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Abstract: This paper addresses the problem of diagnosability analysis, which allows a system
designer to anticipate the performance of a model based diagnosis (MBD) algorithm for a given
system. Such analysis requires a formal description of the system behavior, called model, which
can be very difficult to establish, especially when faults occur in the system. Despite this, all
known diagnosability frameworks rely on some specification of the system behavior under the
absence and presence of faults.
This paper presents a diagnosability analysis algorithm related to a diagnosis approach in which
the model of faulty system components is unspecified. Diagnosis is based on the description of
the normal behavior as well as a decomposition of the system into components, and assesses
which components cannot be behaving normally. Diagnosability is defined in a way that copes
with the capabilities of such diagnosis approaches. An algorithm for checking diagnosability
incrementally or hierarchically is described and illustrated.
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1. INTRODUCTION

Model-Based Diagnosis has received an increasing interest
during recent years, and has been successfully applied
many times. Experience has proved that diagnosis provides
better results when taken into account as early as the
system design stage. The problem of estimating at design
time the performance that a given diagnosis algorithm
will provide at run time is known as diagnosability anal-
ysis. This particular problem of diagnosability analysis
has received a significant interest from the model based
diagnosis community, in particular by Dressler and Struss
[2003], Sampath et al. [1995], Travé-Massuyès et al. [2006],
Pencolé and Cordier [2005], Cordier et al. [2006], yet all
known diagnosability analysis approaches rely on some
specification of the system behavior under the presence of
faults. This requirement is particularly difficult to fulfill,
since fault models are often difficult to establish in real sys-
tems. As a consequence, diagnosis approaches relying only
on normal behavior model are commonly used, although
diagnosability analysis is impossible in such a situation.

Diagnosis approaches using only a normal behavior model
are among the most classical of their fields. In the FDI
community, the constraints that define the normal behav-
ior are derived into a set of consistency tests, that are
informally associated to different system faults. In DX
approaches, the system is decomposed into components,
and diagnosis traditionally identifies the smallest sets of
components that cannot all behave normally, named mini-
mal conflict sets. Cordier et al. [2004] proved that by defin-
ing components in FDI approaches and associating the
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consistency tests to sets of components, both approaches
could lead to the same results. Consequently, the efficient
constraint combination techniques from FDI can be used
to build a complete list of potential minimal conflicts
and diagnoses. This work provides essential grounds for
diagnosability analysis in the absence of fault models.

Some diagnosis approaches indirectly specify fault mod-
els. In particular, FDI approaches that rely on a fault
signature matrix strongly associate a fault to the viola-
tion of some constraints on observable variables. This is
equivalent to constraining the faulty behavior with the
negation of these constraints. In some DX approaches, the
component exoneration assumption states that a faulty
component necessarily exhibits a different behavior from
its normal behavior. This is equivalent to constraining the
faulty behavior by the negation of the normal behavior
constraints. These models can be addressed with existing
diagnosability approaches, and are not considered in this
paper.

This paper establishes definitions that allow to character-
ize the diagnosability of systems in the absence of fault
models. We argue why existing approaches are inadequate
when applied directly under these assumptions, and adapt
definitions to suit the modified context. The main aspect
of the adaptation is that when the faulty behavior is
not specified, the number of diagnosis candidates gets
very large, and the diagnosis process arbitrarily eliminates
some unlikely candidates for the sake of tractability and
usability; the most common way to do so is to eliminate
non-minimal diagnoses. A definition of discriminability of
two combinations of faults is established, and diagnos-
ability is characterized by the set of all discriminability
results. An algorithm is described, that allows to analyze



the diagnosability of subsystems and aggregate the results
in order to obtain diagnosability for the whole system.
This algorithm offers early detection of non-diagnosable
fault combinations, and provides a great flexibility in the
choice of subsystems and merging sequence. Analysis can
be performed incrementally or hierarchically, according to
the user preference or to the system’s natural structure.

This paper is organized as follows: first the diagnosis
approach, inspired from Hamscher et al. [1992], is recalled
is section 2, then definitions for diagnosability adapted for
our approach are given in section 3. An incremental algo-
rithm is described and illustrated in section 4. Comparison
with other diagnosability analysis approaches and related
work is discussed in section 5.

