 0. (12)

By assumption, we know that there exists a unique solution b(s)
and a(s) and it is easily shown that b(s) and a(s) has degree k ≤∑
ρj. If n is the degree ofmatrixW (s), equation (12) can bewritten

as

[I sI · · · sk+nI]W̃kX̃k = 0.

Since this should hold for all s, the coefficients bi and ai
(i.e. vector X̃k) can be directly computed using only constant
matrix operations. The non-zero elements in X(s) then directly
correspond to non-zero elements in b(s) and thereby to non-
zero elements in the coefficient matrices bi. Direct application of
Lemma 1 then ends the proof. �

For a typical case, for example a descriptor model in the form
(3), the degree n is 1 and the upper limit of k is given by the model
order. Since the sum of column-degrees in the matrix W (s) is an
upper limit on the degree of the solution, the solution may have a
significantly lower degree. Therefore it may numerically be a good
idea to start with k = 0 and increase k until a non-empty null-
space in (11) is found.

4.2. Sensor placement for isolability of detectable faults

The previous section derived conditions and algorithms for how
to find sensor sets that make undetectable faults detectable. This
section continues by describing the basic ideas of how to find the
minimal sensor sets such that maximum single fault isolability is
obtained under the assumption that all faults are detectable. In the
next section this assumption will be removed.
The problem of achieving maximum isolability of the set of

single faults F can be divided into |F | sub-problems, one for each
fault, as follows. For each fault fj ∈ F , find all measurements
that make the maximum possible number of faults isolable from
fj. The solution to the isolability problem will then be obtained
by combining the results from all sub-problems. The following
example will illustrate the main principle.

Example 3. In Section 4.1 it was shown that {x1} is one of the
minimal sensor sets that achieves detectability of all faults in the
example from Section 2. Thus, by adding the equation

e6 : y1 = x1
to themodel, all faults become detectable. However, with only this
sensor, none of the faults are isolable fromeachother. This example
will illustrate a procedure of how to use the results in Section 4.1 to
also achieve fault isolability for the model consisting of equations
e1, . . . , e6.
As stated above, the analysis can be divided into |F | sub-

problems, where each sub-problem is to make as many faults as
possible, isolable from a specified fault. This procedure can then be
iterated for each fault to achieve maximum fault isolability.
The symmetry result in Corollary 1 can be used to simplify the

procedure since there is no need to compute detectability sets for
faults already treated in previously handled sub-problems. Thus,
in this case with 4 faults, the first sub-problem is to isolate f2, f3,
and f4 from f1. The symmetry now gives that isolability of f1 from f2
is already treated and thus the second sub-problem is to isolate f3
and f4 from f2. The third and final sub-problem is to isolate f4 from
f3. The detectability sets in each sub-problem are then collected to
compute the minimal sensor sets.
Now, let us consider the first sub-problem; to find sensors

that achieve maximum fault isolability from fault f1. Based on
Theorem 2, this is done by achieving detectability of themaximum
number of faults when matrix H(s) is redefined as [H(s) F1(s)].
Thus, for the first sub-problem we have

H(s) =


s+ 1 −1 0 0 −1 0
0 s+ 2 −1 −1 0 0
0 0 s+ 3 0 −1 −1
0 0 0 s+ 4 −1 0
0 0 0 0 s+ 5 0
1 0 0 0 0 0

 . (13)

For the remaining faults {f2, f3, f4}, the detectability sets are
computed using the algorithm in Section 4.1 as

D(f2) = ∅, D(f3) = {x3, x4}, D(f4) = {x2, x3, x4, x5}.

The detectability set for f2 is empty because no addition of sensors
will make f2 isolable from f1 which is due to both faults influencing
the model in exactly the same way. This also implies that the
second sub-problem (i.e. finding sensors that achieve maximum
fault isolability from fault f2) gives identical detectability sets for f3
and f4.
In the third sub-problem, where f3 is considered to be an

unknown signal, only the detectability set for f4 is needed.
Calculations give that

D(f4) = {x2, x3, x4, x5}.

Now that the final sub-problemhas been considered, the results
are collected to compute the sensor sets from the detectability
sets. The minimal hitting sets for the family of all non-empty
detectability sets obtained in all sub-problems are {x3} and {x4}
which are also the sensor sets that achieve maximum fault
isolability for the system defined by equations e1, . . . , e6. �

Now follows a formalization of the above procedure. For this, let
M(fj) denote the model that is obtained by decoupling fault fj,
i.e. column Fj is moved from matrix F(s) to H(s) as was done in
(13) in the example.

