
1398 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

Sensor Placement for Fault Diagnosis
Mattias Krysander and Erik Frisk

Abstract—An algorithm is developed for computing which sen-
sors to add to meet a diagnosis requirement specification concern-
ing fault detectability and fault isolability. The method is based
only on the structural information in a model, which means that
possibly large and nonlinear differential–algebraic models can be
handled in an efficient manner. The approach is exemplified on a
model of an industrial valve where the benefits and properties of
the method are clearly shown.

Index Terms—Fault diagnosis, fault isolation, sensor placement.

I. INTRODUCTION

FAULT diagnosis and process supervision are an increas-
ingly important topic in many industrial applications and

also in an active academic research area. The nature of a
model-based diagnosis system is highly dependent on the
type of model that is used. For works based on continuous
differential/difference-equation-based models (see, e.g., see [1]
and [2] and the references therein for discrete-event models
[3], [4] and for diagnosis of hybrid systems [5]). To be able to
perform model-based supervision, some redundancy is needed,
and this redundancy is typically provided by sensors mounted
on the process. Scientific attention has mainly been devoted to
design a diagnosis system given a model of a process equipped
with a set of sensors. Not much attention has yet been devoted
to deciding which sensors to include in the process.

Deciding where to put sensors correctly, which makes it pos-
sible to meet a given diagnosis performance specification, is the
topic of this paper. There are many types of performance mea-
sures in diagnosis, for example, detection performance, false-
alarm probabilities, time to detection, etc. In this paper, sensors
are placed such that maximum isolability is possible, i.e., faults
in different components should, as far as possible and desired,
be able to be isolated from each other. Since sensor placement is
often done early in the design phase, possibly before a reliable
process model can be developed, the method developed in this
paper is based on a structural process model. This is a coarse
model description that can be obtained early and without major
engineering efforts. Also, this means that large and nonlinear
differential–algebraic models can be handled in an efficient
manner. The drawback with structural methods is that only best
case results are obtained, (see [6] for a more in-depth discussion
on this).

Manuscript received January 8, 2007; revised February 13, 2007, June 28,
2007, and May 7, 2008. Current version published October 20, 2008. This paper
was recommended by Associate Editor G. Biswas.

M. Krysander and E. Frisk are with the Department of Electrical Engi-
neering, Linköping University, 581 83 Linköping, Sweden (e-mail: matkr@
isy.liu.se; frisk@isy.liu.se).

Digital Object Identifier 10.1109/TSMCA.2008.2003968

The main objective of this paper is to develop an algorithm
that, from a given model and a specified detectability and isola-
bility performance specification, computes a characterization of
all possible sets of sensors, which makes it possible to meet the
requirement specification.

This paper is organized as follows. A formal problem formu-
lation is presented in Section II. Section III gives a background
of the theoretical tools used in the development of the method
in Section IV. The algorithm1 is then summarized in Section V
and thoroughly exemplified on an industrial valve model in
Section VI. Relations to other published related works are
discussed in Section VII, and some conclusions are given in
Section VIII.

II. PROBLEM FORMULATION

Before the main objective of this paper is formally presented,
a small example is discussed that illustrates the fundamental
problems in sensor placement for fault diagnosis. The example
is modeled by a fifth-order linear system of ordinary differential
equations. This example will be used throughout this paper,
although the results will be equally applicable to large-scale
nonlinear differential–algebraic models. The model consists of
the following

e1 : ẋ1 = − x1 + x2 + x5

e2 : ẋ2 = − 2x2 + x3 + x4

e3 : ẋ3 = − 3x3 + x5 + f1 + f2

e4 : ẋ4 = − 4x4 + x5 + f3

e5 : ẋ5 = − 5x5 + u + f4

where xi are the state variables, u is a known control signal,
and fi are the faults that we want to detect and isolate. Since
there are no specified sensors, there is no redundancy, and the
faults are not detectable.

In this example, faults are modeled by fault signals that are
included in the model equations, and fi �= 0 indicates a fault.
A more general way to include faults is to assign assumptions,
or support, to the equations. This type of fault modeling can
also easily be used with the approach that will be presented
later, but for the sake of simplicity, fault signal modeling will
be used in this paper. Also, from now on, only single faults will
be considered, and fi will then be used to denote both the fault
signal and the fault mode.

Let F denote the set of faults. A detectability performance
specification is then a set Fdet ⊆ F specifying the detectability

1A Matlab implementation, released under GNU General Public License,
of the algorithm presented in this paper is available at http://www.fs.
isy.liu.se/Software/SensPlaceTool/.

1083-4427/$25.00 © 2008 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

KRYSANDER AND FRISK: SENSOR PLACEMENT FOR FAULT DIAGNOSIS 1399

requirement, and an isolability requirement is a set I of ordered
pairs (fi, fj) ∈ Fdet ×Fdet, meaning that fi is isolable from
fj . Note that we assume that all faults that are included in the
isolability specification I are also required to be detectable.

Since the fault isolability capability always increases when
adding new sensors, there are minimal elements in the family
of sensor sets that achieves a certain level of fault isolability.
Therefore, we define minimal sensor set as a minimal set of
sensors to add to achieve a specified performance specification.

Definition 1 (Minimal Sensor Set): Let S be the set of
possible sensor locations, i.e., the set of measurable variables,
and let S be a multiset defined on S. Then, S is a minimal
sensor set, with respect to a given detectability and isolability
specification, if adding the sensors in S fulfills the specification
and all proper subsets of S do not.

Note that S is a multiset, which is similar to a set but allows
multiple instances of a member. Generalizations of the standard
set operations like union and intersection are straightforward.
Multisets are used instead of regular sets since it may be neces-
sary to add more than one sensor measuring the same variable.

Returning to the example, the first question is: What are
the minimal sensor sets achieving detectability of all faults?
Here, it is assumed that sensors measure a state variable or a
function thereof. It can be verified, using conditions for fault
detectability in linear systems [7], that {x1}, {x2}, {x3, x4} are
minimal sensor sets achieving detectability. This means that,
by adding any of these sensor sets, it is possible to generate a
residual, i.e., a signal used as a fault indicator, that is sensitive
to all the faults.

The second step is to require not only detectability but also
isolability properties. Here, isolability refers to isolability as
it is commonly used in FDI and the AI community. Formally
defining isolability involves many aspects (see, e.g., [8]). In the
context of this paper, it is sufficient to know that if fault fi is
isolable from fault fj , then there exists a residual that is sensi-
tive to fi but not fj . For details on how isolability is formally
defined in this paper, see Sections III and IV. In the example,
it can be verified that there are five minimal sensor sets that
achieve maximal fault isolation: {x1, x3}, {x1, x4}, {x2, x3},
{x2, x4}, and {x3, x4}. Thus, adding sensors measuring the
variables in any of these sets, or a superset of the variables,
achieves maximum fault isolability.

Now, it is of course the case that the new sensors may also
become faulty. If we want also faults in the new sensors to be
isolable from the other faults, we may have to add additional
sensors. In this case, if maximum fault isolability is desired also
for faults in the new sensors, there are nine minimal sensor sets
where one sensor set is two sensors measuring x1 and one for
x3, i.e., the multiset S = {x1, x1, x3} is a minimal sensor set.

Based on this introductory example, the problem formulation
of this paper can now be stated as follows.

Given a model, possible sensor locations, and a
detectability/isolability performance specification, find
all minimal sensor sets with respect to the required
specification.
The methods developed in the sections that follow aim

at addressing this problem for general nonlinear differential-
algebraic models. Doing this analytically has been difficult

Fig. 1. Structure of the linear example in Section II. Gray areas indicate
nonzero elements.

since inference concerning solutions to the model equations
has been needed. Instead, a method based on utilizing only the
structure of the model is employed. This gives generic results
that hold in a best case situation. An advantage is that very large
models can be handled in an efficient manner. See Section III
for some further results on the relation between structural and
analytical properties of a model. See also [6] for an in-depth
discussion on this topic.

