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A Generalized Minimal Hitting-Set Algorithm
to Handle Diagnosis with Behavioral Modes

Mattias Nyberg

Abstract—To handle diagnosis with behavioral modes, a new
generalized minimal hitting set algorithm is presented. The key
properties in comparison with the original minimal hitting-set
algorithm given by (deKleer and Williams, 1987) are that it
can handle more than two modes per component and also non-
positive conflicts. The algorithm computes a logical formula that
characterizes all diagnoses. Instead of minimal diagnoses, or
kernel diagnoses, some specific conjunctions in the logical formula
are used to characterize the diagnoses. These conjunctions area
generalization of both minimal and kernel diagnoses. From the
logical formulas, it is also easy to derive the set of preferred
diagnoses. One usage of the algorithm is fault isolation in the
sense of FDI. The algorithm is experimentally shown to provide
significantly better performance compared to the fault isolation
approach structured residuals which is commonly used in FDI.

Index Terms—fault diagnosis, fault isolation, FDI.

I. I NTRODUCTION

Within the field of fault diagnosis, it has often been assumed
that each component has only two possible behavioral modes,
e.g. see [1] and [2]. For this case, and given a set of conflict
sets, it is well known that a minimal hitting set corresponds
to a minimal diagnosis [1]1. Algorithms for computing all
minimal hitting sets have been presented in [1] and [2].
Improvements have later been given in e.g. [3] and [4].

In [1] and [2] it is assumed that a conflict can only imply
that some component is faulty. This is called apositive conflict
[5]. If all conflicts are positive, it is also well known that
the set of all minimal diagnoses characterizes all diagnoses
[2]. The case of all conflicts being positive will occur if, for
example, the faulty modes of the components have no fault
models. However, if there are fault models, it is possible to
have non-positive conflicts.

If there is a desire to compute something that characterizes
all diagnoses when there are non-positive conflicts, the concept
of minimal hitting sets and the algorithms in [1] and [2] can
not be used. To solve this, an alternative characterizationbased
on so calledkernel diagnoseswas proposed in [5], where also
an algorithm to compute the kernel diagnoses was given. The
kernel diagnoses characterize all diagnoses even in the case of
non-positive conflicts.

It has been noted in several papers that more than two pos-
sible behavioral modes are useful when designing diagnostic
systems, see e.g. [6] and [7]. For this case, neither minimal
diagnoses or kernel diagnoses can be used to characterize all
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1Reiter used the word diagnosis for what in this paper is called minimal
diagnosis.

diagnoses, and none of the algorithms in [1], [2], or [5] are
applicable. However, [8] introduceskernelsas a generalization
of kernel diagnoses to more than two behavioral modes.

For the case of more than two behavioral modes and non-
positive conflicts, the present paper proposes a new logical
characterization of all diagnoses. Conflicts and diagnoses
are represented by logical formulas, and instead of minimal
diagnoses, kernel diagnoses, and kernels, we use more general
conjunctions of a specific form. In the special case of two
behavioral modes per component, these conjunctions become
equivalent to kernel diagnoses, and in the case of only positive
conflicts, they become equivalent to minimal diagnoses.

The main contribution is a newgeneralized hitting set al-
gorithmcomputing the here proposed logical characterization.
The minimal hitting set algorithm given in [2] is shown to
be a special case of this new generalized algorithm. Note that
even though the papers [6], [7], and [8] consider more than
two behavioral modes per component, they are not concerned
with the characterization of and in particular the computation
of a characterization of all diagnoses.

Under the assumption of only two behavioral modes per
component, the minimal diagnoses can be argued to be the
most desired diagnoses. This has been called the parsimony
principle, e.g. see [1]. In the generalized case of more than
two behavioral modes, the minimal diagnoses are no longer
necessarily the most desired diagnoses. Instead the concept
of preferred diagnoseshas been introduced in [9]. In this
paper we will show how to obtain these preferred diagnoses
by means of the above mentioned logical formulas and the
new generalized minimal hitting set algorithm.

The here proposed generalized minimal hitting set algorithm
can be used in a traditional diagnosis problem formulation,
as in [1] or [2], where a model and a set of observations
are utilized to compute conflicts by the technique of “local
propagation”. Another usage is in the case of precompiled
potential conflicts [10]. This usage corresponds to the fault
isolation problem as defined within the control community
(usually referred to as FDI), e.g. see [11], [12], [13], [14], and
[15]. Precompiled potential conflicts are a common solutionin
embedded control systems where memory and computational
limitations make it impossible to implement a full diagnostic
inference engine that works directly on a model of the system.
Section VIII of the paper contains an example of such an
application: on-board diagnosis of the electrical driver for the
fuel injection system of an automotive engine. The usage of
the algorithm is demonstrated, as well as a short performance
comparison with an alternative approach from the area of FDI.
In the context of precompiled potential conflicts, and for the
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evaluation of real world performance, the algorithm has also
been tested in a fleet of real vehicles with promising results.

The paper is organized as follows. In Section II, the minimal
hitting set algorithm from [2] is restated as a reference. In
Section III, the logical framework is presented. Then the
new generalized minimal hitting set algorithm is given in
Section IV. Sections V and VI discuss the relation to minimal
and kernel diagnoses. Section VII describes how to compute
the preferred diagnoses. Finally, Section VIII contains the
above-mentioned application study. All proofs of theorems
have been placed in an appendix.

II. T HE GDE MINIMAL HITTING SET ALGORITHM

Before presenting the new generalized minimal hitting set
algorithm, this section presents the GDE minimal hitting set
algorithm and its associated framework as presented in [2].
However, since we have a different objective than in the
original paper, we will not always use the same notation and
naming convention.

The system to be diagnosed is assumed to consist of a
number of components represented by a setC. A conflict is
represented as a setC ⊆ C. The meaning of a conflictC is
that not all components inC can be in the normal fault-free
mode. This means that only positive conflicts can be handled.
A conflict C1 is said to beminimal if there is no other conflict
C2 such thatC2 ⊂ C1.

A diagnosisδ is also represented as a setδ ⊆ C. Com-
ponents contained in a diagnosisδ are assumed faulty and
components not contained inδ are assumed fault free. A
diagnosisδ1 is said to beminimal if there is no other diagnosis
δ2 such thatδ2 ⊂ δ1.

One fundamental relation between conflicts and diagnoses
is that if C is the set of all minimal conflicts,δ is a diagnosis
if and only if for all conflictsC ∈ C it holds thatδ ∩ C 6= ∅.
That is,δ is diagnosis if it is a so calledhitting setwith respect
to the collection of setsC.

Given a set of diagnoses∆ and a new conflictC the
minimal hitting set algorithm in [2] finds an updated set of
minimal diagnoses. A version of the algorithm, as described
in the text of [2], is here presented as Algorithm 1.

The algorithm has the property that if∆ is the set of
all minimal diagnoses, the algorithm outputΘ will contain
all minimal diagnoses with respect to also the new conflict
C. Further, it also holds thatΘ will contain only minimal
diagnoses. Note that this algorithm does not require the
conflict C to be minimal, contrary to what has been stated
in [3]. It can also be noted that the loop overδk ∈ ∆ could be
modified toδk ∈ ∆old, which would be more efficient since
∆old is smaller than∆.

III. A L OGICAL FRAMEWORK

Each component is assumed to be in exactly one out of
several behavioral modes. A behavioral mode can be for ex-
ample No-Fault (NF ), Gain-fault (G), Bias (B), Open Circuit
(OC), Short Circuit (SC), Unknown Fault (UF ), or just Faulty
(F ). For our purposes, each component is abstracted to a
variable specifying the behavioral mode of that component.

Algorithm 1 :
input : a set of minimal diagnoses∆, and a new

conflict setC
output: the updated set of minimal diagnosesΘ
∆old := ∆1

∆add := ∅2

forall δi ∈ ∆ do3

if δi ∩ C = ∅ then4

Removeδi from ∆old5

forall c ∈ C do6

δnew := δi ∪ {c}7

forall δk ∈ ∆, δk 6= δi do8

if δk ⊆ δnew then goto LABEL19

end10

∆add := ∆add ∪ {δnew}11

LABEL112

end13

end14

end15

Θ := ∆old ∪∆add16

Let C denote the set of such variables. For each component
variablec in C letRc denote thedomainof possible behavioral
modes, i.e.c ∈ Rc.

