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Abstract
Diagnostic tasks involve identifying faulty com-
ponentsfrom observationsof symptomaticdevice
behavior. This paperpresentsa generaldiagnos-
tic theory that usesthe perspectiveof diagnosis
as ideniifying consisieni modesof behavior, cor-
rect or faulty. Our theory drawson the intu-
itions behind recentdiagnostic theoriesto iden-
tify faulty componentswithout necessarilyknow-
ing how they fail. To deriveadditional diagnos-
tic discriminationwe usethe modelsfor behav-
ioral modestogetherwith probabilistic informa-
tion aboutthe likelihood of eachmodeof behav-
ior.

1 Introduction

Whenyou haveeliminatedthe impossible,what-
ever remains,howeverimprobable,must be the
truth. — SherlockHolmes. TheSign ofthe Four.

The objectiveof our researchis to develop a general
theoryof diagnosisthat capturesa humandiagnostician’s
predominantmodesof reasoning.This theory is intended
to serve as the conceptualfoundationfor computational
systemsthatdiagnosedevices.

Early approaches[1, 4] to diagnosisused fault models
to identify failure modesof faulty componentsthat ex-
plain the observationsmade. The ability to predict fail-
ing components’behaviorsprovided powerful diagnostic
discrimination. However,thesetechniquesdependon the
assumptionthat all failure modesare known a priori —

an assumptionthat is sometimeswarrantedbut is never
guaranteed.The unacceptableresultof notsatisfyingthis
assumption— faulty diagnoses— has led researchersto
abandonthis powerful approach.

The model-baseddiagnosticapproachadoptedby most
recentresearchers[3, 6, 101 providesaframework for di-
agnosinga device from correct behavioronly. This ap-
proachis basedon the observationthat it is not necessary
to determinehow a componentis failing to know that it
is faulty — a componentis faulty if its correctbehavior
(i.e., asspecifiedby its manufacturer)is inconsistentwith
the observations.Sinceonly correctbehaviorneedsto be
modeled,any knowledgeaboutthe behaviorof component
fault modesis ignored. This providesa fundamentalad-
vantageover earlier techniquesrequiring a priori knowl-
edge of all fault modes. Unforeseenfailure modespose
no difficulty. However,what is lost is the additionaldiag-
nosticdiscriminationderivedfrom knowing the likely ways
a componentfails, and the ability to determinewhether

thesefailure modesare consistentwith the observations.
Thus, unlikely possibilitiesare entertainedas seriouslyas
likely ones. For example,as far as most model-baseddi-
agnosticapproachesareconcerned,a light bulb is equally
likely to burn out as to becomepermanentlylit (even if
electrically disconnected).

Humandiagnosticians,however,takegreatadvantageof
behavioralmodelsof known failure modes,togetherwith
the likelihood that thesemodeswill occur. Knowledgeof
fault modesis usedto pinpoint faulty componentsfaster,
andto help determinespecific repairsthat must bemade
to the faulty components.

We view the centraltask of diagnosisas identifying the
behavioralmodes(corrector faulty) of all thecomponents.
Whether a modeis faulty or not is irrelevant. Our syn-
thesishypothesizesthat it is not the notion of fault, but
behavioral mode that is fundamentalto diagnosis. Each
componenthasasetof possiblebehavioralmodesincluding
an unknownmode which makesno predictions,andthere-
fore can never conflict with the evidence. The unknown
modeis includedto allow for the possibility, albeitsmall,of
unforeseenbehavioralmodes.This unknownmodeis cru-
cial becauseearly diagnosticalgorithms,whenconfronted
with an unforeseenfault mode,either start making use-
less probesor simply give up. Our approachpinpointsthe
failing componentas behavingin an unknownmode.

The introduction of fault modelspotentially introduces
significant computationaloverheadfor the diagnostic al-
gorithms. Diagnosingmultiple faults is inherentlya corn-
binatoric process. Introducing fault models exacerbates
the process,by introducing multiple modesand possible
behaviorsto consider. To control the combinatoricswe
introducecomputationaltechniqueswhich focusreasoning
on more probablepossibilitiesfirst. Thesetechniques,in
effect, focusdiagnosticreasoningonly on thosecomponent
behavioral modesthat are more probablegiven the evi-
dence.This set growsandshrinksas evidenceis collected.