III. THEORETICAL BACKGROUND

The sensor placement problem will be solved here using a
structural representation of the model. The structural represen-
tation of a set of equations M with unknown variables X’s is
a bipartite graph, with variables and equations as node sets.
The known variables are, in this paper, omitted in the structure
because they will not be needed for the analysis. There is an
edge in the graph between a node representing an equation
e ∈ M and a node representing an unknown variable x ∈ X
if the variable x is contained in e. For notational convenience,
we will denote the node representing an equation e or a variable
x simply by the equation name e and the variable name x, re-
spectively. A bipartite graph can be described by a biadjacency
matrix where the rows and columns correspond to the node sets,
and the position (i, j) is one if there is an edge between nodes
i and j; otherwise, it is zero.

The structure of the example formulated in Section II is
shown in Fig. 1 as a biadjacency matrix of the bipartite graph.
The position (ei, xj) is one if xj or any time derivative appears
in equation ei. This structural representation of dynamical
systems has been used in, for example, [9] and [10]. There exist
other structural representations of dynamical systems, but the
one used here is a compact representation suitable for the sensor
placement problem [6].

A. Dulmage–Mendelsohn Decomposition

The objective of this section is to introduce notation and a ba-
sic theoretical tool, the Dulmage–Mendelsohn decomposition
[11], regarding structural models and bipartite graphs that will
be used in the coming sections. The decomposition is shown
in Fig. 2.

The decomposition defines a partition (M0,M1, . . . ,Mn,
M∞) of the set of equations M , a similar partition of the set of

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

1400 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

Fig. 2. Dulmage–Mendelsohn decomposition.

unknowns X’s, and a partial order on sets Mi. If the rows and
columns are rearranged according to this order, the biadjacency
matrix has the upper block triangular form shown in Fig. 2.
There are zero entries in the white parts of the matrix, and there
might be ones in the gray-shaded parts.

Three main parts of M can be identified in the partition,
namely, M0 is called the structurally underdetermined part,
∪n

i=1Mi is the structurally just-determined part, and M∞ is the
structurally overdetermined part. Not all parts may be present in
a given model, for example, the structure in Fig. 1 only contains
a just-determined part.

In Fig. 2, each pair (Mi,Xi) is related to a block which
is denoted by bi. The blocks bi, i = 1, . . . , n in the just-
determined part are called strongly connected components. In
this paper, the just-determined and overdetermined parts are
of particular interest. This is because, in the overdetermined
part, there are more equations than unknown variables, which
implies that there exists some degree of redundancy, and this
is the part of the model that is useful for monitoring the
process. It will thus be convenient to define an operator (·)+
that extracts the overdetermined part of a set of equations, i.e.,
M+ = M∞. Faults that influence the just-determined part are
not detectable, and the structure of the just-determined part
will be instrumental in determining the minimal sensor sets
defined in Section II. A characteristic property of the just-
determined part is that there are equally many equations as
unknown variables in blocks b1, . . . , bn. To prove some of the
results in this paper, a formal definition of the decomposition is
needed, and a brief description is included in the Appendix.

B. Structural Formulation of Fault Diagnosis

In this section, we will give structural characterizations of
fault diagnosis properties. By doing this, the sensor placement
problem can be formulated as a graph theoretical problem.

Let M and F denote a set of equations and a set of single
faults, respectively. Without loss of generality, it is possible to

assume that a single fault can only violate one equation. If a
fault signal f appears in more than one equation, we simply
replace f in the equations with a new variable xf and add
equation f = xf which will then be the only equation violated
by this fault. An example of this procedure is also given in the
example in Section VI. Let ef ∈ M be the equation that might
be violated by a fault f ∈ F . For the example introduced in
Section II, ef1 = ef2 = e3, ef3 = e4, and ef4 = e5.

A fault f is detectable if there exists an observation that
is consistent with fault mode f and inconsistent with the no-
fault mode. This means that a detectable fault can violate a
monitorable equation in the model describing the fault-free
behavior. Since an equation is, in the generic case, monitorable
if it is contained in the structurally overdetermined part of M ,
structural detectability can be defined as follows [1].

Definition 2: A fault f is structurally detectable in a model
M if ef ∈ M+.

Returning to the example and illustrating the correspondence
between detectable faults and structurally detectable faults,
assume that a sensor y measuring x4 has been added to the
process and included in the model by e6 : y = x4. Faults f3

and f4 are the detectable faults, and a residual that is capable of
detecting them is

r = 20y + 9ẏ + ÿ − u = 5f3 + ḟ3 + f4

which is, in fact, the only residual generator for this model
modulo postfiltering. Thus, faults f1 and f2 are not detectable.

The structurally overdetermined part M+ of the model M =
{e1, e2, e3, e4, e5, e6} is equal to {e4, e5, e6}. The equations
ef3 = e4 and ef4 = e5 corresponding to the detectable faults f3

and f4 belong to M+, but not the equations corresponding to
the other faults. This implies, according to Definition 2, that the
detectable faults f3 and f4 are the structurally detectable faults
in M which is in accordance with the analytical result earlier.

Detection is a special case of isolation, i.e., a fault is de-
tectable if the fault is isolable from the no-fault mode. By
noting this similarity, it holds that a fault fi, isolable from fj ,
can violate a monitorable equation in the model describing the
behavior of the process having a fault fj . The set of equations
valid with a fault fj is M \ {efj

}, and the monitorable part of
these equations is, in the generic case, equal to (M \ {efj

})+.
This motivates the following structural characterization of
isolability.

Definition 3: A fault fi is structurally isolable from fj in a
model M if

efi
∈

(
M \ {efj

}
)+

. (1)

The structural detectability and isolability definitions will
next be used in a structural approach for solving the sensor
placement problem.

IV. STRUCTURAL APPROACH

Theoretical results and an algorithm outline to solve the
problem posed in Section II are formulated here using the
theory in Section III. A complete description of the algorithm
is then given in Section V.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

KRYSANDER AND FRISK: SENSOR PLACEMENT FOR FAULT DIAGNOSIS 1401

A general assumption of the approach is that the model does
not contain any underdetermined part. This is not a restrictive
assumption since any complete physical model will, given
an initial condition, have a unique solution and thereby no
underdetermined part. Without loss of generality, it is also
assumed that no fault affects more than one equation and that
possible sensors measure a function of one unknown variable.
In case there are possible sensors that measure some function
h of more than one unknown variable, include a new equation
xnew = h(x) in the model.

A. Sensor Placement for Detectability

A basic building block in the final algorithm will be to
find minimal sensor sets that achieve structural detectability of
faults in an exactly determined set of equations. This section
will be devoted to solving this subproblem by first outlining
the solution for the example system from Section II and then
formally proving the solution. Although the example is given
by analytical equations, all results in this section are based on
the structural model only.

The example model is, without any additional sensors, an
exactly determined set of equations with five equations and five
unknown variables xi, i.e., all faults are undetectable. Consider
first the fault f3. To make this fault detectable, according to
Definition 2, an additional sensor is needed such that equation
ef3 = e4 becomes a member of the overdetermined part of the
model.

It is straightforward to verify that f3 becomes detectable if
and only if any of the variables {x1, x2, x4} are measured. For
example, measuring x4 makes the new measurement equation,
together with equations e4 and e5, an overdetermined set of
equations. For this set of equations, a residual generator which
is sensitive to fault f3 can easily be derived. A similar line of
reasoning can be made when measuring x1 or x2.