2. MODEL-BASED DIAGNOSIS

The diagnosis approach considered in this paper is the so-
called conflict based approach [Hamscher et al., 1992], of
which we recall the most important definitions. A system
is represented by a finite set V of variables, each variable
ranging over a finite domain. The system is decomposed
in a set COMPS of components, each component ci ∈
COMPS is associated with a model written in first order
logic. Faults are modeled by the predicate ABmeaning
“abnormal”: AB(ci) means that a fault has occurred in
component ci. The system description SD is assumed to
be expressed in the following form:

SD ≡
∧

ci∈COMPS

¬AB(ci)⇒ Model(ci), (1)

where Model(ci) is a conjunction of first order logic sen-
tences constraining the values of some variables in V .
These variables are constrained only when the component
ci is behaving normally (that is, ¬AB(ci) holds). When
AB(ci) holds, these variables range unrestricted over their
respective domains.

The interaction between components is represented by
shared variables: let sco(Mi) denote the set of variables
constrained by Mi. Two components ci and cj are con-
nected if and only if sco(Mi) ∩ sco(Mj) is not empty.

A diagnosis is represented by the sets of suspected com-
ponents. More precisely, for a set of components ∆ ⊆
COMPS, let:

D(∆) ≡
∧

ci∈∆

(
AB(ci)

)
∧

∧
ci∈COMPS\∆

(
¬AB(ci)

)
(2)

Let obs be an assignment to some variables representing
an observation. Then ∆ is a diagnosis if and only if:

SD ∧ obs ∧D(∆) is satisfiable
Since components assumed to be faulty do not constrain
the values of variables in the system model, any super-set
∆′ of ∆ is also a diagnosis. A set of components ∆ is a
minimal diagnosis if and only if ∆ is a diagnosis and every
∆′ ⊂ ∆ is not a diagnosis. Most algorithms aim at finding
minimal diagnoses.

3. DIAGNOSABILITY

Although there is great diversity among existing diag-
nosability definitions and algorithms, most rely on the
same principles and can be expressed under a common

framework [Cordier et al., 2006]. In particular, all known
approaches to diagnosability analysis rely on the specifica-
tion of the system’s normal behavior, as well as its behavior
when faults occur. In such approaches, fault candidates
can be eliminated if assuming their presence contradicts
the observation. Diagnosability analysis aims at finding
observations that are consistent with several combinations
of faults. If such observations exist, then the system is not
diagnosable, as some combinations of faults may not be
distinguishable from others given the observations avail-
able in the system.

In our approach, such reasoning is impossible because
faulty behavior is not specified. When faulty, a component
may adopt any behavior, including its normal behavior. As
a consequence, it is impossible to discard a fault hypothesis
because it is inconsistent with the observations. In particu-
lar, COMPS is a diagnosis for any observation. Diagnosis
approaches deal with this issue by looking for minimal
diagnoses, discard faults when their absence is consistent
with the observation. This requires to adapt well-known
notions of diagnosability to suit the consistency based
diagnosis framework.

In the remaining section, we adapt diagnosability def-
initions to suit the consistency-based framework. First,
the notion of diagnosability is introduced and formalized.
We then present a modified framework for diagnosability
that does not require strong component fault models and
explore its characteristics.

3.1 General concepts

Various concepts used in diagnosability analysis are still
useful in this approach. In particular, the concepts of fault
mode and observable are directly adaptable. A fault mode
is a behavioral mode of the system that is associated with
the presence of some faults and the absence of the other
faults. It can be represented by the set containing the
faults present in the system. The normal mode is the fault
mode that corresponds to the absence of all faults, and
represented by ∅. The set of all fault modes is denoted F .

Formally, a fault mode is represented as a set of faults,
which, in our approach, is equivalent to a set of compo-
nents. Although a fault mode appears to be similar to
a diagnosis, they should not be interpreted in the same
way. A diagnosis is an explanation of a given observation,
while a fault mode is a behavioral mode of the system
that may be associated with observables. Consequently,
F = 2COMPS. When the system is in fault mode f , its
behavior is represented by the constraint SD ∧D(f).