By using the new perspectiveof diagnosisas identify-
ing probablebehavioralmodes,we are ableto extendour
earlierwork on model-baseddiagnosis(the GeneralDiag-
nostic Engine (GDE) [6]) to reasonabout modesof be-
havior. The resultingsystemwe call Sherlock. GDE pro-
vides ageneraldomain-independentarchitecturefor diag-
nosingany numberof simultaneousfaults in adevicegiven
solelya descriptionof its structure(e.g., electricalcircuit
schematic)andspecificationsof correctcomponentbehav-
iors (e.g., that resistorsobey Ohm’s law). Given a set
of observations,GDE constructshypotheses(called diag-
noses)identifiesthe faulty componentsandsuggestspoints
where additional measurements(called probes)should be
madeto localize the diagnosiswith as few measurements
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aspossible.
We have implementedour approachby extendingGDE

to Sherlock,and havetestedit on a variety of digital cir-
cuits— from simple threeinverter circuits, to ALUs con-
sisting of 400 gateswith 4 behavioralmodeseach. Sher-
lock exploitsknowledgeof failure modesto pinpoint faults
more equally and identify in what modecomponentsare
functioning. Sherlockis describedmorefully in [7].

2 Relatedwork

Exploiting the use of fault models has recently become
an active researcharea [11, 12, 13, 16]. In particular,
Holtzblatt’s [12] generalizationof GDE incorporatesthe
notion of behavioralmodesin asimilar spirit to Sherlock.
But Holtzblatt’s GMODS systemis missingmany key fea-
turesof Sherlocksuchasaccommodatingunexpectedfail-
ures, incorporatingprobabilistic information to rankdiag-
nosesandguide probing,incorporatingmost-probable-first
heuristics to limit the computational complexity which
arisesfor largerdevices,andcombiningevidencegathered
from multiple observationsof a device. As GMODS does
not use probabilistic information it relieson an expensive
hyperresolutionrule to rule out fault modesand cannot
focus reasoningon more probablediagnoses.Struss[16]
arguesagainsttheuseof probabilisticinformation andthe
use of an unknown mode. Insteadhe employs a resolu-
tion rule and controlsreasoningto introduceappropriate
fault modesonly whennecessary.Through the useof an
alternativearchitecturewhich redefinesthe notionof fault,
Raimon[13] achievessomeof the advantagesof knowledge
of fault modeswithout having to incorporatethem. Ham-
scher[11] incorporatesfault modelswith his generalization
of GDE calledXDE.

3 Diagnosiswith modes

The perspectiveof diagnosisas identifying probablebe-
havioral modesis best appreciatedthrough an example.
Consider the simple threeinverter circuit shown below.
Supposethat the input (I) is set to zero, and that, al-
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though the output (0) should be one if functioning cor-
rectly, it is measuredto be zero. Without knowledgeof
fault modes, all three inverters are equally likely to be
faulted. If we knew that inverters(almost) alwaysfailed
with outputstuck-at-i,thenwe could infer that inverter B
was likely to be faulted. Thus knowledgeof failure modes
can providesignificant diagnosticinformation.

Knowledgeof failure modesis also importantto decide
what measurementto makenext. If all faults were equally
likely, measuringX or Yprovidesequalinformation. How-
ever,supposewe know that invertersA and B almostal-
ways fail by having their output stuck-at-i, and that in-

verter C almost always fails by having its output stuck-
at-0 (becauseit is designeddifferently to drive anexternal
load). Given that knowledge, it is unlikely that inverter
A is failing, as its most common fault does not explain
thesymptom. If operatingcorrectly,A’s outputshouldbe
one, so A being stuck-at-i would not explain the incor-
rectvaluebeing observedat the device’soutput. However,
thelikely failuresof invertersB andC are consistentwith
the symptomsinceeither explainsthe deviation from ex-
pectedbehavior. Hencethe diagnosticianshouldmeasure
atYnext to determinewhich of thetwo invertersis failing.