Then, why are x1, x2, and x4 exactly those measurements
that give detectability of f3? The explanation can be seen in
Fig. 1 where it can be noted that block b1 is connected to b2 via
a nonzero element in position (1, 2) and that b2 is connected
to b4 in a similar fashion. Thus, there is a connection between
variables x1, x2, and x4, which is precisely the variable in block
b4 including fault f3. Measuring x3, i.e., the variable in b3, does
not give detectability of f3 since there is no connection between
b3 and block b4.

The aforementioned reasoning indicates that some order
between the strongly connected components is needed, and (15)
in the Appendix formally defines such an ordering. Fig. 3 shows
the Hasse diagram of the partial order of the strongly connected
components for the example. Thus, for example, b5 ≤ b3, and
there is no order between b3 and b4. This ordering makes it pos-
sible to state exactly which equations, in an exactly determined
model, that become overdetermined when adding a sensor.

The following lemma formalizes the previous discussion.
This also gives, according to Definition 2, which faults that
become detectable as a result of adding a sensor. Before the
lemma can be stated, some notation is needed. Each block
bi is directly related to an equation set Mi, as defined in
Section III-A, and therefore, an order is implicitly defined on
the sets Mi. See the Appendix for a formal definition.

Fig. 3. Hasse diagram of the partial order over the set of strongly connected
components B.

Lemma 1: Let M be an exactly determined set of equations,
bi be a strongly connected component in M with equations
Mi, and e �∈ M be an equation corresponding to measuring any
variable in bi. Then

(M ∪ {e})+ = {e} ∪ (∪Mj≤Mi
Mj). (2)

Proof: The proper overdetermined part (M ∪ {e})+ is
defined by the minimal subset of M ∪ {e} with maximum
surplus. The maximum surplus of all subsets of M is zero. By
adding one equation e, we know that the maximum surplus
of any subset of M ∪ {e} is at most one. Since var({e}) ⊆
var(M), it follows that ϕ(M ∪ {e}) = 1. Hence, the minimal
set with surplus one is the proper overdetermined part of M ∪
{e}. Any such set contains e since all other sets have surplus
less than or equal to zero. This means that the sought set can
be written as E ∪ {e}, where E ⊆ M . Since the surplus of
E ∪ {e} is one and the surplus of E can be at most zero, it
follows that the surplus of E is zero. Let L be a sublattice of
the subset lattice of M defined similar to the set defined in
(12). This means that E ∈ L. Furthermore, ϕ(E ∪ {e}) = 1
only if var({e}) ⊆ var(E). This implies that Mi ⊆ E. The
minimal set E in L such that Mi ⊆ E is according to (14)
E = ∪Mj≤Mi

Mj , and this completes the proof. �
Achieving detectability of one fault affecting a strongly

connected component immediately implies detectability of all
faults affecting the same component. Therefore, it makes sense
to define an equivalence relation on the set of faults, where
all faults influencing the same strongly connected component
are equivalent. A set of equivalent faults is denoted as [fi],
where fi is one element in the equivalence class. Now, based on
Lemma 1, it is clear that measuring a variable in a block ordered
higher than the block where the fault enters achieves detectabil-
ity. Now, let P ⊆ X be a set of possible sensor locations and
introduce the set

D ([fi]) = {x|bi ≤ bj , x ∈ Xj ∩ P} (3)

where Xj is the set of variables corresponding to block bj ac-
cording to Section III-A and bi is the block that is influenced by
the faults in [fi]. The set D([fi]) is thus the set of variables such
that measuring any variable in the set achieves detectability of
all faults in the equivalence class [fi]. Note that D([fi]) is also a
function of the specification P . However, since the specification
is fixed, for notational convenience, this dependence will not be
explicitly stated.

Returning to the example and utilizing the previous result,
one can see that detectability of f4 comes automatically when
adding sensors to achieve detectability of either the faults in
[f1] or [f3]. This is because b5 is less than or equal to both b3

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

1402 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

Fig. 4. Hasse diagram of the partial order for the linear example over the set
of fault classes. In Fig. 1, it can be seen that [f1] = [f2]. Classes [f1] and [f3]
are the maximal elements of the partial order.

and b4, and according to Lemma 1, block b5 is automatically
included in any overdetermined set of equations when [f1] or
[f3] are made detectable. This means that it is only necessary
to ensure detectability for a subset of the fault classes to ensure
detectability of all faults. To illustrate exactly which classes,
introduce an order on the equivalence classes of F , defined as
[fi] ≤ [fj] if bi ≤ bj , where bk is the block where the faults in
[fk] enter the model. Fig. 4 shows the Hasse diagram of the
partial order for the example model. Here, one can see that, in
the example, it is necessary and sufficient to ensure detectability
of the maximal elements of the partial order. In the example,
the set of possible sensor locations is X , but with a P that is a
proper subset of X , one might have the case where a maximal
fault class is not detectable regardless of which sensors in P
are added. In such a case, one needs to consider the maximal
elements among the detectable fault classes.

The following theorem proves the general result and summa-
rizes the discussion of this section.

Theorem 1: Let M be an exactly determined set of equa-
tions, F be the corresponding set of faults, P ⊆ X be the
set of possible sensor locations, and MS be the equations
corresponding to adding a set of sensors S. Then, maximal
detectability of F in M ∪ MS is obtained if and only if S has a
nonempty intersection with D([f]) for all [f] ∈ Fm, where Fm

is the set of maximal fault classes among the fault classes with
D([f]) �= ∅.

Proof: First, note that faults in fault classes with D([f]) =
∅ cannot be made detectable with any of the available sensor
locations. Therefore, let Fm be, among the fault classes with
D([f]) �= ∅, the set of maximal elements with respect to the
partial order. Then, maximal fault detectability is obtained if
and only if the fault classes in Fm are detectable. This follows
from Lemma 1 and Definition 2 which state that if a sensor is
added such that a fault in a higher ordered fault class is detected,
detectability for the lower ordered fault classes is also obtained.

Furthermore, Lemma 1 also states that a fault f in F becomes
detectable if and only if we measure at least one unknown
variable in blocks that are greater or equal than the block that
includes the fault equation, i.e., if we measure a variable in
D([f]). A sensor addition that makes all faults in F detectable
must thus have a nonempty intersection with D([f]) for all
[f] ∈ Fm. �

The previous result can be summarized in an algorithm that,
given a model M , a set of faults F and a set of possible sensor
locations P compute the family of detectability sets D.

function D = Detectability(M,F, P)
Compute block and fault class orders using M ;
Fm = set of maximal fault classes among [f] s.t.

D([f]) �= ∅;
D = {D([f])|[f] ∈ Fm};

Our objective was not to compute the set of detectability sets D,
but rather minimal sensor sets. For this, note that a hitting set
for a family of sets is a set that has nonempty intersection with
each set in the family. Thus, a minimal hitting set algorithm
[12], [13] applied to the family of sets D can be used to find all
minimal sensor sets.

For the example model, as previously noted, the maximal
fault classes are [f1] and [f3], and the corresponding detectabil-
ity sets are

D ([f1]) = {x1, x2, x3} D ([f3]) = {x1, x2, x4}.

Theorem 1 gives that the minimal sensor sets that achieve
detectability of all faults are {x1}, {x2}, and {x3, x4}, which
are the same sensor sets as was determined in Section II.

B. Sensor Placement for Isolability of Detectable Faults

This section describes the basic ideas of how to find the
minimal sensor sets such that maximum single-fault isolability
is obtained under the assumption that all faults are structurally
detectable. In the next section, this assumption will be removed.