Some variables of the model SD are considered to be
observable, which means that their value is known when
the system is running. It is assumed that every execution of
the system leads to an observation represented by a value
tuple (“observable”) for the observable variables. The set
of all reachable value tuples is called the set of observables
and denoted OBS.

Fault modes are related to observables via a signature
function:

Sig : F → 2OBS

The signature of a fault mode f is the set of observables
that are reachable when the system is in mode f .



The set of observable variables is denoted VOBS. The
diagnosability approach relies on a projection operation
POBS, that projects constraints on observable variables. As
a constraint describes a set of system states, its projection
describes the corresponding set of observations. Formally,
if C is a constraint, the projection on observable variables
POBS(C) is the smallest constraint with sco(POBS(C)) =
VOBS such that if an assignment γ to all the system
variables satisfies a constraint C then the restriction of
γ to observable variables satisfies POBS(C).

Consequently OBS is the set of value tuples for observable
variables satisfying POBS(SD). Moreover the signature of
a fault mode can then be defined as follows:

∀vo ∈ OBS,∀f ⊆ COMPS,

vo ∈ Sig(f)⇔ vo satisfies POBS

(
SD ∧D(f)

)
(3)

3.2 Signature lattice

The previous definitions hold for every diagnosability
approach. When faulty behavior is specified, one can hope
that for two different fault modes f1 and f2, the system
behaviors SD∧D(f1) and SD∧D(f2) are different enough
to lead to different observations, hence Sig(f1)∩Sig(f2) =
∅. There is no a priori reason for two fault modes to share
common behaviors.

In our case, the behavior of a faulty component is not
specified, which means that the component may adopt any
behavior when faulty. As a consequence, as faults appear,
the constraints defining the system behavior simply loosen.
More precisely, for any fault mode f , we have (by equations
(1) and (2)):

SD ∧D(f) ≡
∧

ci∈COMPS\f

Model(ci)

The behavior of the system under a fault mode f is defined
as the conjunction of the constraints associated with the
components that behave normally. As a consequence, for
all fault modes f1 and f2,

f1 ⊂ f2 ⇒
((

SD ∧D(f1)
)
⇒
(
SD ∧D(f2)

))
holds. The implication A⇒ B means that the set of tuples
representing observables satisfying A is a subset of the
tuples satisfying B. It follows that

f1 ⊂ f2 ⇒ Sig(f1) ⊆ Sig(f2) (4)

All signatures are partially ordered by set inclusion, and
form a complete lattice with Sig(∅) as lower bound, and
Sig(COMPS) as upper bound.

This result is significant, since it implies that all signatures
are super-sets of Sig(∅), and no two signatures are disjoint.
The definition of diagnosability given in Pucel [2008]
cannot apply in our context.

In order to suit our context, we need to take into account
that the diagnosis process does not consider all diagnoses,
but only minimal diagnoses. Indeed, if the signature of
a fault mode f contains an observable o, this means
that when the system produces the observation o, f is
a diagnosis. However, this does not guarantee that f is a
minimal diagnosis for o.
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Fig. 1. A simple example composed of three multipliers
and two adders.

3.3 Example

To illustrate the concepts above, let us introduce an old
fashioned yet illustrative example. The system represented
in figure 1 is modeled as follows:

V = {a, b, c, d, e, x, y, z, f, g}
COMPS = {M1,M2,M3, A1, A2}
SD ≡ ¬AB(M1) ⇒ (x = a · c)

∧ ¬AB(M2) ⇒ (y = b · d)
∧ ¬AB(M3) ⇒ (z = c · e)
∧ ¬AB(A1) ⇒ (f = x+ y)
∧ ¬AB(A2) ⇒ (g = y + z)

In this system, all variables are integers, and addition
and multiplication are standard arithmetic operations.
We suppose that only input and output variables are
observable, i.e. VOBS = {a, b, c, d, e, f, g}. Let us build the
model for the normal mode:

SD ∧D(∅) ≡ SD ∧ ¬AB(M1) ∧ ¬AB(M2)
∧ ¬AB(M3) ∧ ¬AB(A1) ∧ ¬AB(A2)
≡ (x = a · c) ∧ (y = b · d) ∧ (z = c · e)
∧ (f = x+ y) ∧ (g = y + z)