The objective of the the diagnosisdictatesthe granu-
larity of Sherlock’sanalysis.Sometimesthe objectiveis to
identify which componentsarefailing andhow. Sometimes
thetask is simply to identify thefailing componentsso that
they canbe replaced.Sometimesthe task is to identify all
the behavioral modes(good and bad). Sometimesdiag-
nosisconsidersmultiple testvectors,andsometimesthere
is only one. To accommodatethesepossibilitiesSherlock
must be told which modesit must discriminateamong.

It is important to note that even if it is diagnosti-
cally unimportantto distinguishbetweensomebehavioral
modes,knowledgeof behavioralmodesstill helpsSherlock.
Supposea componenthastwo faulty modes,M1 of high
probability, andM2 of low probability,which we are not in-
terestedin discriminatingbetween.If ameasurementelim-
inatesM1 from considerationthen the (posierior) proba-
bility that the componentis faulty becomeslow.

4 Framework

This sectionpresentsthe overall frameworkincluding defi-
nitions for basicterminologyandequationsfor computing
the relevantprobabilistic information. Section5 presents
heuristicsfor avoiding the combinatorialexplosionresult-
ing from movingfrom GDE to Sherlock.

The key conceptualextensionto GDE is the introduc-
tion of behavioral modes. The extensionis very easyas
GDE can be viewed as having two behavioralmodes(the
goodone andthefaulty onewith unspecifiedbehavior)per
component.In Sherlockthereare simply morebehavioral
modespercomponent.

Thesiruc~ureof the deviceto be diagnosedspecifiesthe
componentsand their interconnections.Componentsare
describedas being in oneof a setof distinct modes,where
eachmode capturesa physical manifestationof the com-
ponent(e.g.,a valve beingopen,closed,cloggedor leaky).
The behaviorof eachcomponentis characterizedby de-
scribing its behaviorin each of its distinct modes. We
require that a componentcan be in only one mode at a
time. We also require that a faulty componentmust re-
main in the samemodefor all testvectors(in the excep-
tional casewhere afault cannotbe modeledthis way, its
behavioris capturedby the unknownmode). Other than
thesethereare veryfew restrictionson behaviormodels: a
model can makeincompletepredictions,the set of modes
canbe incomplete,and the predictionsof different modes
canoverlap.

A component’smodesconsistsof a set describingthe
component’sproper behavior(e.g., the valve being on or
off), and a set describingfaulty behavior(e.g., the valve
being cloggedor leaky). Whenthereis only one mode for



proper behaviorwe abbreviateit as G (for “good”). For-
mally, a behavioral mode is a predicateon components,
which is true of a device exactly when the device is in
that behavioralmode. Every componenthasan unknown
mode,U with no behavioralmodel, representingall (fail-
ure) modeswhosebehaviorsare unknown.

In our example,we considerfour behavioralmodesof a
digital inverter: good (abbreviatedG), outputstuck-at-i
(abbreviatedSi), outputstuck-at-0(abbreviatedSo), and
an unknownfailure mode(abbreviatedU). The axiomsfor
the behaviorof the inverter are:
INVERTER(x) -~

[G(x) —~ [IN(x) = 0 OUT(x) = 1]]A
[51(x) -~ OUT(x) = hA
[S0(x) -~ OUT(x) = 0]].

The unknown behavioralmode U(x) hasno model.
Given the model library andthe devicestructureSher-

lock directly constructsa set of axiomsSD, called the
systemdescription [14].

An observation is a set of literals describingthe out-
comesof measurements(e.g., {I = 0,X = i,0 = 0}) for a
testvectorwhich hasbeenappliedto the device. The evi-
denceconsistsof a set of observations(e.g., {{I = 0,X =

i,0 = 0},{I = 1,0 = O}}).’ This definition of allows
us to incorporateaccumulatedevidencefrom different test
vectors.