The problem of achieving maximum isolability of the set
of single faults F can be divided into |F | subproblems, one
for each fault, as follows. For each fault fj ∈ F , find all mea-
surements that make the maximum possible number of faults
fi ∈ F \ {fj} isolable from fj . The solution to the isolability
problem will then be obtained by combining the results from all
subproblems.

Each subproblem can be formulated as a detectability prob-
lem, as will be shown next. Assume that M is a model,
including sensors such that all faults are detectable, and MS

represents a set of equations describing an additional sensor set
S. Given the sensor set S, a fault fi is isolable from fj in the
model M ∪ MS if

efi
∈

((
M \ {efj

}
)
∪ MS

)+
(4)

according to Definition 3. By introducing M ′ = M \ {efj
},

this can be written as

efi
∈ (M ′ ∪ MS)+ (5)

which, according to Definition 2, means that fi is structurally
detectable in M ′ ∪ MS . Hence, the maximum possible num-
ber of faults fi ∈ F \ {fj} is isolable from fj in M ∪ MS

if the maximum possible number of faults fi ∈ F \ {fj} is
structurally detectable in the model (M \ {efj

}) ∪ MS . This
shows that each subproblem can be formulated as a detectability
problem.

Next, we use the example formulated in Section II to outline
the solution of one subproblem before formally proving the so-
lution. Assume that we have added sensors measuring {x3, x4}
such that all faults are detectable. Furthermore, assume that
these sensors can be faulty and denote these faults f5 and f6,
respectively. A permuted row structure of the obtained model
M = {e1, e2, . . . , e7} is shown in Fig. 5.

Consider the subproblem associated with fault f1. The set
M ′ in (5) is equal to M \ {ef1} = M \ {e3}. The subproblem
is, given the model M \ {e3}, to find the minimal additional

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

KRYSANDER AND FRISK: SENSOR PLACEMENT FOR FAULT DIAGNOSIS 1403

Fig. 5. Block structure of the example in Section II extended with measure-
ments of x3 and x4.

sensor sets S’s such that as many of the faults f2, f3, . . . , f6 as
possible become detectable in M ′ ∪ MS .

The faults can, depending on which equations they violate, be
divided into the following three types: faults that do not violate
any equation in M ′, faults that violate equations in the struc-
turally overdetermined part (M ′)+, and faults that violate other
equations in M ′, i.e., M ′ \ (M ′)+. In the example, we have that
(M ′)+ = {e4, e5, e7} and M ′ \ (M ′)+ = {e1, e2, e6} which
is equal to the structurally just-determined part of M ′. This
implies that f2 is not included in M ′; f3, f4, and f6 belong
to the structurally overdetermined part; and f5 belongs to the
structurally just-determined part. Fault f2 is not included in
M ′ and cannot be structurally detectable in M ′ ∪ MS for any
sensor set S. This implies that f2 is not isolable from f1 with
any sensor addition, and this also follows from the fact that
these two faults violate the same equation. Faults f3, f4, and f6

in the structurally overdetermined part (M ′)+ are, according
to Definition 2, structurally detectable in M ′ and require no
additional measurements. Fault f5 in the just-determined part
is not detectable, but f5 can become detectable in M ′ ∪ MS if
S is appropriately selected.

Sufficient and necessary requirements on S can be computed
by the function Detectability described in Section IV-A.
By applying this function to the structurally just-determined
part of M ′, i.e., the subgraph of M ′ defined by the node
sets {e1, e2, e6} and {x1, x2, x3}, we get that D([f5]) =
{x1, x2, x3}. Hence, one of the variables in the detectability set
{x1, x2, x3} must be measured to make the faults F \ {f1, f2}
detectable in M ′ ∪ MS , and this implies that all faults in
F \ {f1, f2} are isolable from f1 in M ∪ MS . The solution
to the subproblem related to fault f1 will be the computed
detectability set. The next lemma formalizes the solution of a
subproblem like the one discussed previously.

Theorem 2: Let M be a set of equations with no structurally
underdetermined part, F be a set of structurally detectable
faults in M , P ⊆ X be the set of possible sensor locations,
and MS be the equations added by adding the sensor set S.
For an arbitrary fault fj , assume that M0 is the just-determined
part of M \ {efj

}, F 0 is the set of faults contained in M0,
and D = Detectability(M0, F 0, P). Then, the maximum

possible number of faults fi ∈ F \ {fj} is structurally isolable
from fj in M ∪ MS if and only if S has a nonempty intersection
with all sets in D.

Proof: Given a sensor set S, a fault fi is structurally
isolable from fj if (4) holds according to (1). This is equiv-
alent to saying that fi is structurally detectable in (M \
{efj

}) ∪ MS . Since all faults are structurally detectable, it
follows that efj

∈ M+. This implies that the underdetermined
part of M \ {efj

} is empty. The faults in the structurally
overdetermined part of M \ {efj

} are, according to Defin-
ition 2, structurally detectable. From Theorem 1, maximal
detectability of faults F 0 in the structurally just-determined
part M0 of M \ {efj

} is obtained if and only if S has a
nonempty intersection with all detectability sets contained in
D = Detectability(M0, F 0, P). �

The result of the theorem can be summarized in a function
that, given a model M , a set of detectable faults F in M , a set
of possible sensor locations P , and a fault f ∈ F , computes
the family of detectability sets D that solves the isolability
subproblem for f .

function D = IsolabilitySubProblem(M,F, P, f)
M0 = just-determined part of M \ {ef};
F 0 = the set of faults F included in M0;
D = Detectability(M0, F 0, P);

An additional sensor set that maximizes the set of fault pairs
(fi, fj) such that fi is structurally isolable from fj must have
a nonempty intersection with all detectability sets found in all
subproblems.

function D = Isolability(M,F, P)
D = ∅;
for fi ∈ F

F ′ = F \ {fi};
D = D ∪ IsolabilitySubProblem(M,F ′, P, fi);

end

The minimal sensor sets that maximize the isolability can be
found by applying a minimal hitting set algorithm to the sets in
the output D.

For the example shown in Fig. 5, the families of detectability
sets of the different subproblems are

{{x1, x2, x3}} for f1, f2, and f5

{{x1, x2, x4}} for f3 and f6

∅ for f4. (6)

We have found two distinct detectability sets, and the mini-
mal hitting sets are {x1}, {x2}, and {x3, x4}. These sets are
the minimal additional measurements that achieve maximum
single-fault isolability.

C. Sensor Placement for Both Detectability and Isolability

We have shown how isolability can be achieved in a model
where all faults are structurally detectable. Next, we will extend

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

1404 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

the presented solution to models where faults may not be
structurally detectable in the original model.

The solution is first outlined for the example described in
Section II. The faults in this model are not detectable, and
we want to find all minimal sensor sets that maximize fault
detectability and isolability. We have shown in Section IV-A
that the minimal sets of measurements to achieve full de-
tectability are {x1}, {x2}, and {x3, x4}. If we add, for example,
a sensor measuring x1 described by an equation es, we get
a new model M ∪ {es} where all faults are detectable. Since
all faults are detectable, the previously described method to
achieve maximum isolability can be applied to the model M ∪
{es}. The minimal sensor sets that solve this problem are {x3}
and {x4}. By combining this result with the fact that a sensor
measuring x1 has been added to obtain detectability, it follows
that {x1, x3} and {x1, x4} are two possible sensor sets that
achieve maximum detectability and isolability. To compute all
minimal sensor sets that achieve maximum isolability, we also
have to investigate the solutions when we choose to measure
{x2} or {x3, x4} to obtain full detectability. By solving one
isolability problem for each of the minimal sensor sets that
achieves full detectability, we get that the minimal sensor sets
are {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, and {x3, x4} which
are the same sets as in Section II.