We will now define a set of formulas to be used to express
that certain components are in certain behavioral modes. Ifc is
a component variable in the setC andM ⊆ Rc, the expression
c ∈ M is a formula. For example consider a sensor that we
model as the components1. The formulas1 ∈ {NF,G,UF}
means that the sensor is in modeNF , G, or UF . If M is
a singleton, e.g.M = {NF}, we will sometimes write also
c = NF . Further, the constant⊥ with valuefalse, is a formula.
If φ andγ are formulas thenφ∧γ, φ∨γ, and¬φ are formulas.

In accordance with the theory of first order logic we say that
a formulaφ is a semantic consequenceof another formulaγ,
and writeγ |= φ, if the set of assignments of the variablesC
that makeγ true is a subset of the assignments that make
φ true. This can be generalized to sets of formulas, i.e.
{γ1, . . . , γn} |= {φ1, . . . , φm} if and only if γ1 ∧ · · · ∧ γn |=
φ1 ∧ · · · ∧ φm. If it holds thatΓ |= Φ andΦ |= Γ, whereΦ
andΓ are formulas or sets of formulas,Φ andΓ are said to
be equivalent and we writeΓ ≃ Φ.

We will devote special interest to conjunctions on the form

c1 ∈ M1 ∧ c2 ∈ M2 ∧ · · · ∧ cn ∈ Mn (1)

where all components are unique, i.e.ci 6≡ cj if j 6= k, and
eachMi is a nonempty proper subset ofRci , i.e. ∅ 6= Mi ⊂
Rci . Let Di denote a conjunction on the form (1). From a set
of such conjunctions we can then form a disjunction

D1 ∨D2 ∨ . . . Dm (2)

Note that the different conjunctionsDi can contain different
number of components. We will say that a formula is in
maximal normal formMNF if it is on the form (2) and has
the additional property that no conjunction is a consequence
of another conjunction, i.e. for each conjunctionDi, there is
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no conjunctionDj , j 6= i, for which it holds thatDj |= Di.
Note that the purpose of using formulas in MNF is that they
are relatively compact in the sense that an MNF-formula does
not contain redundant conjunctions and that each conjunction
does not contain redundant assignments.

For an example consider the following two formulas con-
taining componentss1, s2, ands3, where all have the behav-
ioral mode domainRsi = {NF,G,B,UF}.

s1 ∈ {UF} ∧ s2 ∈ {B,UF} ∨ s3 ∈ {UF}

s1 ∈ {UF} ∧ s2 ∈ {B,UF} ∨ s1 ∈ {G,UF}

The first formula is in MNF but not the second sinces1 ∈
{UF} ∧ s2 ∈ {B,UF} |= s1 ∈ {G,UF}. The interpretation
of the first formula is that sensors1 is in the modeUF and
sensors2 is in one of the modesB or UF , or sensors3 is in
the modeUF .

A. Conflicts and Diagnoses

A conflict is assumed to be written using the logical
language defined above. For example, if it has been found that
the components1 can not be in the modeNF at the same
time ass2 is in the modeB or NF , this gives the conflict

s1 ∈ {NF} ∧ s2 ∈ {B,NF} (3)

Note that in a real system, the behavior of a sensor in mode
NF can not be distinguished from a very small bias which is
a behavior belonging to the modeB. Thuss1 ∈ {NF}∧s2 ∈
{B} can never be a conflict.

To relate this definition of conflict to the one used in
Section II, consider the conflictC = {s1, s2, s3}. With the
logical language, we can write this conflict ass1 ∈ {NF} ∧
s2 ∈ {NF} ∧ s3 ∈ {NF}.

Instead of conflicts, we will mostly use negated conflicts. In
particular we will use negated conflicts written in MNF. For
an example, if the conflict (3) is negated and written in MNF
we obtain

s1 ∈ {G,B,UF} ∨ s2 ∈ {G,UF} (4)

Without loss of generality, we will from now on assume that
all negated conflicts are written on the form

c1 ∈ M1 ∨ c2 ∈ M2 ∨ · · · ∨ cn ∈ Mn (5)

where cj 6≡ ck if j 6= k, and ∅ 6= Mi ⊂ Rci . This means
that (5) is in MNF.

A system behavioral modeis a conjunction containing a
unique assignment of all components inC. For example, if
C = {s1, s2, s3}, a system behavioral mode could be

s1 = UF ∧ s2 = B ∧ s3 = NF

We consider the termdiagnosisto refer to a system behavioral
mode consistent with all negated conflicts.

Definition 1: Let P be the set of all negated conflicts. A
system behavioral moded is a diagnosisif {d} ∪ P 6|= ⊥ or
equivalentlyd |= P.

To relate this definition of diagnosis to the one used in
Section II, assume thatC = {s1, s2, s3, s4} and consider the
diagnosisδ = {s1, s2}. With the logical language, we can
write this diagnosis ass1 = F ∧ s2 = F ∧ s3 = NF ∧ s4 =
NF .

B. Example

To illustrate how the logical language can be used to reason
and perform diagnostic inference, consider the following ex-
ample. Assume again thatC = {s1, s2, s3}, where all have the
behavioral mode domainRsi = {NF,G,B,UF}. Assume
also that two conflicts have been detected:

s1 ∈ {NF} ∧ s2 ∈ {NF}

s2 ∈ {NF,B}

This corresponds to the negated conflicts

s1 ∈ {G,B,UF} ∨ s2 ∈ {G,B,UF}

s2 ∈ {G,UF}

To identify the set of diagnoses we take the conjunction of the
two negated conflicts and translate it to MNF. That is,
(

s1 ∈ {G,B,UF}∨s2 ∈ {G,B,UF}
)

∧s2 ∈ {G,UF} ≃

≃ s1 ∈ {G,B,UF} ∧ s2 ∈ {G,UF} ∨ s2 ∈ {G,UF} ≃

≃ s2 ∈ {G,UF}

In the last equivalency, the first conjunction is removed
since the second is a consequence of the first, i.e.s1 ∈
{G,B,UF}∧s2 ∈ {G,UF} |= s2 ∈ {G,UF}. This removal
results in that the last formula is in MNF. From the last
formula it is easy to read out that the diagnoses are all system
behavioral modes such thats2 = G or s2 = UF , e.g. s1 =
NF ∧s2 = G∧s3 = NF ands1 = G∧s2 = UF ∧s3 = NF

In this small example, there were two conflicts and we could
easily, by hand, derive a formula in MNF equivalent to the
conjunction of all negated conflicts. The algorithm presented
in the next section derives this MNF-formula in the general
case.

IV. T HE GENERALIZED M INIMAL HITTING SET

ALGORITHM

This section presents the new generalized minimal hitting
set algorithm. It handles more than two behavioral modes per
component and also non-positive conflicts. The algorithm takes
as inputs, a formulaD and a negated conflictP, both written
in MNF. The purpose of the algorithm is then to derive a new
formulaQ in MNF such thatQ ≃ D ∧ P.

In the algorithm we will use the notationDi ∈ D to denote
the fact thatDi is a conjunction inD. The algorithm can now
be stated as follows:

To keep the algorithm description “clean”, some operations
have been written in a simplified form. More details are
discussed in Section IV-C below. Note that an improvement
corresponding to the change of∆ to ∆old in Algorithm 1 is
not possible for the generalized algorithm.

The algorithm is assumed to be used in an iterative man-
ner as follows. First when only one negated conflictP1 is
considered, we already have a formula in MNF, and thus,
the algorithm is not needed. When a second conflictP2 is
considered, the algorithm is fed withD = P1 andP = P2,
and produces the outputQ such thatQ ≃ P1 ∧P2. Then, for
each additional conflictPn that is considered, the inputD is
the old outputQ.
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Algorithm 2 :
input : a formulaD in MNF, and a negated conflictP
output: Q
Dold := D1

Dadd := empty formula2

forall Di ∈ D do3

if Di 6|= P then4

RemoveDi from Dold5

forall Pj ∈ P do6

Let Dnew be a conjunction in MNF such7

thatDnew ≃ Di ∧ Pj

forall Dk ∈ D, Dk 6= Di do8

if Dnew |= Dk then goto LABEL19

end10

Dadd := Dadd ∨Dnew11

LABEL112

end13

end14

end15

Q := Dold ∨ Dadd16

When the algorithm is used in this way, the following results
can be guaranteed.