A candidateassignsa behavioralmode to every com-
ponentof the device. Intuitively, a diagnosisis a can-
didate that is consistentwith the evidence,however,we
distinguishbetweena diagnosisfor a particular observa-
tion anda diagnosisfor all the evidence. A diagnosisfor
an observationis a candidatethat is consistentwith the
observation— formally, that the union of the systemde-
scription, the candidate,and the observationis logically
consistent2.Formally acandidateis aset of literals, e.g.,
{G(A), G(B),U(C)}. To distinguishsetsrepresentingcan-
didateswe write {G(A),G(B),U(C)]. Note that in GDE a
candidateis representedby the set of failing components,
while in Sherlockacandidateis representedby a set that
assignsa behavioralmodeto every component.Thus, the
Sherlockcandidate[G(A), G(B),U(C)] correspondsto the
GDE candidate[C].

In combining information from different observations
we need to treat good and bad modes differently. By
definition, a componentmanifeststhe samefailure mode
throughoutall observations.However,if acomponentis in
a good mode(e.g.,valve is on) in oneobservationthereis
no reasonto believeit shouldbein thesamegood modefor
anothertestvector. If componentshaveonly a singlegood
mode,combininginformation from multiple test vectorsis
straight-forward.Namely,a diagnosisfor the evidenceis a
set of literals suchthat for every observation,the union of

‘The processof generatinggood testvectors is outsidethe
presentscopeof our theory.

2Note that by this definition somecandidatesmay beelimi-
natedas diagnoseson the basisof no observationswhatsoever.
For example,considerhypotheticalmodelsfor two invertersin
serieswhere the first inverter had a modeoutput-stuck-at-i
and the secondhad a mode input-stuck-at-0. Note also that
thecandidatein which every componentis operatingin its un-
knownmodeis alwaysacandidateunlessthecombinationof the
systemdescriptionandany observationby itself is inconsistent.

the systemdescription,thecandidate,andtheobservation
is logically consistent.For brevity we operatewithin one
observation,in the remainderof this paper,unlessother-
wise indicated. However,it is important to bear in mind
that manyof the designdecisionsunderlyingSherlockonly
makesensewhenmultiple observationsare takeninto con-
sideration.

Like GDE, we makethe basic assumptionthat compo-
nents fail independently(which is sometimesunfounded)
and that the prior probabilities of finding a component
in a particular modeare provided. Recall that, although
the behaviorsof the different modesmay sometimesover-
lap, we requirethat eachmodecapturesadistinct physical
stateor condition of the component.Thus, the probabil-
ities of all the modesof a componentalwayssumto one.
Undertheseassumptions,the prior probability that a par-
ticular candidateC, is the actualone is:

p(C,) = H p(m).
mEC,

wherep(m) denotesthe prior probabilityof behaviormode
rn beingmanifested(i.e., aparticularcomponentbeing in
aparticular mode).

As candidatesare eliminated, the probabilities of the
remainingdiagnosesmustincrease.(On occasiona candi-
date is eliminatedpurely asa resultof the device’stopol-
ogy in which casethe probability is adjustedby a renor-
malization.) Usually candidatesareeliminatedasaresult
of measurements.Bayes rule allows us to calculate the
conditional probabilityof the candidatesgiven that point
x is measuredto be vjr.~(unlessotherwise indicated,all
probabilities are conditionalon evidencepreviously accu-
mulated.See[6] for more details):

— — p(x1 vIkIC,)p(C,)
p(C,1x1— Vk) —

V~k)

The denominator, p(xj = vfr), is just a normalization.
p(C,) was computedas aresult of the previousmeasure-
ment (oris theprior). Finally, p(xj = vskIC,)is determined
as follows:

i. If; = Vik is predictedby C, given the evidencesofar
thenp(x, = VIkIC,) = 1.

2. If x = Vik is inconsistentwith C, and the evidence
thenp(Xj = V~kIC,) 0.

3. If x, = Vik is neither predicted by nor inconsistent
with C, andthe evidencethen we makethepresuppo-
sition (sometimesinvalid) that every possiblevaluefor
x is equally likely. Hence,p(x1 = v~~C~)= ~L where
in is the numberof possiblevaluesxj might T~ave(in
a conventionaldigital circuit m = 2). Intuitively, this
providesa bias for candidateswhich predict a mea-
surementover thosethat don’t.