By projecting on observable variables and considering the
set of solutions, we get:

Sig(∅) = {(a, b, c, d, e, f, g)|
(f = a · c+ b · d) ∧ (g = b · d+ c · e)}

The signature of the normal mode is the smallest one.
Indeed, by introducing faults in the system, we relax the
constraints on the variables, allowing them to range more
freely over their respective domains. For example, let us
consider fault mode {M1}, for which component M1 is
faulty while other components are normal. We have:

SD ∧D({M1}) ≡ (y = b · d) ∧ (z = c · e)
∧ (f = x+ y) ∧ (g = y + z)

Sig({M1}) = {(a, b, c, d, e, f, g)| g = b · d+ c · e}
By applying the same reasoning to all the fault modes, we
find that:

Sig({M1}) = Sig({A1}) = Sig({A1,M1})
= {(a, b, c, d, e, f, g)| g = b · d+ c · e}

Sig({M3}) = Sig({A2}) = Sig({A2,M3})
= {(a, b, c, d, e, f, g)| f = a · c+ b · d}

Sig({M2}) = {(a, b, c, d, e, f, g)| f − a · c = g− c · e}
In all the other fault modes, observable variables are not
constrained and range over their full integer domains. The
signatures form a lattice as illustrated in figure 2.



∅

{A1}, {M1},
{A1,M1}

{M2}
{A2}, {M3},
{A2,M3}

{A1, A2}, {A1,M2}, {A1,M3},
{A2,M1}, {A2,M2}, {M1,M2}
{M1,M3}, {M2,M3}, . . .

Fig. 2. Fault modes of the system partially ordered by
inclusion of their signatures. Fault modes with iden-
tical signatures are assigned to the same node. Fault
modes involving three components or more belong to
the upper bound and are not enumerated.

This lattice is to be interpreted as follows: with this system
and some observation obs, whenever a fault mode f is a
diagnosis, then every fault mode in the same lattice node
and in every upper node is also a diagnosis.

The lattice of signatures can also be used to deduce
information about minimal diagnoses. For example, it
is easy to deduce that {A1,M1} cannot be a minimal
diagnosis, since when it is a diagnosis, then {A1} and {M1}
also are diagnoses. This result is particularly interesting:
we know that a diagnosis algorithm will never output
{A1,M1} as a minimal diagnosis for this system, for any
observation. The same result holds for {A2,M3} and for
all fault modes containing three or more faults.

3.4 Diagnosability definitions

The previous example illustrates that although the faulty
behavior of components is not specified, it is still possible
to compute at design time important information about
the diagnosis capabilities. The concept of signature pro-
vides information about the situations in which a fault
mode will be a diagnosis, which is sufficient in classical di-
agnosability approaches. However, when we are concerned
about minimal diagnoses, additional reasoning is needed.

This section introduces the concept of minimal signature,
that describes the situations in which a fault mode is a
minimal diagnosis. The minimal signature function as-
sociates each fault mode f to the set of observables for
which f would be a minimal diagnosis. It can be defined
as follows:

MinSig(f) = Sig(f) \
⋃

f ′⊂f

Sig(f ′) (5)

This definition expresses the reasoning that f is a minimal
diagnosis for the observables for which f is a diagnosis
minus the observables for which some f ′ ⊂ f is a diagnosis.

In the formalism used, a minimal signature can be com-
puted directly from the model, by considering observables
that satisfy POBS

(
SD ∧ D(f)

)
for the considered fault

mode f , and that satisfy ¬POBS

(
SD ∧D(f ′)

)
for smaller

fault modes f ′ ⊂ f .

∀vo ∈ OBS,∀f ⊆ COMPS,

vo ∈MinSig(f)⇔ vo satisfies

POBS

(
SD ∧D(f)

)
∧
∧

f ′⊂f

¬POBS

(
SD ∧D(f ′)

)
(6)

This property can be helpful since it allows to check
whether a given fault mode has a non-empty minimal
signature without actually building it. The same principle
can be applied to check whether two minimal signatures
intersect.

The designer of a system is generally not interested in the
contents of minimal signatures, only in specific properties
of the sets:

MinSig(f) = ∅ means that f cannot be a minimal diag-
nosis. Even if the system really is in this fault mode,
the diagnosis algorithm will output smaller minimal
diagnoses. f is not diagnosable.