Theorem 1:Let P be a set of negated conflicts and letQ
be the output from Algorithm 2 after processing all negated
conflicts inP. Then it holds that

a) Q ≃ P, and
b) Q is in MNF.

�

The proof for this theorem can be found in the appendix.
Remark: The importance of Theorem 1 is, according to
item (a) and Definition 1, that the formulaQ represents all
diagnosis in the sense thatd is a diagnosis if and only if it
holds thatd |= Q, and according to item (b), thatQ has the
nice property of compactness as explained in Section III.

A. Relation to the GDE Minimal Hitting Set Algorithm

The original GDE minimal hitting set algorithm stated in
Section II represents conflicts and diagnoses as sets of com-
ponents. The new generalized minimal hitting set algorithm
can in fact be obtained by modifying this original algorithm.
The principal difference is that all set operations are replaced
with operations on MNF-formulas.

The modifications are the following:
• Instead of using a set of minimal diagnoses∆ as input,

use a formulaD in MNF. Note thatD is not restricted to
be a disjunction of system behavioral modes, but instead
a disjunction of conjunctions on the form (1).

• Instead of using a conflict setC as input, use a negated
conflict P on the form (5).

• Instead of checking the conditionδi ∩ C = ∅, check the
conditionDi 6|= P.

• Instead of the assignmentδnew := δi ∪ {c}, find a
conjunctionDnew in MNF such thatDnew ≃ Di ∧ Pj .

• Instead of checking the conditionδk ⊆ δnew, check the
conditionDnew |= Dk.

B. Example

To illustrate the generalized minimal hitting set algorithm,
consider again an example whereC = {s1, s2, s3} and the
domain of behavioral modes for each component isRsi =
{NF,G,B,UF}. We use the algorithm with the following
inputs:

D =D1 ∨D2 = s1 ∈ {G,B,UF} ∨ s3 ∈ {G,UF}

P =P1 ∨ P2 = s2 ∈ {B,UF} ∨ s3 ∈ {G,B,UF}

In the execution of the algorithm, we enter line 4 where
the conditionD1 6|= P is fulfilled which means thatD1 is
removed fromDold and the second loop of the algorithm
is entered. There, in line 7, aDnew is created such that
Dnew ≃ D1 ∧ P1 = s1 ∈ {G,B,UF} ∧ s2 ∈ {B,UF}.
ThisDnew is then, in line 9, compared toD2 in the condition
Dnew |= D2. The condition is not fulfilled which means that
Dnew is added toDadd in line 11. In the next iteration of the
second loop, aDnew is created such thatDnew ≃ D1 ∧P2 =
s1 ∈ {G,B,UF} ∧ s3 ∈ {G,B,UF}. Also this time the
conditionDnew |= D2 is not fulfilled, implying thatDnew is
added toDadd. Next, the conjunctionD2 is investigated but
since the conditionD2 |= P in line 4 holds,D2 is not removed
from Dold and the second loop is not entered. The algorithm
output is finally formed as

Q := Dold ∨ Dadd = D2 ∨ (D1 ∧ P1 ∨D1 ∧ P2) =

=s3 ∈{G,UF} ∨ s1 ∈{G,B,UF} ∧ s2 ∈{B,UF}∨

∨ s1 ∈{G,B,UF} ∧ s3 ∈{G,B,UF}

It can be verified thatQ ≃ D ∧ P. Also, it can be seen that
Q is in MNF.

C. Algorithm Details

To implement the algorithm, some more details need to be
considered. The first is how to check the conditionDi 6|= P
in line 4. To illustrate this, consider an example whereDi

contains componentsc1, c2, andc3 andP componentsc2, c3,
andc4. SinceD is in MNF, andP in the form (5),Di andP
will have the form

Di =c1 ∈ MD
1 ∧ c2 ∈ MD

2 ∧ c3 ∈ MD
3 (6)

P =c2 ∈ MP
2 ∨ c3 ∈ MP

3 ∨ c4 ∈ MP
4 (7)

We realize that the conditionDi |= P holds if and only if
MD

2 ⊆ MP
2 or MD

3 ⊆ MP
3 . Thus, this example shows that

in general,Di |= P holds if and only ifDi andP contain at
least one common componentci whereMD

i ⊆ MP
i .

The second detail is how to, in line 7, find an expression
Qnew in MNF such thatQnew ≃ Di ∧ Pj . To illustrate this,
consider an example whereDi contains componentsc1 and
c2, andPj the componentc2. SinceD is in MNF, andP in
the form (5),Di andPj will have the form

Di =c1 ∈ MD
1 ∧ c2 ∈ MD

2 (8a)

Pj =c2 ∈ MP
2 (8b)

ThenQnew will be formed as

Dnew = c1 ∈ MD
1 ∧ c2 ∈ MD

2 ∩MP
2
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which means thatDnew ≃ Di ∧ Pj . If it holds thatMD
2 ∩

MP
2 6= ∅, Dnew will be in MNF. Otherwise letDnew = ⊥.

The checkDnew |= Dk will then immediately make the
algorithm jump toLABEL1 meaning thatDnew will not be
added toDadd.

The third detail is how to check the conditionDnew |= Dk

in line 9. To illustrate this, consider an example whereDnew

contains componentsc1 and c2, andDk the componentsc2
and c3. SinceDnew andD are both in MNF,Dnew andDk

will have the form

Dnew =c1 ∈ Mn
1 ∧ c2 ∈ Mn

2 (9a)

Dk =c2 ∈ MD
2 ∧ c3 ∈ MD

3 (9b)

Without changing their meanings, these expressions can be
expanded so that they contain the same set of components:

D′
new =c1 ∈ Mn

1 ∧ c2 ∈ Mn
2 ∧ c3 ∈ Rc3 (10)

D′
k =c1 ∈ Rc1 ∧ c2 ∈ MD

2 ∧ c3 ∈ MD
3 (11)

Now we see that the conditionDnew |= Dk holds if and only
if Mn

1 ⊆ Rc1 , Mn
2 ⊆ MD

2 , andRc3 ⊆ MD
3 . The first of these

three conditions is always fulfilled and the third can never be
fulfilled since, by definition of MNF,MD

3 ⊂ Rc3 . Thus, this
example shows thatDnew |= Dk holds if and only if (1),Dk

contains only components that are also contained inDnew,
and (2), for all componentsci contained in bothDnew and
Dk it holds thatMn

i ⊆ MD
i .

D. Complexity

The complexity of Algorithm 2 mimics that of the original
Algorithm 1. If |D| and|P| denote the number of conjunctions
in D andP respectively, the worst case complexity of Algo-
rithm 2 is of the order|D|2|P|. When the algorithm is used in
an iterative fashion to process a set ofn negated conflicts, the
total worst case complexity becomes|P|2n+1, i.e. exponential.
In spite of this worst case performance, the algorithm can
perform well in a real world setting as will be described in
Section VIII.

V. RELATION TO M INIMAL DIAGNOSES

The concept of minimal diagnoses was originally proposed
in [1] and [2] for systems where each component has only
two possible behavioral modes, i.e. the normal fault-free mode
and a faulty mode. Minimal diagnoses have two attractive
properties. Firstly, they represent the “simplest” diagnoses,
in the sense that all other diagnoses contain additional faulty
components, and are therefore often desired when prioritizing
among diagnoses according to the principle of parsimony.
Secondly, in case there are only positive conflicts, the minimal
diagnoses characterize the set of all diagnoses. These two
properties will now be investigated for the generalized case
of more than two modes per component and non-positive
conflicts.

A. “Simplest” Property

For the case of more than two modes per component,
the concept ofpreferred diagnoseswas defined in [9] as a
generalization of minimal diagnoses. The basic idea is thatthe
behavioral modes for each component are ordered in a partial
order defining that some behavioral modes are more preferred
than other. For example,NF is usually preferred over any
other mode, and a simple electrical fault, such as short circuit
or open circuit, may be preferred over other more complex
behavioral modes. Further, an unknown faultUF may be the
least preferred mode.