Theorem 4. Assume that all faults in F are detectable in the model
M. Let P ⊆ X be the set of possible sensor locations and MS the
equations corresponding to adding the set of sensors S. For an arbitrary
fault fj, the maximum possible number of faults fi ∈ F \ {fj} are
isolable from fj inM∪MS if, and only if, S has a non-empty intersection
with all sets inD = Detectability(M(fj),F \ {fj},P ).
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Proof. Assume that D(fi) ∈ D and S ∩ D(fi) = ∅. This means that
fault fi is not isolable from fault fj. But since D(fi) 6= ∅, S can be
extended so that S ∩ D(fi) 6= ∅. Hence, maximal fault isolability
from fj implies that S has non-empty intersection with all sets in
D .
Conversely, if S has a non-empty intersection with all elements

inD , then according to Theorem 3, maximum number of faults are
detectable in M(fj) ∪ MS which means that maximum number of
faults are isolable from fj inM ∪MS . �

The above result gives the solution for one sub-problem, i.e. how
to place sensors such that faults are isolated from a specified
fault fj. How to combine the results from all sub-problems into a
solution for the complete problem is summarized in the pseudo-
code function, below, that returns the set of minimal sensor sets.

1 function S = SensPlaceInDetectable(M,F ,P )
2 D = ∅;
3 for fj ∈ F
4 Fd(fj) := {fi|i > j};
5 Dj = Detectability(M(fj),Fd(fj),P );
6 D := D ∪Dj
7 end
8 S = MinimalHittingSets(D);

Remember that here it is assumed that all faults in F are
detectable, and this assumption will be lifted in the next section.

4.3. Sensor placement for both detectability and isolability

Section 4.1 described how to place sensors to achieve de-
tectability and Section 4.2 how to achieve isolability in models
where faults are detectable. The algorithms in these two sections
will now be combined to achieve maximum isolability in a general
model.

Example 4. Consider the example introduced in Section 2. In
Section 4.1 it was shown that the minimal sensor sets that achieve
detectability are

{x1}, {x2}, {x3, x4}. (14)

In Section 4.2 the first set in (14) was chosen and a sensor
measuring x1 was added to the model. In this case, the minimal
sensor sets that give maximal isolability are

{x3}, {x4}.

Noting that a sensor measuring x1 was first added, the resulting
sensor sets are then

{x1, x3}, {x1, x4}

which are minimal sensor sets that fulfill both the detectability
and isolability specifications. In (14) it was noted that, in addition
to {x1}, there are two other sets, {x2} and {x3, x4}, that achieve
detectability. The same procedure as for {x1} is thus iterated for
these two sets to obtain all minimal sensor sets that fulfill the
requirements. �

Given a model M that fulfills the assumptions in Section 3.1,
the faults F , and the possible sensor locations P , the algorithm
below computes the set S of all minimal sensor sets that achieve
maximum isolability.
Faults that cannot be made detectable, cannot be made isolable

from other faults and, in addition, all detectable faults are isolable
from the non detectable faults. Therefore, to achieve maximum
isolability it is sufficient to first achieve maximum detectability
and then maximum isolability among the detectable faults.

1

1

1

1

1

1

1

1

1

1 function S = SensorPlacement(M,F ,P )
2 D = Detectability(M,F ,P );
3 if D = ∅
4 Fd = detectable faults inM;
5 D = SensPlaceInDetectable(M,Fd,P );
6 S =MinimalHittingSets(D);
7 else
8 S = ∅;
9 Sdet =MinimalHittingSets(D);
0 for sdet ∈ Sdet
1 Create the extended modelMe = M ∪Msdet ;
2 Fe = the detectable faults included inMe;
3 D = SensPlaceInDetectable(Me,Fe,P );
4 Sisol =MinimalHittingSets(D);
5 S := S ∪ {sdet ∪ sisol|sisol ∈ Sisol};
6 end
7 Delete non-minimal sensor sets in S;
8 end

4.4. Adding sensors with faults

Until now, we have not considered the possibility that new
sensors can fail, but this is of course the case in many applications.
How to cope with new sensors that may become faulty will be
treated next.

Example 5. Consider the example from Section 2. If new sensors
are fault-free, it has been shown in Section 4.3 that a minimal
sensor set achieving maximum fault isolability is {x1, x3}.
However, if the sensors measuring x1 and x3 have faults f5 and

f6 respectively, maximum fault isolability is not achieved when
considering the faults f1, . . . f4 in the original model, and also the
faults f5 and f6 introduced by new sensors. For example f3 is not
isolable from f5.
By adding another sensor measuring x1, and thereby introduc-

ing a new sensor fault f7, maximum fault isolability is achieved
when considering all faults f1, . . . , f7. The sensor set {x1, x1, x3}
is thus a minimal sensor set achieving maximum isolability when
new sensors may become faulty. �

The following two theorems concerning detectability and isolabil-
ity properties of faults in new sensors will be sufficient results for
extending the algorithm to include these faults.

Theorem 5. Let X be the set of unknown variables in the model M
and xi ∈ Xmeasured with a sensor described by an equation e 6∈ M.
Then, a fault in the new sensor will be detectable in M ∪ {e}.