Throughoutthe diagnostic session, the probability of
any particular observationx~= v1j,~ is boundedbelow by
the sumof the currentprobabilitiesof the candidatesthat
entail it andboundedaboveby oneminus the sumof the
currentprobabilitiesof the candidatesthatare inconsistent
with it. See [6] for the estimateused.Similarly, the prob-
ability that a componentis in a particular modeis given
by the sumof the current probabilities of the candidates
in which it appears.



4.1 Varieties of diagnostic tasks
In order to determinewhat next measurementis likely to
providethe mostinformation,Sherlockmustdeterminethe
likelihood of hypotheticalmeasurementoutcomesand its
consequenceson the candidatespace.The different diag-
nosticobjectivesdictate differing scoringfunctions. Sher-
lock is askedto discriminateamongsome modesand not
others;by supplying Sherlockwith setsof discrimination
specifications— (a set of modesthat arenot to be dis-
criminated). The discriminationspecification partitions
the diagnosesinto a set of d-partitions. The goal of diag-
nosisis to identify theprobabled-partitionsandto suggest
measurementswhich best pinpoint the actualone. Forex-
ample,it may only be importantto discriminatebetween
good and faulty behavior. In this case,the most prob-
able d-partition identifies which componentshave to be
replaced. In the simple case where the objective is to
discriminateamong all behavioral modes, then every d-
partition is just asingletonset consistingof a singlediag-
nosis. Notethat, in general,the different diagnoseswithin
a single d-partition makedifferent predictions. Although
it maybe unimportantto discriminateamongthem asfar
as the overall diagnosticobjective is concerned,it is im-
portant to keep them separateto correctly compute the
probabilitiesof measurementoutcomes.

The specific approachused to select measurementsis
a minimum entropytechnique— pick that measurement
to makenext that will yield, on average,the minimum
entropyH (or converselythatmeasurementwhichextracts
maximuminformation):

H = — ~p(D,)log p(D,).

Wherep(D,) is the probability of a d-partition given ev-
idence. This, in turn, requires computingthe candidate
probabilities given a hypotheticaloutcome. Fortunately
this is computablefairly directly usingBayesrule (see[6]
for details).The expectedentropyresulting from measur-
ing x8 is:

He(xi) = Ep(xi = vlk)H(x1 = vlk),

where v~kare the possible measurementoutcomesand
H(x1 = vk) is the entropy of the resulting set of d-
partitions. Information theory tells us that, given cer-
tain assumptions,the measurementchosenby this scor-
ing function will on averageenableSherlockto makethe
fewest numberof measurementsto identify the actuald-
partition to a certain level of confidence. This approach
(seeexamplesin [6]) almostalwayssuggeststhe optimum
measurementcommon sensewould suggest. The subse-
quent examplesrestateentropy as a cost function: ideal
measurementshave 0 cost, anduselessmeasurementshave
cost i.

If thereare multiple test vectors,far greatercaremust
be taken. Supposethe objective is to identify the faulty
componentsand how they are faulted. In this caseSher-
lock needonly discriminateamongfaulty modes. The d-
partitions for the overall objectiveare the intersectionof
thoseobtainedfrom eachof the multiple testvectors. In
computing He(xt) we must takecare to use theseglobal

d-partition, but only use the relevant candidatesfor de-
termining p(x = v

1
k) for a test vector. Thus, Sherlock

identifies not only the bestplace to measurebut also the
besttestvector(given the testvectorset with which it has
beensupplied)underwhich to makethe measurement.

4.2 Algorithms commmon to GDE and Sherlock
Sherlock, like GDE, exploits an assumption-basedtruth
maintenancesystem(ATMS)[5}. Every literal statingthat
somecomponentis in somebehavioralmodeis represented
by an ATMS assumption. A literal indicating measure-
ment outcome(e.g., IN(A) = 0) is representedby an
ATMS premise3. The underlying Sherlockalgorithmsare
similar to thoseof GDE exceptcomponentscanhavemul-
tiple modes.