The following description summarizes the suggested algo-
rithm that, given a model M with no structurally underde-
termined part, a set of faults F , and a set of possible sensor
locations P , computes the family S of all minimal sensor sets
that achieve maximum isolability. In the algorithm, the join
operation of two multisets A and B will be used. The join
operation is denoted by A � B and is defined as a multiset
containing all elements in A ∪ B with a multiplicity equal
to the sum of the multiplicities in A and B. For example,
{x1, x2} � {x1} = {x1, x1, x2}.

function S = SensorPlacement(M,F, P)
S = ∅;
M0 = just-determined part of M ;
F 0 = the set of faults F included in M0;
D = Detectability(M0, F 0, P);
Sd = MinimalHittingSets (D);
for Si ∈ Sd

Create the extended model Me = M ∪ MSi
;

Fe = the faults included in Me;
D = Isolability(Me, Fe, P);
Si = MinimalHittingSets(D);
S = S ∪ {Si � S ′|S ′ ∈ Si};

end
Delete nonminimal sensor sets in S;

D. Efficiency Improvements

All operations in the algorithm are polynomial except for the
minimal hitting set algorithm which is NP-hard. This means
that a worst case might be intractable. However, well-formed
models of physical systems typically have a structure which
makes the computations less demanding. Also, and this is
maybe the most important aspect, the number of measurable

signals in the specification P is a prime indicator of the
complexity. Thus, it is not primarily the number of equations
or the number of faults but rather the user-specified sensor
specification that controls the complexity.

In addition, the basic algorithm can be made more efficient
by avoiding multiple computations of some detectability sets.
In (6), we can see that the detectability sets in several of
the subproblems coincided, and therefore, one might suspect
that the function Isolability can be improved in terms of
efficiency. In this section, we will investigate the properties of
structural isolability that will be used to reduce the computa-
tional complexity of the function Isolability.

Consider the model in Fig. 5. An example of two subprob-
lems that resulted in the detectability set {x1, x2, x4} are the
subproblems related to f3 and f6. This is not a coincidence,
and the reason why this happens will be explained next.

First, note that f3 is not isolable from f6 in the structure in
Fig. 5 because

ef3 �∈ (M \ {ef6})
+ = M+ \ {ef3 , ef6} (7)

and vice versa. Hence, we need to find a detectability set for
making f3 isolable from f6, and the one for achieving that f6

becomes isolable from f3. These detectability sets are equal
to {x1, x2, x4}, and one might suspect that f3 is isolable from
f6 if and only if f6 is isolable from f3. This symmetry of the
isolability relation will next be shown to hold for detectable
faults in general. To do this, a partition of an overdetermined
part will first be defined.

A key property in the determination of structural isolability
is the set (M \ {efj

})+ which is determined by the result of the
combined operation of removing an equation and then comput-
ing the overdetermined part. The resulting set of the combined
operation has been studied in [14] and can be characterized
as follows. There exists a partition (M1,M2, . . . ,Mp) of the
overdetermined part M+ such that, for any equation e ∈ Mk, it
holds that

(M \ {e})+ = M+ \ Mk (8)

By comparison of (7) and (8), we get that {ef3 , ef6} is one set
in the partition of M+ in the example. Both faults f3 and f6

violate equations in the same set of the partition, and none of
these faults is isolable from the other fault, i.e., these faults are
indistinguishable. Next, we prove that this holds in general.

Theorem 3: Given a model M , let fi and fj be two struc-
turally detectable faults in M . Fault fi is structurally isolable
from fj if and only if efi

and efj
belong to different sets in the

partition defined in (8).
Proof: Fault fi is structurally isolable from fj if and only

if (1) holds according to Definition 3. By using (8), (1) can be
expressed as

efi
∈ M+ \ Mk (9)

where Mk is the set in the partition such that efj
∈ Mk. Since

fi is structurally detectable, i.e., efi
∈ M+, it follows that (9)

is equivalent to efi
/∈ Mk, and this completes the proof. �

A result of this theorem is that the isolability relation is
symmetric on the set of detectable faults, and this is the

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

KRYSANDER AND FRISK: SENSOR PLACEMENT FOR FAULT DIAGNOSIS 1405

reason for obtaining the detectability set {x1, x2, x4}, both
when finding sensors for making f3 isolable from f6 and vice
versa. This implies that we can reduce the isolability analysis to
ordered pair of faults. That is, given an enumeration of the faults
F = {f1, . . . fn}, line 4 in the function Isolability should
be replaced by F ′ = {fj |j > i}. Another straightforward im-
provement is to compute the corresponding subproblem for at
most one fault entering the same equation.

For the example, the subproblem for f2 need not be solved if
the subproblem for f1 is solved, since these problems have the
same solution. By considering the order of faults, we get the
measurements needed to distinguish f1 and f5 in the subprob-
lem related to f1, and measurements needed to distinguish f3

and f6 in the subproblem related to f3. All other subproblems
return the empty family of detectability sets. Hence, in this
example, the detectability sets are found only once.

E. Adding Sensors With Faults

Sensors might have corresponding sensor faults. When
adding a sensor, it is possible that a new fault is introduced into
the model, and in this section, it is shown how these additional
sensor faults can be handled in algorithm SensorPlacement
described in Section IV-C.

Consider again the example introduced in Section II and
assume now that we want to find all minimal sensor sets
that maximize the fault isolability when all sensors introduce
new possible faults. To do this, we will follow the algorithm
SensorPlacement and describe how some of the lines should
be modified to cope with additional sensor faults.

The additional sensors that have a corresponding sensor fault
have to be specified in the algorithm. This is done by introduc-
ing an additional input set Pf ⊆P where sensors measuring var-
iables in Pf may become faulty and the other sensors may not.

The purpose of lines 5 and 6 is to compute all sensor sets
that achieve full detectability. In Section IV-A, it was shown
that {x1}, {x2}, and {x3, x4} are the minimal sensor sets that
make faults f1, . . . , f4 detectable. No subset of these sensor
sets is therefore a solution to the extended problem concerning
also sensor faults. To determine if one of these sensor sets is
a solution also to the extended problem, assume that x3 and
x4 are measured. If the measurement equations are called e6

and e7, respectively, we obtain the structure in Fig. 5. Let the
sensor faults corresponding to the measurements of x3 and
x4 be denoted by f5 and f6 and include these faults in the
model as done previously. The structurally overdetermined part
{e3, e4, e5, e6, e7} of the model in Fig. 5 includes the sensor
equations, and it follows that the additional sensor faults f5 and
f6 are detectable and require no additional sensors. Thus, in the
example, all sensor faults become detectable, and this holds, in
general, according to the following result.

Theorem 4: Let M be a model with no underdetermined
part, and let x ∈ var(M) be measured with a sensor described
by an equation e /∈ M . Then, a sensor fault violating e will be
structurally detectable in M ∪ {e}.

Proof: The sensor fault is structurally detectable if e ∈
(M ∪ {e})+. Since there is no underdetermined part in M , it
follows that ϕ(M) is equal to the maximal surplus for any set

contained in M . The maximal surplus of any set in M ∪ {e}
is ϕ(M) + 1. Any set with surplus ϕ(M) + 1 has to include
e and, particularly, the minimal set of the maximal surplus
ϕ(M) + 1. This implies that e ∈ (M ∪ {e})+, which was to
be proved. �

The result of this theorem is for the example that {x1},
{x2}, and {x3, x4} are the minimal sensor sets that make
all faults, including the new faults introduced by the added
sensors, detectable. Hence, lines 5 and 6 in SensorPlacement
described in Section IV-C do not need to be changed at all.