Proof. Let He(s) correspond to the H(s) matrix for M ∪ {e} and
Fe the column vector corresponding to the new sensor fault. It is
straightforward to show that M ∪ {e} fulfills condition (2) and it
follows from Theorem 1 that e is detectable if, and only if, Fe 6∈
Im He(s), i.e. the equation

H(s)ξ(s) = 0
ξi(s) = 1

has no solution. The result follows immediately since H(s) has full
column rank. �

A consequence of this result is that we need not consider sensor
faults related to sensors sdet in the detectability step in the function
SensorPlacement when we extend the algorithm to include
faults in new sensors.

Theorem 6. Let X be the set of unknown variables and F a set of
detectable faults in the model M. Furthermore, let MS be a set of
equations describing additional sensors and FS the associated set of
sensor faults. Then for any sensor fault fi ∈ FS and for any fault
fj ∈ (F ∪ FS) \ {fi}, it holds that fi is isolable from fj in M ∪MS .
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Proof. Let xi be a variable measured by a new sensor described by
equation e and with a fault fi. Furthermore, let fj be an arbitrary
fault in M ∪ MS such that fj 6= fi and H(s) and Fj(s) matrices
corresponding to the equationsM∪MS \{e}. Then Theorem 2 gives
that a fault fi ∈ FS in a new sensor is isolable from fj ∈ F ∪FS \{fi}
if, and only if, the set of equations

H(s)ξ(s)+ Fj(s)fj(s) = 0 (15)

ξi(s) = 1 (16)

has no solution in ξ(s) and fj(s). Fault fj is detectable since, by
assumption, all faults in F are detectable and by Theorem 5 all
faults in FS are detectable in M ∪ MS \ {e}. It then follows that
Fj(s) 6∈ Im H(s) which, together with (15), yields that ξ(s) = 0.
This contradicts (16) which ends the proof. �

For the function SensorPlacement, this theorem implies that
full isolability is achieved for all sensor faults introduced by the
new sensors sisol in the isolability step for free. Of the new sensor
faults, only the faults introduced in the detectability step (i.e. faults
in the sensors in sdet ) have to be considered in the isolability step.
Next, a summary of the modified procedure is given.
First the detectability step is performed as before, then new

faults introduced by sensors sdet in the detectability step are
included in the model, and finally the isolability step is performed
as before. The only needed modification of SensorPlacement
is that the new faults introduced by sensors sdet are included in
the creation of the extended model Me on line 11. The new faults
introduced by sensors sdet will, in this way, be considered in the
isolability step on line 13.

4.5. Fault isolability performance specification

Wehave discussed sensor placement for achieving detectability
and maximum isolability. Since fault isolability performance is
gained at the expense of adding more sensors, it is important
that the algorithm can handle more precise fault isolability
specifications. In Section 2 it was stated that a detectability
requirement is a set Fdet ⊆ F and an isolability requirement is
a set I of ordered pairs (fi, fj) ∈ F ×F , meaning that fi is required
to be isolable from fj.
It is straightforward to modify the proposed algorithm with a

detectability and isolability specification. Two modifications have
to be made, one for each specification. First, on lines 1 and 2 in
function SensorPlacement, change F to Fdet . Second, on line 4
in function SensPlaceInDetectable, change

Fd(fj) := {fi ∈ F |i > j, (fi, fj) ∈ I ∨ (fj, fi) ∈ I}; (17)

Note that only pairs of detectable faults are considered in
SensPlaceInDetectable. With the same reasoning as in
Section 4.3, it can be shown that this gives maximal solutions in
case the specification is not feasible.
Using Fdet and I as above, it is possible to give a detailed

specification. However, it is often more natural and convenient
to use other representations of the isolability specification. A
simpler, but less general, specification is illustrated in the following
example.

Example 6. For the example given in Section 2, assume that we
want to compute sensor placements such that faults in {f1, f2} are
isolable from faults in {f3, f4} and vice-versa, but for example fault
f3 need not be isolable from f4. The family {{f1, f2}, {f3, f4}} can then
be used to represent the isolability specification.
It is straightforward to verify that this specification is equivalent

to the isolability and detectability requirements

I = {(f1, f3), (f1, f4), (f2, f3), (f2, f4)}
Fdet = {f1, f2, f3, f4}. �
Fig. 1. An electrical circuit.

Given a model and a set of sensors, Corollaries 1 and 2 imply that
detectability and isolability properties of this system always can be
represented by a family of sets as the specification in the example
above. The detectable faults are included in one of the fault sets
and the isolability properties are interpreted as in the simplified
isolability specification. This means that the simplified isolability
specification is a natural way to state the requirements, but note
that it is not as expressive as the more general form with pairs of
isolable faults. An isolability specification in the form of family of
sets of faults is easy to translate into an isolability set with pairs of
faults and a corresponding modification of (17) is straightforward.