MinSig(f1) = MinSig(f2) then f1 is a minimal diagnosis
if and only if f2 is. f1 and f2 are not discriminable.

MinSig(f1) ⊆MinSig(f2) with f1 6⊂ f2, then whenever
f1 is a minimal diagnosis, so is f2. f2 is weakly discrim-
inable from f1, and f1 is not discriminable from f2.

MinSig(f1) ∩MinSig(f2) = ∅ means that f1 and f2 can-
not be both minimal diagnoses at the same time (i.e.,
for the same observation). f1 and f2 are mutually dis-
criminable.

The definitions of non-discriminability, weak discrim-
inability and (strong) discriminability are inspired by
Travé-Massuyès et al. [2006], although not equivalent (see
section 5 for details).

These properties characterize diagnosability for diagnosis
approaches where faulty behavior is not specified. Estab-
lishing diagnosability early in the system design phase is of
particular significance if it is required that a certain level
of diagnosability must be achieved for (a sub-set) of all
components.

4. INCREMENTAL ANALYSIS

This section presents an incremental algorithm for com-
puting minimal signatures, or more precisely the con-
straints of which minimal signatures contain the solutions.
Small sets of components are analyzed separately, and the
results of connected sets of components are aggregated one
by one, discarding information at each operation.

An incremental approach is particularly helpful in the case
of distributed systems, since diagnosability analysis can be
performed on local sites before merging the local results
in order to obtain an analysis for the whole system. In
the case of modular systems, where a subsystem can be
replaced or reused in another environment, the analysis
can provide information about the diagnosability of this
subsystem.

This algorithm first analyzes disjoint sets of components,
and then aggregates the results until all the components
have been considered by the analysis. There is no re-
striction on the order in which components should be
analyzed, but the principle of incremental or hierarchical
analysis suggests that the more strongly connected two
components are, the sooner their combination should be



considered. This is however not an intrinsic requirement
in our framework, where components may be combined in
any order.

4.1 Local analysis and merging

Local analysis requires the introduction of concepts to
reason on only some components or subsystem of the
system. The concepts of local model, local fault mode and
interface variable are introduced in the following.

Let S ⊆ COMPS be a set of components to be analyzed
locally. The model of the subsystem containing the com-
ponents of S, also called local model and denoted SDS is
equal to:

SDS ≡
∧
c∈S

¬AB(c)⇒Model(c) (7)

Analysis of the local model only considers fault modes
associated with components in S, formally represented by
subsets of S. The translation of a local fault mode f ⊆ S
as a constraint is written as:

DS(f) ≡
∧

ci∈f

(
AB(ci)

)
∧

∧
ci∈S\f

(
¬AB(ci)

)
(8)

For every local fault mode f ⊆ S the behavior of the
subsystem S is modeled by SDS ∧DS(f).

Local analysis exploits interface variables in addition to
observable variables to discriminate fault modes. The set of
interface variables of S, denoted itf(S), is defined as the set
of variables that connect components in S to components
outside of S:

itf(S) = sco(S) ∩ sco(COMPS \ S)

=
( ⋃

c∈S

sco(c)
)
∩
( ⋃

c∈COMPS\S

sco(c)
)

We define the set of relevant variables rel(S) = itf(S) ∪
(VOBS ∩ sco(S)) that contains interface and observable
variables in S. Note that rel(COMPS) = VOBS, since the
whole system has no interface variables.

The projection operation on observable variables POBS is
extended for any target set of variables. For any set of
variables var, Pvar is defined as follows: an assignment γ of
all variables in V satisfies a constraint C if and only if the
restriction of γ to the variables in var satisfies Pvar(C). We
pay particular attention to the projection of local models
on their relevant variables Prel(S)

(
SDS ∧DS(f)

)
.