On line 7, a minimal sensor set Si that achieves full de-
tectability is selected, and on line 8, the equations MSi

are
added to the original model to form the extended model Me.
If the sensors may become faulty, i.e., if s ∈ Si belongs to Pf ,
then these faults must be added to the model as done in Fig. 5.
These faults and the original faults in F are then stored on
line 9 in Fe.

The purpose of lines 10–11 is to, given the extended model
Me, find the family Si of all minimal additional sensor sets S ′’s
achieving maximum isolability among both the faults in Fe and
the sensor faults associated with the additional sensors S ′’s. The
next result states that if S ′ achieves maximum isolability among
the faults Fe, then S ′ also achieves the maximum isolability
among all faults, including the faults introduced by the sensors
in S ′.

Theorem 5: Let M be a model with no underdetermined
part and F be a set of structurally detectable faults in M .
Furthermore, let MS be an equation set describing additional
sensors and FS be the associated set of sensor faults. Then, for
any sensor fault f ∈ FS and for any fault f ′ ∈ (F ∪ FS) \ {f},
it holds that f is isolable from f ′ and that f ′ is isolable from f
in M ∪ MS .

Proof: By assumption, the faults in F are detectable, and
the faults in FS are detectable according to Theorem 4. Since
both f ′ and f are structurally detectable, it is sufficient to show
that f ′ is structurally isolable from f in M ∪ MS according to
Theorem 3.

First, assume that f ′ ∈ F . All faults in F are structurally
detectable, and it follows that f ′ is structurally detectable, i.e.,

ef ′ ∈ M+. (10)

From the fact that M ⊆ (M ∪ MS) \ {ef}, it follows that
M+ ⊆ ((M ∪ MS) \ {ef})+. This and (10) imply that ef ′ ∈
((M ∪ MS) \ {ef})+, i.e., f ′ is structurally isolable from f
according to Definition 3.

Finally, assume that f ′ ∈ FS \ {f}. From Theorem 4, we get
that f ′ is structurally detectable in M ∪ {ef ′}, i.e.,

ef ′ ∈ (M ∪ {ef ′})+ (11)

From the fact that M ∪ {ef ′} ⊆ (M ∪ MS) \ {ef}, it follows
that (M ∪ {ef ′})+ ⊆ ((M ∪ MS) \ {ef})+. This and (11) im-
ply that ef ′ ∈ ((M ∪ MS) \ {ef})+, i.e., f ′ is structurally
isolable from f according to Definition 3, and this completes
the proof. �

The theorem shows that once sensors and sensor faults
have been added to the original model on line 8, the minimal
additional sensor sets to achieve maximum isolability can be

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

1406 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

computed exactly as before, i.e., lines 10–14 need not be
changed. In conclusion, the only difference in the function
SensorPlacement when considering sensor faults is to add
the additional input Pf that should be used in the creation of
the extended model Me on line 8.

A difference in the result from the case when not considering
sensor faults is that the solution might include two sensors
measuring the same variable. For the example, the minimal
sensor sets when considering sensor faults are {x1, x1, x3},
{x1, x1, x4}, {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4},
{x2, x2, x3}, {x2, x2, x4}, {x2, x3, x4}, and {x3, x3, x4, x4}.
These are the nine sensor sets from Section II. Any of these
sets is a superset of some solutions obtained in Section IV-C
when not considering sensor faults.

V. ALGORITHM SUMMARY

The problem formulation in Section II included a perfor-
mance specification concerning isolability and detectability
properties, and this was not covered by the algorithms in Sec-
tion IV. It turns out that only minor modifications are necessary,
and the algorithms, including the modifications on how to
handle such specifications, will be summarized in this section.

In the algorithm, we will use a convenient but not fully
general representation of a detectability and isolability spec-
ification. In this representation, a detectability and isolability
specification is given by a family I = {F1, F2, . . . , Fn} of
disjoint sets Fi ⊆ F , specifying that the faults in ∪Fi∈IFi

should be detectable and that the pair of faults included in
different sets Fi should be isolable from each other. In addition
to the information given by Pf of which sensors that have
sensor faults, we also have to include how additional sensor
faults should be included in the specification I . Assume that all
information about all additional sensor faults is included in an
object A.

The specification I will replace the input fault set F , and the
information about sensor faults A will replace the input Pf in
the algorithm SensorPlacement presented in Section IV-C.
The resulting algorithm will then, given a model M , a de-
tectability and isolability specification I , a set of possible
sensor locations P , and the isolability information about sensor
faults A, compute all minimal sensor sets that achieve the
detectability and isolability specification I . If the detectability
and isolability specification I is not attainable with any sensor
addition, the minimal sensor sets maximizing the desired prop-
erties specified by I are computed.

There are two changes caused by including the specification
I in SensorPlacement described in Section IV-C. First, the set
of faults that should be detectable according to the specification
I has to be computed as F = ∪Fi∈IFi. Second, instead of
computing just the set Fe of faults included in the extended
model Me on line 9, we need to compute an updated version
Ie of the isolability specification I by using the sensor fault
information A.

function S = SensorPlacement(M, I, P,A)
S = ∅;
F = ∪Fi∈IFi;

Fig. 6. DAMADICS valve.

M0 = just-determined part of M ;
F 0 = the set of faults F included inM0;
D = Detectability(M0, F 0, P);
Sd = MinimalHittingSets(D);
for Si ∈ Sd

Create the extended model Me = M ∪ MSi
using A;

Ie = updated I with new sensor faults according toA;
D = Isolability(Me, Ie, P);
Si = MinimalHittingSets(D);
S = S ∪ {Si � S ′|S ′ ∈ Si};

end
Delete nonminimal sensor sets in S;

The function Isolability called on line 11 has to cope with
an isolability specification instead of the extended fault set
Fe, and this is done as follows. The function Isolability
computes inputs to the isolability subproblems. Instead of
computing the needed measurements for all ordered pairs, it is
sufficient to do this only for all ordered pairs including faults
from different sets Fi ∈ I . The isolability subproblem for a
fault f ∈ Fi is then to compute the detectability sets for making
the maximum possible number of faults ∪j:j>iFj isolable from
f . This is implemented in a new Isolability function as
follows:

function D = Isolability(M, I, P)
D = ∅;
for Fi ∈ I

for f ∈ Fi

F ′ = ∪j:j>iFj ;
D = D ∪ IsolabilitySubProblem(M,F ′, P, f);

end
end

VI. EXAMPLE

The example used to illustrate the results is an industrial
valve. A schematic figure of the valve is shown in Fig. 6 and
consists of three main components: the control valve, a bypass
valve, and a spring-and-diaphragm pneumatic servomotor to
operate the valve plug. The figure also shows an internal control
loop that is used to increase the accuracy of the valve plug

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

KRYSANDER AND FRISK: SENSOR PLACEMENT FOR FAULT DIAGNOSIS 1407

Fig. 7. Structure of the DAMADICS valve model.

positioning. The details of this model are not included in
this presentation, and interested readers are referred to, e.g.,
[15] and the references therein. The structure of the model
is derived in [9] and is shown in Fig. 7. Variables x and xh

are valve positioning variables; Ps, P1, P2, Pz , Pv , Δp, and
Δp−a are pressures; Q, Qv , Qv3, and Qc are fluid flows; T1 is
temperature; Fvc is a force; and all fi are variables indicating
which equations that the different faults influence. Fault f10

influences two equations, and therefore, the dummy variable
xf10 has been introduced to ensure that the assumption that
each fault only influences one equation holds. In this example,
all unknown variables, except the dummy variable xf10, are
assumed to be possible sensor locations. Of course, no fault
variables fi can be measured.