5. Example

In this section, the sensor placement algorithm will be
demonstrated by applying it to the electrical circuit shown in
Fig. 1. The circuit has 5 components, a voltage source z(t), two
resistors R1 and R2, an inductor L, and a capacitor C and they can
fail independently of each other. The input signal z(t) is assumed
to be known. The branches are enumerated k = 1, 2, . . . , 5
and f1, . . . , f5 denote faults in the corresponding components. The
current through branch k is ik and the voltage across is uk. The
behavior of the fault free system is given by

u1 = u5 u5 = u2 + u3 u3 = u4
i1 = i2 + i5 i1 = i3 + i4 + i5
u1 = z u2 = R1i2 u3 = R2i3

u4 = L
d
dt
i4 i5 = C

d
dt
u5.

The 5 equations, in the last two rows above, model the 5
components that may fail. The equations describe fault free
behavior, and there is no equation describing a faulty component,
i.e. the behavior of a faulty component is undefined.
In the first run of the sensor placement algorithm, maximum

fault isolability is desired among the faults f1 to f5 under the
condition that all currents ik and voltages uk can be measured. The
output of the algorithm is that there are 5 minimal sensor sets
that achieve full isolability. The sets {i1, i3} and {i1, i4} are the only
minimal sensor sets with cardinality 2; all other sets contain 3
sensors.
Now, assume that all added sensors can also fail. For this case

there are 7 minimal sensor sets achieving full isolability where 4
sensor sets have cardinality 3, and 3 sensor sets have cardinality 4.
One of the minimal cardinality sensor sets is {i1, i1, i4}, i.e. current
i1 is measured twice. For the case above where new sensors
cannot fail, {i1, i4} was a minimal sensor set but this does not
givemaximum isolabilitywhen sensor faults are considered.When
only measuring i1 once, the fault in the sensor measuring i1 is not
isolable from a fault in the capacitor. Interestingly, all minimal
sensor sets include only current measurements, meaning that any
voltage measurement will be superfluous.



E. Frisk et al. / Automatica 45 (2009) 364–371 371
In a third run, all inputs are the same as in the second run, with
the exception that only voltages can be measured, because voltage
measurements can be performed without disconnecting wires in
the circuit. With this restriction, full isolability cannot be achieved
as noted above. The maximum isolability is that the voltage source
fault can be isolated from all other faults, faults in the resistors and
in the inductor are not isolable from each other, and the capacitor
fault f5 cannot even be detected, i.e. the fault classes that can
be isolated are described by the set {{f1}, {f2, f3, f4}}. There are
10 minimal sensor sets achieving this isolability specification and
{u2, u3} and {u2, u4} are the ones with minimal cardinality.
In the fourth and final run, we input the isolability specification

{{f1}, {f2, f3, f4}, {f5}}, assume that all voltages and currents can be
measured, and sensors do not fail. Thus, we do not require full
isolability, which should imply that we may not need as many
sensors as in the first run. This time there are 13 minimal sensor
sets, all with cardinality 2. In this case the isolability achieved by
different minimal sensor sets are not the same. For example, the
set {i1, i4}, returned also in the first run, achieves full isolability,
but, for instance, the minimal sensor set {i2, i5} achieves exactly
the specified isolability. Hence, some minimal sensor sets might
achieve better isolability than that specified, but the retraction
of any sensor in any minimal sensor set will take the isolability
performance below that specified.
This example has been used in Murota (2000) to illustrate

problems with structural approaches for determining the index
of a Differential-Algebraic Equation (DAE). Using the structural
approach for sensor placement in Frisk and Krysander (2007),
a non-trivial reformulation of the model equations is needed to
obtain a characterization of all sensor sets.

6. Conclusions

An algorithm has been developed that computes a characteri-
zation of all sensor additions that makes a fault isolability specifi-
cation attainable for a given linear differential-algebraic model. It
may be the case that the fault isolation specification is not attain-
able, for example due to a restriction on possible sensor locations.
In such a case, the algorithm then provides solutions that are as
close to the specification, with the available sensors.
Due to the exhaustive nature of the problem formulation

where all solutions are characterized, the approach might suffer
from some combinatorial problems. These problems are mitigated
by only considering single fault isolation, and systems with no
underdetermined part. It is also possible to control the complexity
by limiting the set of possible sensor locations P or the isolability
specification I. It is also straightforward to modify the approach
to only compute solutions with a cardinality less than a given
threshold.
The new sensors added tomake fault isolation possiblemay also

become faulty. These additional sensor faults need to be considered
in the analysis, and it has been shown that it might be necessary
to add more than one sensor measuring the same variable. Since
the approach is analytical, the method can handle models where
structural approaches fail.
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