These projected local models are then combined with the
projection of other local models. Let S1 and S2 be two
subsystems, disjoint (S1∩S2 = ∅) and connected (itf(S1)∩
itf(S2) 6= ∅). For every local fault modes f1 ⊆ S1 and
f2 ⊆ S2, the behavior of the subsystem S1 ∪ S2 under the
local fault mode f1 ∪ f2 has the following property:

SDS1∪S2 ∧DS1∪S2(f1 ∪ f2) ≡(
SDS1 ∧DS1(f1)

)
∧
(
SDS2 ∧DS2(f2)

)
This is due to the fact that both SDS and DS are
conjunctions of clauses as indicated in equations (7) and
(8).

Moreover, since rel(S1) and rel(S2) both contain all the
variables common to both S1 and S2 (i.e., sco(S1) ∩
sco(S2) ⊂ rel(Si), i ∈ {1, 2}), it is true that:

Prel(S1∪S2)

(
SDS1∪S2 ∧DS1∪S2(f1 ∪ f2)

)
≡

Prel(S1∪S2)

(
SDS1∧DS1(f1)

)
∧Prel(S1∪S2)

(
SDS2∧DS2(f2)

)
(9)

Since rel(COMPS) = VOBS, the combination of the local
behavior models for all the system components establishes
the signature of the combined fault mode.

4.2 Minimal signatures

As explained in section 3.4, we are not interested in sig-
natures, or at least not as much as in minimal signatures.
The minimal signatures can be built from the signatures
constructed incrementally, a more efficient detection can
be done at the local level.

During local analysis of a subsystem S, it is possible that
two local fault modes f1, f2 ⊆ S have equivalent projected
behavioral models. In this case, let S′ = COMPS \ S and
f ′ be a local fault mode for S′. Then f1∪f ′ and f2∪f ′ are
fault modes for the system, and their signatures contain
the solutions for:

POBS

(
SD ∧D(f1 ∪ f ′)) ≡
Prel(S∪S′)

(
SDS∪S′ ∧DS∪S′(f1 ∪ f ′)

)
≡

Prel(S)

(
SDS ∧DS(f1)

)
∧ Prel(S′)

(
SDS′ ∧DS′(f ′)

)
And similarly for f2:

POBS

(
SD ∧D(f2 ∪ f ′)) ≡

Prel(S)

(
SDS ∧DS(f2)

)
∧ Prel(S′)

(
SDS′ ∧DS′(f ′)

)
Consequently, since the projected local models Prel(S)

(
SDS∧

DS(f1)
)

and Prel(S)

(
SDS∧DS(f2)

)
are equivalent, Sig(f1∪

f ′) = Sig(f2 ∪ f ′) for every f ′ ⊂ S′.
From this result, it is possible to take decisions at the local
level. If two local fault modes f1 and f2 have the same local
projected model, then:

• if f1 ⊂ f2, then for any f ′ ⊂ COMPS \ S, we have
MinSig(f2 ∪ f ′) = ∅, since f1 ∪ f ′ has the same
signature, and is included in f2 ∪ f ′.

• if f1 ⊃ f2 the same result holds for f1.
• if f1 and f2 are not related by inclusion, then for

every f ′ ⊂ COMPS \ S, we have MinSig(f1 ∪
f ′) = MinSig(f2 ∪ f ′). The two local fault modes
are aggregated and analyzed together.

In our experience, fault modes involving many components
are not diagnosable. Detection of non-diagnosable fault
modes at the local level can be of interest for identifying
poorly diagnosable subsystems, or for checking the suit-
ability of a component hierarchy for hierarchical diagnosis.

4.3 Example

Revisiting our example, let us assume that the components
are combined in the following order: first A1 and M1 are
aggregated, then M2 is added. A2 and M3 are combined
together, then combined with the rest of the components.
Diagnosability analysis is performed incrementally, and
the diagnosable fault modes that are not yet known to
be (non-)discriminable are checked for discriminability.



Diagnosability The first subsystem to be analyzed is
{A1,M1}. The possible local fault modes for this sub-
system are ∅, {A1}, {M1} and {A1,M1}. The relevant
variables of {A1,M1} are {a, c, y, f}. We have:

f P{a,c,y,f}
(
SD{A1,M1} ∧D{A1,M1}(f)

)
∅ (f = a · c+ y)
{A1} >
{M1} >
{A1,M1} >

(10)

Here > is the true constraint, meaning that variables a,
c, y and f range freely over their respective domains. At
this stage, it is already possible to discard {A1,M1}, since
no fault mode containing these two components can ever
be a minimal diagnosis for this system. {A1}, {M1} are
aggregated to be further analyzed in tandem. They are
jointly referred to by the symbol [A1,M1].