For a formal definition letb1c ≥c b2c denote the fact
that for componentc, the behavioral modeb1c is equally or
more preferred thanb2c . For each component, this relation
forms a partial order on the behavioral modes. Further, these
relations induce a partial order on the system behavioral
modes. Letd1 and d2 be two system behavioral modes, i.e.
di = ∧c∈C(c = bic). Then we writed1 ≥ d2 if for all c ∈ C it
holds thatb1c ≥c b

2
c . A preferred diagnosis can then formally be

defined as a diagnosisdi such that there is no other diagnosis
dj where dj > di. In Section VII we will discuss how the
preferred diagnoses can be obtained from an MNF formula
representing all diagnoses. Note that in the case of only two
modes, preferred diagnoses are exactly the minimal diagnoses.

A different approach, compared to the concept of preferred
diagnoses, is to compute the most probable diagnoses as in
[7] and [8]. For example, in [8] the diagnosis problem is
formulated as a constraint satisfaction problem and the most
probable diagnoses are computed using A* search. When using
most probable diagnoses as in [7] and [8] it is required that
a probability is assigned to each behavioral mode. Note the
contrast to the concept of preferred diagnoses which only
requires a preference relation in the form of a partial order.
This is an advantage in applications where it is difficult to
obtain probability values of each behavioral mode.

Remark: One may ask what “preferred” or “simplest” diag-
noses means. One possible formal justification is the follow-
ing. If Q is a formula such thatQ ≃ P, it holds thatP (di|P) =
P (di∧Q)/P (Q). This means thatP (di|P) = P (di)/P (Q) if
d |= P, i.e. if di is a diagnosis, andP (di|P) = 0 if di 6|= P,
i.e. if di is not a diagnosis. For a given setP, the termP (Q)
is only a normalization constant, which means that to compare
P (di|P) for different diagnoses it is enough to consider the
priors P (di). We assume that faults occur independently of
each other which means thatP (di) =

∏

c∈C
P (c = bic)

whereP (c = bic) is the prior probability that componentc
is in behavioral modebic. To know the exact value of a prior
P (c = bic) may be very difficult or even impossible. Therefore
one may assume that for each component, the priors are
unknown but at least partially ordered. Under this assumption,
and given the set of negated conflicts, the preferred diagnoses
are the ones with highest probability. It can be noted that in
contrast, the concept of most probable diagnoses, see [7] and
[8], requires exact values of the priorsP (c = bic), something
that in real applications can be hard to obtain.
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B. Characterizing Property

Now we investigate how the characterizing property of
minimal diagnoses can be generalized to the case of more
than two modes and the presence of non-positive conflicts. In
some special cases, the preferred diagnoses characterize all
diagnoses with the help of the partial order≥, but this does
not hold generally.

In an MNF-formula, the conjunctions have the property
that they characterize all diagnoses. For example consider
the case when the components areC = {s1, s2, s3, s4},
Rsi = {NF,B,G,UF} for all components, ands1 ∈
{B,UF} ∧ s2 ∈ {G,UF} is one of the conjunctions in
an MNF formula. By letting each diagnosis be represented
as an ordered set corresponding to〈s1, s2, s3, s4〉, this single
conjunction characterizes the diagnoses

{B,UF} × {G,UF} × {NF,B,G,UF}×

× {NF,B,G,UF} × {NF,B,G,UF}

which is 256 diagnoses.
For another example assume that each of the components

C = {s1, s2, s3, s4} has only two modes, i.e.Rsi = {NF,F}.
A conjunctions1 ∈ {F} ∧ s2 ∈ {F} would then characterize
all diagnoses{F}×{F}×{NF,F}×{NF,F}. In Section II
this conjunction would be represented by{s1, s2}. If all con-
flicts are positive, all conjunctions would be on this form, and
there is a one-to-one correspondence between the conjunctions
in an MNF-formula and the minimal diagnoses in the original
framework described in Section II.

VI. RELATION TO KERNEL DIAGNOSES

The paper [5] definespartial diagnosisandkernel diagnosis.
In this section we will see that the output of Algorithm 2 can
be seen as a set of kernel diagnoses. In [5], the concept kernel
diagnoses was introduced in the context of only two modes
per component. The purpose of kernel diagnoses is that the set
of all kernel diagnoses characterizes all diagnoses even inthe
case when there are non-positive conflicts. As noted in [5],
also a subset of kernel diagnoses is sometimes sufficient to
characterize all diagnoses.

In the context of this paper we can define partial diagnosis as
a conjunctiond of unique mode assignments such thatd |= P.
Then, a kernel diagnosis is a partial diagnosisd such that there
is no other partial diagnosisd′ whered |= d′.

According to the following theorem, the outputQ from
Algorithm 2 is, in the two-mode case, a disjunction of kernel
diagnoses.

Theorem 2:Let each component have only two possible
behavioral modes, letP be a set of negated conflicts, and let
Q be the output from Algorithm 2 after processing all negated
conflicts inP. Then it holds that each conjunction ofQ is a
kernel diagnosis. �

Note that the MNF property alone does not guarantee that
all conjunctions are kernel diagnoses. This can be seen in the
following formula which is in MNF.

s1 =N ∧ s2 =N ∨ s1 =N ∧ s2 =F (12)

All diagnoses represented by (12) are characterized by the
single kernel diagnosiss1 = N . Therefore none of the
conjunctions in (12) are kernel diagnoses.

A previous algorithm for calculating kernel diagnoses is
given in [5]. In the language of this paper, this previous
algorithm first makes a full expansion of the conjunction
of all negated conflicts by distributing∧ over ∨. Then all
conjunctions that are not kernel diagnoses are removed.

VII. E XTRACTING PREFERREDDIAGNOSES

In Section V it was concluded that the conjunctions in the
outputQ from Algorithm 2 characterize all diagnoses, and in
the special case of two modes per component and only positive
conflicts, there is a one-to-one correspondence between MNF-
conjunctions and the minimal diagnoses. This special case has
also the property that if we study each conjunction in an MNF
formulaQ separately, it will have only one preferred diagnosis.
This preferred diagnosis is also a preferred diagnosis when
considering the whole formulaQ. The consequence is that
it is straightforward to extract the preferred diagnosis from a
formulaQ. In the general case, there is no such guarantee.

For an example, consider two componentss1 ands2 where
Rsi = {NF,E, F} and NF >si E >si F , and a third
components3 where Rs3 = {NF,B,G} with the only
relationsNF >s3 B and NF >s3 G. Then consider the
MNF-formula

Q = s1 ∈ {E} ∧ s3 ∈ {B,G}∨

s1 ∈ {E,F} ∧ s2 ∈ {E,F} ∧ s3 ∈ {B,G} (13)

The preferred diagnoses consistent with the first conjunction
ares1 = E∧s2 = NF∧s3 = B ands1 = E∧s2 = NF∧s3 =
G. The preferred diagnoses consistent with the second are
s1 = E ∧ s2 = E ∧ s3 = B ands1 = E ∧ s2 = E ∧ s3 = G.
As seen, the two diagnosess1 = E ∧ s2 = E ∧ s3 = B and
s1 = E ∧ s2 = E ∧ s3 = G are not preferred diagnoses of the
whole formulaQ.

The example shows that preferred diagnoses can not be
extracted simply by considering one conjunction at a time.
Instead the following procedure can be used. For each con-
junction in Q, find the preferred diagnoses consistent with
that conjunction, and collect all diagnoses found in a setΨ.
The setΨ may contain non-preferred diagnoses. These can be
removed by a simple pairwise comparison. Note that the setΨ
need not to be calculated for every new negated conflict that
is processed, instead only at the time the preferred diagnoses
are really needed, for example before a service task is to be
carried out.

One may ask how much extra time that is needed for the
computation of the preferred diagnoses, compared to the time
needed to process all negated conflicts and computeQ. To
give an indication of this, the following empirical experiment
was set up. A number of 132 test cases were randomly
generated. The test cases represent systems with between 4
and 7 components, where each component has 4 possible
behavioral modes. The number of negated conflicts varies
between 2 and 12.
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Fig. 1. The plot shows the total time needed to compute preferred diagnoses
on the Y-axis, and the time needed to computeQ on the X-axis (the
straight line is included as reference). The histogram shows the distribution
of additional computation time to compute the preferred diagnoses relative
the time needed to computeQ.