The original model included a specified set of sensors, but
since the objective here is to perform sensor placement analysis,
almost all sensors have been removed. Three sensors have been
kept, namely, measurements of the two ambient pressures P1

and P2 and the measurement of the valve position x that is used
in the internal control loop. This leaves us with a model, which
has no underdetermined part, consisting of 17 equations in 16
unknown variables and 12 different faults.

First, to determine which sensors are necessary to obtain
detectability of all faults, the partial orders on the strongly
connected components and the fault equivalence classes are
computed. Fig. 8 shows the Hasse diagrams for both partial
orders. In Fig. 8(b), it is clear that there are three maximal
elements of the order, namely, {f1, f5}, {f18}, and {f9, f16}.
Thus, obtaining detectability of these faults will automatically
provide detectability of all other faults. It is noted in Fig. 8(a)
which strongly connected components that the maximal faults
influence. Theorem 1 then gives that a sensor set achieving
detectability has a nonempty intersection D([f]) for each max-
imal fault class. The variables that appear in each relevant

strongly connected component are X1 = {Pz}, X5 = {Q},
X6 = {Qv}, X11 = {Qv3}, and then

D ({f1, f5}) = {Q,Qv} D ({f18}) = {Q,Qv3}
D ({f9, f16}) ={Pz}

By computing minimal hitting sets for these three sets, one
obtains two minimal sensor sets {Pz, Q} and {Pz, Qv, Qv3},
and it can be verified using Definition 2 that all faults then
become detectable.

Adding any of the aforementioned sets of sensors only
achieves detectability of the faults and does not give full isola-
bility. Running the algorithm from Section V, computing sensor
sets that achieves maximum isolability also for faults in the new
sensors gives eight minimal sensor sets. The minimal sensor
sets has seven or eight sensors, and one minimal set is to add
sensors measuring the variables {Ps, Pz, Pz, Q,Q,Qv3, x}.
Note here that we need to add two sensors each for variables
Pz and Q. With these sensors, all faults are isolable from each
other except for the pairs {f4, f11}, {f1, f5}, and {f9, f16}.
This is because these faults cannot be isolated by adding more
sensors measuring unknown variables since they appear in the
same equation in the model. The only solution is to do further
fault modeling [9] or, possibly rather unrealistic, to include a
sensor that measures the fault signal directly as in [16].

VII. RELATED WORK

Sensor placement for diagnosis and fault detection is a well-
studied problem. Examples of previous works are [17] where
sensor location for optimal detection performance is studied
and [18] and [19] where an optimization problem related to
sensor selection is studied. Another example is [20] where
a PCA-based monitoring technique is optimized by suitable

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

1408 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

Fig. 8. Order among strongly connected components and faults for the DAMADICS valve model. (a) Order among strongly connected components. It is also
noted, with dashed arrows, where some important faults appear in the model. (b) Order among the equivalence classes on the set of faults.

sensor selection. These papers, and other similar papers, have
a rather different objective than our paper where optimal isola-
bility properties are the objective. Therefore, this discussion
on relations to other works will focus on papers that all have
problem formulations with similarities to this paper.

In [16], the sensor placement problem is addressed using
input–output separators in a graph-based representation of
the system model. A main difference to our paper is that
Commault et al. aim at adding sensors such that, in the linear
case, it is possible to obtain a diagonal transfer matrix from
faults to residual. This is often a rather unrealistic goal since
this is only possible if there are more sensors than faults, and
for example, if the added sensors may become faulty, it is
generically not possible to solve the posed problem. In addition,
it is, in the paper, assumed that fault signals can be measured,
which is an unrealistic assumption.

The basic problem formulation in [21] is almost identical to
our paper, but the model description is a little bit different. It is
a graph-based description, and they do not allow cycles in the
graph, and this results in loss of isolability performance in the
solution. A drawback with their proposed solution is that their
algorithm does not find all minimal sensor sets; the result does
not even need to be minimal. However, it should be possible
to use a minimal hitting set algorithm, instead of their greedy
search, to obtain all minimal solutions to their posed problem.
Another pair of differences is that they do not consider faults in
the added sensors and also that faults entering in more than one
equation are treated in a nonstandard way. For example, in their
approach, it is not possible to add sensors such that the faults in
the model

ẋ = Ax +
[

1 1
1 2

]
f

are isolable which is clearly possible.
A third related work is [22] where the problem is approached

by hypothesizing sensors and then computing the set of analyti-

cal redundancy relations (ARRs), using all possible causalities,
tracing the support of each ARR and then obtaining isola-
bility properties of the model. Travé-Massuyès et al. assume
exoneration, i.e., that a fault always makes the corresponding
residuals to exceed their thresholds, which is not assumed in our
paper since this is a rather unrealistic assumption. Our approach
computes which sensors to add to obtain a certain isolability
performance, while [22] does it the other way around, adding
all possible sensors and then removing sensors until isolabil-
ity performance decreases. One can expect severe complexity
problems with such an approach since the number of ARRs is
exponential in the redundancy of the model [14], and by adding
all possible sensors, you obtain maximum redundancy. Another
difference that is worth noting is that the performance measure
in their paper is a scalar value, the diagnosability degree, which
is equal to the quotient of the number of fault classes by
the number of faults. However, different sensor setups may
have different isolability properties and still have the same
diagnosability degree. This is the reason why the complete
isolability relation, rather than, e.g., the diagnosability degree,
is used as a performance specification in our paper. Similar to
our paper, that by Travé-Massuyès et al. also includes the case
where the new sensors may also become faulty. However, this
also typically means that you may have to add more than one
sensor to a specific variable, and this is not covered in [22]
indicating possibly incomplete results.

VIII. CONCLUSION

The sensor placement problem has been addressed in this
paper. Since detectability and isolability performance is gained
at the cost of sensor addition, the maximum possible isolability
is not always the desired goal. Therefore, it is important that the
desired isolability can be specified. Furthermore, there are often
process variables that cannot be measured, and this information
needs to be considered in a sensor placement analysis. New
sensors may of course also become faulty, and these faults must
also be included in the analysis. It has been shown that this

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

KRYSANDER AND FRISK: SENSOR PLACEMENT FOR FAULT DIAGNOSIS 1409

typically means that more than one sensor has to be added
measuring a specific signal.

A key contribution is a new algorithm for sensor placement
that copes with all aspects mentioned earlier. Given a model,
an isolability specification, the possible sensor locations, and a
specification of which sensors that may be faulty, the algorithm
computes all minimal sensor sets that make, as far as possible
and desired, faults isolable from each other. Typically, there is
a cost associated with each type of sensor, for example, price,
maintenance cost, reliability, etc. This means that the sensor set
with the least number of sensors may not always be the best
choice. Since the result of the algorithm contains all minimal
sensor sets, it is straightforward to pose an optimality condition
regarding cost to find the best choice of sensors to add.

All operations in the algorithm are polynomial except for
a minimal hitting set computation which is NP-hard, and all
known algorithms are, in our problem setting, exponential in the
number of possible sensor locations. However, in many real ap-
plications, the control algorithms give a necessary requirement
on sensors. Also, cost, space, weight, and other considerations
give a restriction on possible sensor locations. Thus, the main
variable that controls complexity is user controlled and, in real
applications, is often limited in size.

The algorithm has been applied to a nontrivial industrial
valve model with 17 equations and 15 possible sensor positions
using a Matlab implementation of the algorithm that is available
at http://www.fs.isy.liu.se/Software/SensPlaceTool/.