Then M2 is combined with A1 and M1. We note
S = {A1,M1,M2}, the relevant variables for S are
{a, b, c, d, y, f} and we have:

f Prel(S)

(
SDS ∧DS(f)

)
∅ (y = b · d) ∧ (f = a · c+ y)
{M2} (f = a · c+ y)

{[A1,M1]} (y = b · d)
{[A1,M1],M2} >

(11)

At this stage, nothing can be discarded or aggregated.
The analysis of A2 and M3 leads to the following re-
sult, in which {A2} and {M3} have been aggregated,
and {A2,M3} has been discarded. Relevant variables are
{c, e, y, g}.

f P{c,e,y,g}
(
SD{A2,M3} ∧D{A2,M3}(f)

)
∅ (g = c · e+ y)

{[A2,M3]} >
(12)

Finally, the results in tables (11) and (12) are combined
line by line, and projected on the set of relevant variables:

rel({A1, A2,M1,M2,M3}) = rel(COMPS)
= VOBS = {a, b, c, d, e, f, g}

f POBS

(
SD ∧D(f)

)
∅ (f = a · c+ b · d) ∧ (g = b · d+ c · e)
{M2} (f − a · c = g − c · e)

{[A1,M1]} (g = b · d+ c · e)
{[A1,M1],M2} >
{[A2,M3]} (f = a · c+ b · d)
{[A2,M3],M2} >

{[A1,M1], [A2,M3],M2} >
(13)

In table (13), the first three lines are obtained from the
combination of table (12)’s first line with table (11), and
the three last rows from table (12)’s second line. It is
possible to discard from this table all the fault modes
represented by the last line, i.e., those that contain M2

and one of A1 or M1 and one of A2 or M3. It is also
possible to aggregate lines 3 and 5 and obtain the table:

f POBS

(
SD ∧D(f)

)
∅ (f = a · c+ b · d) ∧ (g = b · d+ c · e)
{M2} (f − a · c = g − c · e)

{[A1,M1]} (g = b · d+ c · e)
{[A2,M3]} (f = a · c+ b · d)

{[A1, A2,M1,M3],M2} >
(14)

Table (14) reproduces the signature lattice illustrated in
figure 2, except that non-diagnosable fault modes have
been discarded. A fault mode is diagnosable if and only
if it is mentioned in table (14).

Discriminability Table (14) provides some results about
discriminability: fault modes represented by the same line
are not discriminable. However, more information can be
extracted from the system analysis. We use equation (6) to
compute the constraints MinC(f), the solutions of which
form MinSig(f).

f MinC(f)
∅ (f = a · c+ b · d) ∧ (g = b · d+ c · e)
{M2} (f − a · c = g − c · e 6= b · d)

{[A1,M1]} (g = b · d+ c · e) ∧ (f 6= a · c+ b · d)
{[A2,M3]} (f = a · c+ b · d) ∧ (g 6= b · d+ c · e)

{[A1, A2,M1,M3],M2} AllDifferent(f − a · c, g − c · e, b · d)
In this example, pairwise comparison of the constraints
shows that none of the fault modes listed in the table
is weakly discriminable from another fault mode. Two
diagnosable fault modes are then either non-discriminable
or discriminable.

Performance The algorithm has been designed under
the hypothesis that constraints can be manipulated effi-
ciently. We believe that the decision diagrams described
in Sasao and Fujita [1996], in particular arithmetic deci-
sion diagrams, offer efficient tools for implementing this
algorithm.

5. RELATED WORK

To our knowledge, diagnosability definition has always
relied on faulty behavior specifications, whether direct or
indirect as explained in the introduction. Work addressing
the diagnosis capabilities of systems without fault speci-
fications exist only for theoretic comparison of diagnosis
approaches, or for sensor selection. However, all known
definitions of diagnosability assume the presence of fault
models, and are irrelevant as they would indicate the
lowest possible degree of diagnosability for every system
in our framework.