In Figure 1, the results for the 132 test cases are shown.
Each X-mark in the upper plot represents one test run and
the total time needed to compute preferred diagnoses is on
the Y-axis, and the time needed to computeQ is on the
X-axis. The histogram shows the distribution of additional
computation time needed to compute the preferred diagnoses
fromQ, relative to the time needed to computeQ. As seen, the
extra time is mostly small compared to the total time needed
to compute the preferred diagnoses.

VIII. A PPLICATION EXAMPLE

We will now illustrate how the new generalized minimal
hitting set algorithm can be used in a practical diagnosis
application. As an application example we study an electrical
driver for the fuel injectors of a 6-cylinder automotive engine.
This system has six components, namely one driver for each of
the six injectors. Each driver has eight behavioral modes:NF ,
SBB (short between banks),SC (stuck closed),SCG (short
circuit to ground),SLB (short circuit on low side to ground),
OL (open load),SHB (short circuit on high side to battery),
andUF . The complexity of this example is illustrated by the
fact that in total, there are86 = 262144 system behavioral
modes.

For on-board diagnosis of the system there are 52 diagnostic
tests corresponding to precompiled potential conflicts [10].
These are implemented both in hardware and software of the
embedded system. Each diagnostic test tests the functionality

of a subset of the system. The outcome of each diagnostic test
is either pass or fail. If the outcome is fail, a negated conflict
is created. The response of the diagnostic tests with respect
to the different single faults is shown in the table in Figure2.
An X in row i and columnj means that thei:th diagnostic
test may respond to the fault of columnj.

For example, we can see that the diagnostic test T7 may
respond to behavioral modes SCG or UF in any of injectors 2,
3, 4, or 5. If the outcome of the test T7 is fail, we obtain the
negated conflictinj2 ∈ {SCG,UF} ∨ inj3 ∈ {SCG,UF} ∨
inj4 ∈ {SCG,UF} ∨ inj5 ∈ {SCG,UF}.

We now assume that tests 10, 30, 38, 44, and 45 have
the outcome fail. Then the set of all preferred diagnoses
are to be computed with Algorithm 2 together with the
principles described in Section VII. For comparison we use
also a commonly used FDI-approach to fault isolation, namely
structured residuals[11]. In this approach the actual response
of the diagnostic tests is matched to the expected responses
of the diagnostic tests for different faults, the so calledfault
signatures. In the experiment we have used the table of fault
signatures as shown in Figure 2 but extended to all multiple
faults. Since the X:s in the table corresponds to the case of an
uncertain response we say that a fault (i.e. a system behavioral
mode) matches the actual response if each 0 corresponds to
a diagnostic test with outcome pass, and each X to a test
with outcome pass or fail. To make the comparison between
the structured residuals and approach based on Algorithm 2
fair, we extend the structured residuals approach so that it
computes preferred diagnoses, which is also a more relevant
problem. This is done by traversing the table from left to
right and the system behavioral modeb of each column is
compared to a setΩ of already computed preferred diagnoses.
If concluded thatb < d for some diagnosisd ∈ Ω, then b
is neglected, and otherwise added toΩ if the diagnostic test
response matches the column. Furthermore, if concluded that
d < b, d is removed fromΩ.

When calculating preferred diagnoses, we use a partial
order defined by the relationsNF > b for all behavioral
modes b 6= NF and b > UF for all b 6= UF . The
total number of diagnoses is computed to be 31960. Further,
the number of preferred diagnoses is 27. Two examples of
preferred diagnoses are〈NF,SBB,NF,UF,NF,NF 〉 and
〈NF,SC, SBB, SLB,NF,NF 〉.

Both algorithms were implemented in SciLab. The compu-
tation time needed for both approaches is shown below. For
comparison, also the time needed for Algorithm 2 to compute
the MNF-formulaQ is shown.

Preferred MNF
diagnoses formula

structured residuals approach 8198s NA
Algorithm 2 approach 11.4s 10.7s

We can note that the new approach, based on Algorithm 2,
computes preferred diagnoses 719 times faster than the struc-
tured residuals approach. Additionally, it is seen that forthe
new approach, the extra time needed to compute preferred
diagnoses from the MNF formula, is less than 10% of the
time needed to compute only the MNF formula.
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injector 1 injector 2 injector 3 injector 4 injector 5 injector 6
SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF

T 1        X                                    
T 2               X                             
T 3                      X                      
T 4                             X               
T 5                                    X        
T 6                                           X
T 7           X    X    X    X    X    X    X    X       
T 8            X  X  X X     X  X  X X     X  X  X X     X  X  X X        
T 9            X   X     X   X     X   X     X   X        
T 10          X     X   X     X   X     X   X     X        
T 11               X        X        X        X        
T 12               X        X        X        X        
T 13               X        X        X        X        
T 14               X        X        X        X        
T 15               X        X        X        X        
T 16         X      X  X      X  X      X  X      X        
T 17               X        X        X        X        
T 18               X        X        X        X        
T 19               X        X        X        X        
T 20          X     X   X     X   X     X   X     X        
T 21    X    X    X    X    X    X    X    X    X    X    X    X
T 22     X  X  X X     X  X  X X     X  X  X X     X  X  X X     X  X  X X     X  X  X X
T 23     X   X     X   X     X   X     X   X     X   X     X   X
T 24   X     X   X     X   X     X   X     X   X     X   X     X
T 25        X        X        X        X        X        X
T 26        X        X        X        X        X        X
T 27        X        X        X        X        X        X
T 28        X        X        X        X        X        X
T 29        X        X        X        X        X        X
T 30  X      X  X      X  X      X  X      X  X      X  X      X
T 31        X        X        X        X        X        X
T 32        X        X        X        X        X        X
T 33        X        X        X        X        X        X
T 34   X     X   X     X   X     X   X     X   X     X   X     X
T 35  X  X  X  X    X                                    
T 36     X  X  X  X                                    
T 37   X      X                                    
T 38         X  X  X  X    X                             
T 39            X  X  X  X                             
T 40          X      X                             
T 41                X  X  X  X    X                      
T 42                   X  X  X  X                      
T 43                 X      X                      
T 44                       X  X  X  X    X               
T 45                          X  X  X  X               
T 46                        X      X               
T 47                              X  X  X  X    X        
T 48                                 X  X  X  X        
T 49                               X      X        
T 50                                     X  X  X  X    X
T 51                                        X  X  X  X
T 52                                      X      X

Fig. 2. The isolation table for the electrical driver system,shown for single faults.

As a further evaluation, the new approach, based on Algo-
rithm 2, has been implemented in C and tested in a standard
embedded Electronic Control Unit (ECU), with microproces-
sor Freescale MPC563-66MHz, controlling a real automotive
engine. This engine system contains 150 components and
450 diagnostic tests. The evaluation has involved more than
40 vehicles driving in total more than 200000 km. For the
purpose of testing, a variety of faults were injected in the
system. In addition, real faults occurred spontaneously. The
performance, and especially the computational time, of the
algorithm was recorded. The conclusion is that the average
computation time needed to compute all preferred diagnoses
is less than 50ms, and the maximum time needed is less
than 0.5s. These numbers are more than satisfactory for the
engine system. This evaluation shows that even though the
algorithm has an exponential behavior in the worst case, it
performs well in a real world setting where computations are
done in a standard automotive ECU. An explanation to this
is that the number of diagnostic tests that will respond with
fail is typically low, which means that the number of negated
conflicts is low.

IX. CONCLUSIONS

In this paper a generalized minimal hitting set algorithm
has been proposed. The key properties in comparison with the
original minimal hitting-set algorithm from [2] are that itcan
handle more than two modes per component and also non-
positive conflicts. The new algorithm has been developed in a
framework where all conflicts and diagnoses are represented
with special logical formulas. It has been formally proven that
Q ≃ P, i.e. the algorithm output is equivalent to the set of all
diagnoses. Further it was proven that the algorithm outputQ

is in the MNF-form that guarantees thatQ does not contain
redundant conjunctions.