APPENDIX

This Appendix formally defines the Dulmage–Mendelsohn
decomposition from Section III-A. These formal definitions
are primarily used in the proofs of the results in Section IV.
See, for example, [23] or [11] for a thorough treatment of the
decomposition.

Let |A| denote the cardinality of set A. Given a bipartite
graph with node sets M and X , let the variables in E ⊆ M
be denoted by var(E) and the surplus of equation set E be de-
fined by

ϕ(E) = |E| − |var(E)| .

Given a model M , there is a family of subsets of M with the
maximum surplus

L = {E ⊆ M |ϕ(E) ≥ ϕ(E′), ∀E ′ ⊆ M} (12)

Let E0 ⊃ E1 ⊃ · · · ⊃ En−1 ⊃ En be any maximal descending
chain of L; then, the partition of M is defined as M0 =
M \ E0, Mi = Ei−1 \ Ei for i = 1, . . . , n, and M∞ = En (see
[23]). The partition of X is defined as

Xi = var(Mi) \ var(Ei) (13)

for i ∈ {0, 1, . . . , n} and X∞ = var(M∞). The partial order ≤
can be defined on sets Mi by

Mi ≤ Mj , if ∀E ∈ L(Mj ⊆ E ⇒ Mi ⊆ E). (14)

In Fig. 2, each pair (Mi,Xi) is related to a block which is
denoted by bi. Since there is a one-to-one correspondence

between sets Mi and blocks bi, we will also partially order
blocks bi in the same way

bi ≤ bj , if Mi ≤ Mj (15)

There exist efficient algorithms to compute the Dulmage–
Mendelsohn decomposition [24] from which also the ordering
among strongly connected components is easy to extract. In
Matlab, the decomposition is implemented in the dmperm com-
mand. This algorithm has time complexity O(

√
nτ), where n

is the number of variables and τ is the number of edges in the
corresponding graph.

REFERENCES

[1] M. Blanke, M. Kinneart, J. Lunze, and M. Staroswiecki, Diagnosis and
Fault-Tolerant Control. New York: Springer-Verlag, 2003.

[2] J. Gertler, Fault Detection and Diagnosis in Engineering Systems. New
York: Marcel Dekker, 1998.

[3] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Failure diagnosis using discrete-event models,” IEEE
Trans. Control Syst. Technol., vol. 4, no. 2, pp. 105–124, Mar. 1996.

[4] J. Lunze and J. Schroeder, “Sensor and actuator fault diagnosis of systems
with discrete inputs and outputs,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 34, no. 2, pp. 1096–1107, Apr. 2004.

[5] S. Narasimhan and G. Biswas, “Model-based diagnosis of hybrid sys-
tems,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 37, no. 3,
pp. 348–361, May 2007.

[6] M. Krysander, “Design and analysis of diagnosis systems using struc-
tural methods,” Ph.D. dissertation, Linköpings Universitet, Linköping,
Sweden, Jun. 2006.

[7] M. Nyberg, “Criterions for detectability and strong detectability of faults
in linear systems,” Int. J. Control, vol. 75, no. 7, pp. 490–501, May 2002.

[8] M. Cordier, P. Dague, F. Levy, J. Montmain, M. Staroswiecki, and
L. Travé-Massuyès, “Conflicts versus analytical redundancy relations: A
comparative analysis of the model based diagnosis approach from the
artificial intelligence and automatic control perspectives,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 34, no. 5, pp. 2163–2177, Oct. 2004.

[9] D. Dustegör, E. Frisk, V. Cocquempot, M. Krysander, and
M. Staroswiecki, “Structural analysis of fault isolability in the
DAMADICS benchmark,” Control Eng. Pract., vol. 14, no. 6, pp. 597–
608, Jun. 2006.

[10] S. Ploix, M. Desinde, and S. Touaf, “Automatic design of detection tests
in complex dynamic systems,” in Proc. 16th IFAC World Congr., Prague,
Czech Republic, 2005.

[11] A. L. Dulmage and N. S. Mendelsohn, “Coverings of bipartite graphs,”
Can. J. Math., vol. 10, pp. 517–534, 1958.

[12] R. Reiter, “A theory of diagnosis from first principles,” Artif. Intell.,
vol. 32, no. 1, pp. 57–95, Apr. 1987.

[13] J. de Kleer, “Diagnosing multiple faults,” Artif. Intell., vol. 32, no. 1,
pp. 97–130, Apr. 1987.

[14] M. Krysander, J. Åslund, and M. Nyberg, “An efficient algorithm for
finding minimal overconstrained subsystems for model-based diagnosis,”
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 1, pp. 197–
206, Jan. 2008.

[15] M. Syfert, M. Bartys, J. Quevedo, and R. Patton, “Development and
application of methods for actuator diagnosis in industrial control sys-
tems (DAMADICS): A benchmark study,” in Proc. IFAC Safeprocess,
Washington, DC, 2003, pp. 939–950.

[16] C. Commault, J. Dion, and S. Agha, “Structural analysis for the sensor
location problem in fault detection and isolation,” in Proc. IFAC Safe-
process, Beijing, China, 2006, pp. 949–954.

[17] M. Basseville, A. Benveniste, G. Moustakides, and A. Rougée, “Optimal
sensor location for detecting changes in dynamical behavior,” IEEE Trans.
Autom. Control, vol. AC-32, no. 12, pp. 1067–1075, Dec. 1987.

[18] R. Debouk, S. Lafortune, and D. Teneketzis, “On an optimization problem
in sensor selection,” Discret. Event Dyn. Syst., vol. 12, no. 4, pp. 417–445,
Oct. 2002.

[19] T. Yoo and S. Lafortune, “NP-completeness of sensor selection problems
arising in partially observed discrete-event systems,” IEEE Trans. Autom.
Control, vol. 47, no. 9, pp. 1495–1499, Sep. 2002.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

1410 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

[20] H. Wang, Z. Song, and H. Wang, “Statistical process monitoring using
improved PCA with optimized sensor locations,” J. Process Control,
vol. 12, no. 6, pp. 735–744, Sep. 2002.

[21] R. Raghuraj, M. Bhushan, and R. Rengaswamy, “Locating sensors in
complex chemical plants based on fault diagnostic observability criteria,”
AIChE J., vol. 45, no. 2, pp. 310–322, Feb. 1999.

[22] L. Travé-Massuyès, T. Escobet, and X. Olive, “Diagnosability analysis
based on component-supported analytical redundancy relations,” IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 36, no. 6, pp. 1146–
1160, Nov. 2006.

[23] K. Murota, Matrices and Matroids for System Analysis. New York:
Springer-Verlag, 2000.

[24] A. Pothen and C.-J. Fan, “Computing the block triangular form of a
sparse matrix,” ACM Trans. Math. Softw., vol. 16, no. 4, pp. 303–324,
Dec. 1990.

Mattias Krysander was born in Linköping,
Sweden, in 1977. He received the M.Sc. degree
in electrical engineering and the Ph.D. degree in
electrical engineering from Linköping University,
Linköping, Sweden, in 2000 and 2006, respectively.

He is currently with the Department of Electrical
Engineering, Linköping University. His current re-
search interests include model-based fault diagnosis
using graph-theoretical and structural methods.

Erik Frisk was born in Stockholm, Sweden, 1971.
He received the M.Sc. degree in electrical engineer-
ing and the Ph.D. degree in electrical engineering
from Linköping University, Linköping, Sweden, in
1996 and 2001, respectively.

He is currently with the Department of Electrical
Engineering, Linköping University. His current re-
search interests include model-based fault detection
and isolation in nonlinear large-scale systems and
structural methods in fault diagnosis.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 12,2010 at 03:21:48 EST from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