The closest work to our approach is described in Cordier
et al. [2004], in which diagnosis algorithms from DX
and FDI communities are compared. Correspondences
are established between Analytical Redundancy Relations
(ARRs) and potential conflicts. The study of potential
conflicts provides almost directly information about diag-
nosability, in particular when restricted to minimal con-
flicts. An efficient and complete algorithm for computing
minimal diagnoses by combining the model constraints
is described. In our approach, we entrust the constraint
computation to tools designed by the constraint solving



community. These tools are more generic and may be less
efficient; however, they provide additional constraint types
that may ease the modeling.

The concepts of non-discriminability, weak discriminabil-
ity and strong discriminability have been introduced by
Travé-Massuyès et al. [2006]. This paper also introduces
the idea that the normal mode is one of the many fault
modes, and that detectability can be defined as discrim-
inability from the normal mode. This paper reuses the
hybrid framework of components and ARRs introduced
by Cordier et al. [2004], with the same ability to deal
with unspecified faulty behavior. However, these defini-
tions are stated with respect to the set of all the possible
observations under a fault mode f , which corresponds to
our normal signature. Hence, a direct application of the
definitions of Travé-Massuyès et al. [2006] would give the
lowest possible level of diagnosability for every system, i.e.,
no pair of fault mode is discriminable, since all signatures
overlap. Our definitions allow to distinguish between a
system with poor observation features from a system with
good ones, and offers better support for the optimization
of a system for diagnosis at design time.

The incremental approach for checking diagnosability pre-
sented here is inspired by Pencolé and Cordier [2005] in
which an incremental algorithm for checking diagnosability
is described. The discrete event models of subsystems are
aggregated one by one, and information not relevant to
diagnosability is discarded after each aggregation. The
algorithm precisely identifies the situations in which diag-
nosis is unable to discriminate faults. Yet, this approach
requires the specification of the faulty behavior as part
of the component model, as do all event-based diagnosis
approaches we are currently aware of.

Dressler and Struss [2003] and Pucel et al. [2007] provide
diagnosability analysis approaches for models using con-
straints over discrete variables. Both rely on a specification
of faulty behavior. Dressler and Struss [2003] introduce
the properties of necessary and possible discriminability,
the purpose being to identify operating commands that
allow to discriminate faults. Pucel et al. [2007] describe a
hierarchical approach to diagnosability, and a hierarchical
algorithm for checking it. The concept of partial fault
mode used in that approach is similar to the local fault
modes presented in this paper, as both describe the fault
mode of a subsystem.

6. CONCLUSION

This paper addresses the problem of diagnosability analy-
sis using constraint based models, with unrestricted faulty
behavior. Diagnosis relies on the decomposition of the
system into components to infer from symptoms which
parts of the system comply to their normal behavior
and which do not. Diagnosability is defined with respect
to this diagnostic reasoning, and predicts which sets of
components can be minimal diagnoses for some possible
observation.

When a fault mode is not diagnosable, this means that
when the system is in this fault mode, a diagnosis algo-
rithm will generally suspect smaller but incomplete sets of
faults. It is up to the system designer to accept a given de-

gree of diagnosability, or to modify the system or the model
in order to increase diagnosability. Our approach also iden-
tifies minimal diagnoses that are non-discriminable. Such
information can be a useful input for model abstraction,
which has been linked to potential conflicts by Perrot and
Travé-Massuyès [2007].

Our diagnosability approach is unique since it assumes
that diagnosis may output an incorrect explanation when
the system is in a non-diagnosable fault mode. This
impacts strongly on the decisions that follow diagnosis,
and self-healability as defined in Cordier et al. [2007] needs
to be adapted to account for such a diagnosis approach.

In the domain of software programming, model-based di-
agnosis can be performed on an abstract representation of
a software program as described by Mayer and Stumptner
[2008]. A comfortable range of abstraction techniques are
available, offering various degrees of precision and com-
putational cost. Faulty behavior is not available in such
context, and diagnosability analysis can be used to help
choosing a suitable abstraction among the possible ones.
In this context, our work should be seen as the first step
of an approach to assess diagnosability of programs with
respect to a library of models in order to select a suitable
abstraction for automated debugging, tailored to the pro-
gram under consideration. This is a significant problem
that has so far not been addressed adequately.
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