In a comparison with the original framework where conflicts
and diagnoses are represented by sets, it was concluded
that the conjunctions in the outputQ, from the generalized
algorithm, are a true generalization of the minimal diagnoses
obtained from the minimal hitting-set algorithm. It has also
been concluded that the conjunctions are a true generalization
of kernel diagnoses. Since, for the case of more than two
modes per component, minimal diagnoses do not necessarily
correspond to the most desired diagnoses, it was instead shown
how preferred diagnoses could be obtained from the conjunc-
tions with a reasonable amount of computational effort.

Finally, one possible application for the proposed algorithm
was demonstrated, namely on-board fault isolation in automo-
tive embedded systems. In this application study it was seen
that the proposed algorithm provides a significant performance
improvement compared to an approach based on structured
residuals which is the standard fault isolation method within
FDI. Further, in a real world test involving a fleet of vehicles,
the new algorithm has been shown to perform well.

APPENDIX

PROOFS OF THE THEOREMS

The appendix contains proofs for the two theorems pre-
sented in the paper. In the proofs we will assume that the set
of negated conflictsP is ordered. We will then use the notation
Pn to denote the subset of then:th first elements inPn. For a
givenn, the notationQ∗, orD∗, will be used to denote the full
expansion of

∧

P∈Pn
P obtained by distributing∧ over∨. For

example, ifP2 = {a ∈ {A,B} ∨ b ∈ {A}, a ∈ {B,C} ∨ c ∈
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{B}}, then the full expansion of
∧

P∈P2
P will be

Q∗ = a ∈ {B} ∨ a ∈ {A,B} ∧ c ∈ {B}∨

∨ a ∈ {B,C} ∧ b ∈ {A} ∨ b ∈ {A} ∧ c ∈ {B} (14)

Furthermore, the notationQ∗
min is used to denote an ex-

pression obtained by removing, fromQ∗, one by one, each
conjunctionQ∗

i as long as there is still another conjunction
Q∗

j left in Q∗ such thatQ∗
i |= Q∗

j .

Proof of Theorem 1

Lemma 1:The outputQ from Algorithm 2 contains no two
conjunctions such thatQ2 |= Q1.

Proof: Assume the contrary, thatQ1 and Q2 are two
conjunctions inQ and Q2 |= Q1. Note first that it can not
hold that Q1 ∈ Dold and Q2 ∈ Dold since line 1 and 5
impliesDold ⊆ D andD is in the input required to be in MNF.
There are therefore three cases that need to be investigated:
(1) Q1 ∈ Dold, Q2 ∈ Dadd, (2) Q2 ∈ Dold, Q1 ∈ Dadd, (3)
Q1 ∈ Dadd, Q2 ∈ Dadd.

1) SinceQ1 ∈ Dold, it holds, from line 1, thatQ1 ∈ D. Note
thatDadd is assigned in line 11 and the factQ2 ∈ Dadd

then means thatDnew = Q2 in some iteration of the
second loop. During this iteration it could not be the case
that Di = Q1, since thenQ1 would have been removed
from Dold in line 5. Therefore,Dnew must have been
compared toQ1 in line 9. SinceQ2 has really been added,
and line 11 executed, it cannot have been the case that
Q2 |= Q1.

2) SinceQ1 ∈ Dadd, it holds from line 7 thatQ1 = Di∧Pj

for someDi ∈ D. The factQ2 |= Q1 implies thatQ2 |=
Di∧Pj |= Di. This is a contradiction sinceQ2 ∈ D, and
D is in MNF.

3) From the wayDnew is formed in line 7, there are three
cases: (a)Q2 = Di∧Pj2, Q1 = Di∧Pj1, (b)Q2 = Di2∧
Pj , Q1 = Di1∧Pj , (c)Q2 = Di2∧Pj2, Q1 = Di1∧Pj1,
where in all cases,Pj1 6= Pj2 andDi1 6= Di2.
a) Lets say thatPj1 = a ∈ Ap. Note that according

to (5),Ap ⊂ Ra. For the relationQ2 = Di ∧Pj2 |=
Di ∧ Pj1 = Q1 to hold, it must therefore be the
case that the component ofPj1 is contained inDi or
Pj2. The latter is not possible because of the assumed
form (5) ofP. Hence lets say thatDi = a ∈ A∧. . . .
The relation Q2 |= Q1 implies A ⊆ A ∩ Ap

which further means thatA ⊆ Ap. This implies
Di |= a ∈ Ap |= P. Thus,Q1 andQ2 are, because
of the condition in line 4, never subject to be added
to Dadd which is a contradiction.

b) SinceQ2 ∈ Dadd, Dnew = Q2 in some iteration of
the second loop. In this iteration,Di in the algorithm
equalsDi2. ThusDk in the third loop can take the
valueDi1. We have thatDnew = Q2 = Di2 ∧Pj |=
Di1 ∧ Pj |= Di1. This means according to the
condition in line 9, thatQ2 can not have been added
to Dadd which is a contradiction.

c) We have thatQ2 = Di2∧Pj2 |= Di1∧Pj1 |= Di1 ∈
D. By reasoning as in case (b), this means thatQ2

can not have been added toDadd.

All these investigations show that it is impossible thatQ2 |=
Q1.

Lemma 2:Let D∗ be the full expansion of
∧

P∈Pn−1
P. For

no two conjunctionsD∗
1 andD∗

2 in D∗
min, there is a component

c, setsM1 andM2, and a conjunctionD̄, not containingc,
such thatD∗

1 ≃ D̄ ∧ c ∈ M1 andD∗
2 ≃ D̄ ∧ c ∈ M2.

Proof: Assume thatD∗
min has two conjunctionsD∗

1 and
D∗

2 such thatD∗
1 ≃ D̄ ∧ c ∈ M1 and D∗

2 ≃ D̄ ∧ c ∈ M2

where the conjunctionD̄ does not containc. Note that
each conjunction inD∗, and therefore also inD∗

min, is the
conjunction of onePi from each negated conflict inP. Let
the negated conflicts inP be indexed from 1 to|P|. Let I1 be
the index set of exactly those negated conflicts that have an
assignmentPi such thatPi is a part ofD∗

1 andPi contains
the componentc.

To illustrate the notation introduced, consider the following
example:

P3 = {P1,P2,P3} =

{ P11 ∨ P12 ∨ P13,

P21 ∨ P22,

P31 ∨ P32 ∨ P33,

P41 ∨ P42}

Note that all negated conflictsPj have the form (5). Let the
assignmentsP11 , P21 , and P31 contain the component
c, and for clarity, these have been marked with gray. Let
D∗

1 = P11 ∧ P21 ∧ P32 ∧ P41. This means thatc ∈ M1 ≃

P11 ∧ P21 andD̄ ≃ P32∧P41. The index setI1 is uniquely
determined to beI1 = {1, 2}.

Now to continue with the proof, letI2 be the index set
of exactly those negated conflicts that have an assignmentPi

such thatPi is a part ofD∗
2 andPi contains the componentc.

Note that sinceD∗
1 6≃ D∗

2 , it holds that the setsM1 andM2

are distinct, and therefore, also the setsI1 andI2 are distinct.
Since each conjunction inD∗

min is the conjunction of one
Pi from each negated conflict inP, it holds that inD∗

1 , D̄ is
formed byPi:s from the negated conflictsIC1 . Similarly, inD∗

2 ,
D̄ is formed byPi:s from the negated conflictsIC2 . Now letD′

2

be the conjunction of thosePi:s in D∗
2 that belong to negated

conflicts in the setIC2 ∩ I1. Let D′ be the conjunction ofD′
2

and thosePi:s in D∗
1 , not containingc. Note thatD′ ≃ D̄.

To illustrate the notation, continue with the example above
and letD∗

2 = P12∧ P21 ∧ P31 ∧P42. Then it holds thatI2 =

{2, 3}, IC2 ∩ I1 = {1}, D′
2 = P12, andD′ = P12 ∧P32 ∧P41.

Next let Dc be the conjunction of thePi:s that belong to
negated conflictsI1∩I2 and are present inD∗

1 . In the example,
I1 ∩ I2 = {2} andDc = P21 . Note that it always hold that
c ∈ M1 |= Dc andc ∈ M2 |= Dc.

Let D∗
3 = D′ ∧ Dc, with D′ andDc formed as described

above, and note thatD∗
3 must be inD∗. Also note thatD∗

1 ≃
D̄ ∧ c ∈ M1 |= D′ ∧Dc = D∗

3 and similarly,D∗
2 |= D∗

3 .
If D∗

1 ≃ D∗
3 , this would imply D∗

2 |= D∗
3 ≃ D∗

1 which
contradicts the starting assumption thatD∗

min contains both
D∗

1 andD∗
2 . Therefore, it must hold thatD∗

1 6≃ D∗
3 . However,

together withD∗
1 |= D∗

3 , this implies thatD∗
1 can not be in

D∗
min which is a contradiction.
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Lemma 3:Let D∗ be the full expansion of
∧

P′∈Pn−1
P ′.

Let Q = Dold ∨ Dadd be the output from Algorithm 2 given
D∗

min andP as inputs. If there is aDim ∈ D∗
min and aPj ∈

P, such thatDim is not contained inDold and there is no
conjunctionQl ≃ Dim ∧ Pj contained inDadd after running
the algorithm, then there is aDim+1

in D∗
min such thatDim ∧

Pj |= Dim+1
andDim+1

∧ Pj 6|= Dim ∧ Pj .
Proof: The fact thatDim is not contained inDold means

that the second loop of the algorithm must have been entered
when Di = Dim . Then the fact that noQl ≃ Dim ∧ Pj is
contained inDadd, means, according to line 9, that

Dim ∧ Pj |= Dk (15)

for someDk 6= Dim . By choosingim+1 = k, this givesDim∧
Pj |= Dim+1

.
Next we will prove thatDim+1

∧ Pj 6|= Dim ∧ Pj . This
is equivalent to provingDk ∧ Pj 6|= Di ∧ Pj . Let the single
assignment inPj be a ∈ Ap, and letcomps Di denote the
set of components inDi. We will divide the proof into three
cases: (1)a 6∈ comps Di, (2) a ∈ comps Di, a 6∈ comps Dk,
and (3)a ∈ comps Di, a ∈ comps Dk.

1) The fact (15), or equivalentlyDi ∧ Pj |= Dk, together
with the fact thata 6∈ comps Di, would implyDi |= Dk.
This is a contradiction sinceDi ∈ D, Dk ∈ D, andD is
in the input required to be in MNF.

2) This case means thatDi can be written asDi = D′∧a ∈
Ai where a 6∈ comps D′, and the fact (15) becomes
D′ ∧ a ∈ Ai ∩ Ap |= Dk. This together with the fact
a 6∈ comps Dk, implies thatD′ |= Dk and consequently
that Di |= Dk, which is a contradiction sinceD is in
MNF.

3) Assume thatDk ∧ Pj |= Di ∧ Pj . This relation can be
written D′

k ∧ a ∈ Ap ∩ Ak |= D′
i ∧ a ∈ Ap ∩ Ai where

D′
k and D′

i are conjunctions not containing component
a. This relation would implyD′

k |= D′
i. Further on, the

fact (15) becomesD′
i ∧ a ∈ Ap ∩ Ai |= D′

k ∧ a ∈ Ak,
which implies thatD′

i |= D′
k. Thus we haveD′

i ≃ D′
k and

the only possible difference betweenDi andDk would
be the assignment of componenta. Lemma 2 says this is
impossible.

With i = im andk = im+1, these four cases have shown that
Dim+1

∧ Pj 6|= Dim ∧ Pj .
Lemma 4:Let D∗ be the full expansion of

∧

P∈Pn−1
P. Let

Q be the output from Algorithm 2 givenD∗
min andP as inputs.

For each conjunctionDi in D∗
min andPj in P it holds that

there is a conjunctionQk in Q such thatDi ∧ Pj |= Qk.
Proof: If, after running the algorithm,Di is contained in

Dold, then the lemma is trivially fulfilled. If instead aQl ≃
Di ∧Pj is contained inDadd, then the lemma is also trivially
fulfilled. Study now the case whereDi is not contained in
Dold and noQl ≃ Di ∧Pj is contained inDadd. We can then
apply Lemma 3 withim = i. This gives us aDim+1

in D∗
min

such thatDim ∧ Pj |= Dim+1
.

If Dim+1
is contained inDold, then the lemma is fulfilled

with Qk = Dim+1
. If instead aQv ≃ Dim+1

∧Pj is contained
in Dadd, note thatDim ∧ Pj |= Dim+1

implies Dim ∧ Pj |=
Dim+1

∧Pj ≃ Qv. This means that the lemma is fulfilled with

Qk = Qv. In this way we can repeatedly apply Lemma 3 as
long as the newDim+1

obtained is not contained inDold and
there is noQv ≃ Dim+1

∧ Pj contained inDadd.
We will now prove that after a finite number of applications

of Lemma 3 we obtain aDim+1
such thatDim+1

is contained
in Dold or there is aQv ≃ Dim+1

∧ Pj contained inDadd.
Note that each application of Lemma 3 guarantees thatDim ∧
Pj |= Dim+1

∧ Pj andDim+1
∧ Pj 6≃ Dim ∧ Pj . These two

properties imply that in the series of applications of Lemma3,
all conjunctions obtained are unique, i.e. all conjunctionsDim ,
Dim+1

, Dim+2
. . . are unique. This means that the maximum

number times Lemma 3 can be applied in this way is limited
by the number of conjunctions inD.

Assume now that Lemma 3 has been applied the maximum
number of times (which equals the number of conjunctions in
D minus 1) and we have not obtained anyDim+1

whereDim+1

is contained inDold or there is aQv ≃ Dim+1
∧Pj contained

in Dadd. Then Lemma 3 actually says that we can apply it
once more and obtain a new setDim+1

. Since all conjunctions
obtained from Lemma 3 are unique, we cannot obtain a
previous conjunction but also, there are no conjunctions left.
This is therefore a contradiction which proves that latest when
Lemma 3 has been applied the maximum number of times, we
must obtain a conjunctionDim+1

whereDim+1
is contained

in Dold or there is aQv ≃ Dim+1
∧ Pj contained inDadd.

Lemma 5:Let Q be the output from Algorithm 2 after
processing all negated conflicts inP. LetQ∗ be the full expan-
sion of

∧

P∈P
P. Then there is a one-to-one correspondence

between the conjunctions inQ andQ∗
min such that for each

conjunctionQi in Q there is a unique conjunctionQ∗
i in Q∗

min

whereQi ≃ Q∗
i and vice versa.

Proof: The proof is constructed by induction overn. For
a givenn, let Q∗ be a full expansion of

∧

P∈Pn
P. For the

induction start, letn = 1 which means thatPn consists of only
one negated conflictP. As stated in Section IV, the algorithm
is not needed in this case sinceP already is in MNF. That is,
the output after processing this single conflict isQ = P. Since
n = 1, it also holds thatQ∗ = P. Then, trivially, it holds that
for each conjunctionQi in Q there is a unique conjunction
Q∗

i in Q∗
min such thatQi ≃ Q∗

i , and for eachQ∗
i in Q∗

min

there is a uniqueQi in Q such thatQi ≃ Q∗
i .

For the induction step, consider an arbitraryn > 1. Let D∗

be a full expansion of
∧

P∈Pn−1
P. Let D be the algorithm

output after having processed all negated conflicts inPn−1.
Assume that for each conjunctionDi in D there is a unique
conjunctionD∗

i in D∗
min such thatDi ≃ D∗

i , and for eachD∗
i

in D∗
min there is a uniqueDi in D such thatDi ≃ D∗

i . Without
loss of generality we can then assume thatD = D∗

min.
Let Q be the algorithm output when feeding it withD =

D∗
min and a new negated conflictP. Let Q∗

min be constructed
from Pn. We will below prove that for each conjunctionQi in
Q there is a conjunctionQ∗

i in Q∗
min such thatQi ≃ Q∗

i , and
for eachQ∗

i inQ∗
min there is aQi in Q such thatQi ≃ Q∗

i .
Consider an arbitrary conjunctionQ1 in Q. Because of line

16, Q1 is in Dold or Dadd. First we consider the case when
Q1 is in Dold. SinceQ1 is in Dold, thenQ1 = Di for a Di in
D. Because of line 4 and 5, it holds thatDi |= P and there
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is therefore, according to the discussion in Section IV-C, a
conjunctionPj in P such thatDi |= Pj . ThusDi ∧ Pj ≃ Di

and therefore,Q1 ≃ Di ∧ Pj . By definition, the conjunction
Di ∧ Pj is in Q∗ so we have shown, for the caseQ1 is in
Dold, that there is aQ∗

1 = Di ∧ Pj ≃ Q1 in Q∗.
Next assume that there is noQ∗

i in Q∗
min such thatQ∗

i ≃
Q∗

1. This would mean that there is anotherQ∗
2 = Dk ∧ Pl in

Q∗ such thatQ∗
1 |= Q∗

2 andQ∗
2 6|= Q∗

1. Note thatDk is in D∗.
Now there are two possible cases: (1)k 6= i, (2) k = i, j 6= l.

1) SinceDi ≃ Di ∧ Pj and i 6= k, we have the relation
Di ≃ Di ∧ Pj ≃ Q∗

1 |= Q∗
2 ≃ Dk ∧ Pl |= Dk. Also we

haveDk ∧Pl ≃ Q∗
2 6|= Q∗

1 ≃ Di∧Pj ≃ Di. This implies
thatDk 6|= Di. However, sinceDi is in D∗

min, there can
not be anyDk in D∗ such thatDi |= Dk andDk 6|= Di.
Thus we have a contradiction.

2) SinceDi ≃ Di∧Pj , we have the relationDi ≃ Di∧Pj ≃
Q∗

1 |= Q∗
2 ≃ Di∧Pl |= Pl. This means thatDi ≃ Di∧Pl

and further thatDi ≃ Di ∧Pl ≃ Q∗
2 6|= Q∗

1 ≃ Di ∧Pj ≃
Di which is a contradiction.

In conclusion, these contradictions show, for the caseQ1 is in
Dold, that there is aQ∗

i in Q∗
min such thatQ∗

i ≃ Q1.
Next we consider the case whenQ1 is in Dadd. SinceQ1

is in Dadd, the second loop of the algorithm has been entered
with aDi in D andPj in P such thatQ1 ≃ Di∧Pj . Therefore,
Q1 ≃ Di ∧ Pj , and, by definition we have thatDi ∧ Pj is in
Q∗. Thus, we have shown that there is aQ∗

1 ≃ Di ∧Pj ≃ Q1

in Q∗.
Next assume that there is noQ∗

i in Q∗
min such thatQ∗

i ≃
Q∗

1. This would mean that there is anotherQ∗
2 ≃ Dk ∧ Pl in

Q∗ such thatQ∗
1 |= Q∗

2. Now there are two possible cases: (1)
k 6= i, (2) k = i, j 6= l.

1) SinceQ1 is in Dadd, and, according to line 8 and 9,
it must hold thatDi ∧ Pj 6|= Dk. At the same time,
Q∗

1 |= Q∗
2 impliesDi∧Pj ≃ Q∗

1 |= Q∗
2 ≃ Dk∧Pl |= Dk

which is a contradiction.
2) We have thatDi ∧ Pj ≃ Q∗

1 |= Q∗
2 ≃ Dk ∧ Pl |= Pl.

According to (5),Pj does not contain the same compo-
nent asPl. ThenDi ∧ Pj |= Pl implies Di |= Pl. This
in turn impliesDi |= P and consequently, according to
line 4, that the second loop is not entered which is a
contradiction.

We have here shown that, also for the caseQ1 is in Dadd, that
there is aQ∗

i in Q∗
min such thatQ∗

i ≃ Q1.
In conclusion, when we feed the algorithm withD = D∗

min

and P, it holds that, for each conjunctionQi in Q there is
a conjunctionQ∗

i in Q∗
min such thatQi ≃ Q∗

i . From the
definition of Q∗

min it also holds trivially thatQ∗
i is unique,

i.e. there is no otherQ∗
i2 in Q∗

min such thatQ∗
i ≃ Q∗

i2. Left
to prove now is that for eachQ∗

i in Q∗
min there is a unique

Qi in Q such thatQi ≃ Q∗
i .

Take an arbitraryQ∗
i in Q∗

min. The conjunctions ofQ∗
min

must be a subset of the conjunctions of the full expansion of
D∗

min ∧ P. Therefore there is aDi in D∗
min and aPj in P

such thatQ∗
i = Di ∧ Pj . Since we feed the algorithm with

D∗
min andP, we can apply Lemma 4 which tells us that there

is aQk in Q such thatDi ∧ Pj |= Qk.
Above we have concluded that sinceQk is in Q, there is a

conjunctionQ∗
l in Q∗

min such thatQk ≃ Q∗
l . Thus we have

thatQ∗
i |= Qk ≃ Q∗

l where bothQ∗
i andQ∗

l are inQ∗
min. Due

to the definition ofQ∗
min, this must mean thatQ∗

i ≡ Q∗
l . Thus

we have the relationQ∗
i |= Qk ≃ Q∗

l ≡ Q∗
i which implies

Q∗
i ≃ Qk. In conclusion, withQi = Qk, we have proven that

for eachQ∗
i in Q∗

min there is aQi in Q such thatQi ≃ Q∗
i .

Finally, a consequence of Lemma 1 is thatQi, i.e. there is no
otherQi2 in Q such thatQi2 ≃ Qi.

Theorem 1:Let P be a set of negated conflicts and letQ
be the output from Algorithm 2 after processing all negated
conflicts inP. Then it holds that

a) Q ≃ P, and
b) Q is in MNF. �

Proof: For the (a)-part of the theorem, considerQ∗
min

obtained fromP. By definition ofQ∗
min it holds thatQ∗

min ≃
P. ThenQ ≃ P is a trivial consequence of Lemma 5.

For the (b)-part of the theorem, note first that Lemma 1Q
says that contains no two conjunctions such thatQ2 |= Q1.
Also we need to prove that each conjunction is in the form
specified by (1).

All conjunctions inDadd are on the form (1) because of
the requirement onDnew in line 7. Therefore all conjunctions
added in the process of formingQ from the setP are on the
form (1). Possibly there might also be conjunctions inQ, not
added viaDadd but instead originating from the first negated
conflictP in P. But sinceP is, by definition, on the form (1),
it holds that all conjunctions inQ must be on the form (1).

Proof of Theorem 2

Lemma 6:Let each component have only two possible
behavioral modes, letd be a partial diagnosis with respect to
P, and letQ be the output from Algorithm 2 after processing
all negated conflictsP. Then it holds thatd |= Qv for some
Qv in Q.

Proof: From the definition of partial diagnosis it holds
that d |= P. This means that for each negated conflictP in
P it holds that d |= P. Then note that eachP in P is a
disjunction of unique assignments, e.g.c = N . The factd |= P
implies, according to the discussion in Section IV-C, that each
P contains at least one of the assignments ind. CreateD∗

by taking the conjunction of one of these assignments from
eachP in P. It will then hold thatd |= D∗. By construction,
D∗ is a conjunction inQ∗. Then, by construction ofQ∗

min,
there must be a conjunctionQ∗

v in Q∗
min such thatD∗ |= Q∗

v.
According to Lemma 5 there is a conjunctionQv in Q such
thatQv ≃ Q∗

v. Thus, we haved |= D∗ |= Q∗
v ≃ Qv.

Theorem 2:Let each component have only two possible
behavioral modes, letP be a set of negated conflicts, and let
Q be the output from Algorithm 2 after processing all negated
conflicts inP. Then it holds that each conjunction ofQ is a
kernel diagnosis. �

Proof: Take an arbitrary conjunctionQk in Q. From
Theorem 1a we know thatQ ≃ P. Thus we haveQk |= Q ≃ P

which means thatQk is a partial diagnosis.
Now assume that there is another partial diagnosisd′ such

that Qk |= d′. Note that this also means thatQk 6≃ d′. Since
d′ is a partial diagnosis, Lemma 6 implies that there is aQv

in Q such thatd′ |= Qv. Thus we haveQk |= d′ |= Qv. This,
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together withQk 6≃ d′, contradicts the fact thatQ is in MNF,
which is stated by Theorem 1b. The contradiction means that
there is no other partial diagnosisd′ such thatQk |= d′, and
Qk must therefore be a kernel diagnosis.
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