Sherlockcomputesthe diagnosesby first constructinga
set of conflicts. A conflict is asetof componentbehavioral
modeswhich is inconsistentwith the systemdescription
and someobservation(i.e., a conflict is representedby an
ATMS nogood).A conflict containsat mostonebehavioral
modeper component.As in GDE, we representthe set of
conflicts compactlyin termsof the minimal conflicts,since
conflicts are orderedby set-inclusion:every supersetof a
conflict is necessarilya conflict as well.

Intuitively, a minimal conflict identifies a small kernel
set of componentbehavioralmodeswhich violatessome
observation.It is easily shown that a candidateis a diag-
nosisiff it doesnot containany minimalconflict. Thus,the
completeset of diagnosesis computablefrom the minimal
conflicts alone. Thus,Sherlockattemptsto determinethe
minimal conflicts (in ATMS terminologytheseare mini-
mal nogoods)as theseprovide the maximum diagnostic
information.

Sherlockis typically used with a soundbut incomplete
prediction facility. Although soundnessguaranteesthe
conflicts Sherlock discoversare indeed conflicts, incom-
pletenesssometimesmakes it impossible to identify the
minimal conflicts andconsequentlyfails to ruleout candi-
datesas diagnoses.In the rest of this paper by minimal
conflicts we simply meanthe set of unsubsumedconflicts
foundby Sherlock,andby diagnosiswe meanacandidate
not ruled out by oneof theseconflicts. The consequences
of incompletenessare not catastrophicandusually result
in only a minimaldegradationin diagnosticperformance.
This issueis discussedin moredetail in [6].

In order to select the next measurement(and under
which test vector) to make, Sherlockmust evaluatethe
effects of a hypotheticalmeasurement.To do so, Sherlock
must be able to determinewhat possibleoutcomeshold
in which candidates. Sherlockcomputesthe sets of be-
havioral modeswhich support each possibleoutcome. If
an outcomefollows from a set of behaviormodes,then it
necessarilyfollows from any superset.Therefore,Sherlock
needonly recordwith eachpossibleoutcomethe minimal
setsof behaviormodesupon which it depends.Thusapos-
sible measurementoutcomeholdsin a candidateif aset of
behavioral modessupportingthe outcomeis a subsetof
the candidate. Eachset of behavioral modessupporting
an outcomeis representedby an ATMS environmentand

3Toimplementthesearchstrategydiscussedin the next sec-
tion these literals have to be assumptionsas well but this is
outsidethe scopeof this paper.



the set of all environmentsfor an outcomeis represented
by an ATMS label. The details for this algorithm can be
foundin [5, 6]. In a latersectionwe work throughasimple
exampleillustrating Sherlock’sfunctioning.

5 Controlling the combinatorics
The presenceof behavioralmodeshastwo immediatecon-
sequencesaffectingthe algorithms: (i) thereare far more
behavioralmodes to reasonabout, and (2) the concept
of minimal diagnoseswhich wasso useful to GDE is now
virtually meaningless.For example,if thereare n compo-
nents,each with k behavioralmodes,thereare k’~candi-
dateswhich might haveto be considered(as opposedto
GDE’s 2’s). TogethertheseconsequencesmakeSherlock
significantly slower than GDE. This potential combina-
torial explosionmanifests itself in two ways in Sherlock.
First, the set of conflicts, as well as the setsof behavioral
modes underlying possibleoutcomes(i.e., the ATMS la-
bels, explodes).This causesthe predictionphaseof Sher-
lock to explode.Second,the numberof possiblediagnoses
is exponential,causingcandidategenerationto explode.
Thus, the Sherlockarchitectureaddstwo tactics beyond
those used in GDE to keep the combinatorialexplosion
undercontrol. Thesetacticsapply to GDE aswell asSher-
lock.

The focussingtacticsdo not affect the set of diagnoses
produced(or probabilities ratios among them). We first
presentour strategyfor the diagnosticobjectiveof identi-
fying all fault modes,andthen latershow it canbe modi-
fied to find the bestd-partitions.The basicideais to focus
reasoningto the subsetof the diagnoses(called leadingdi-
agnoses)that satisfy the following conditions:

• All leadingdiagnoseshavehigherprobability thanall
non-leadingdiagnoses.

• There are no more than k1 (usually k1 = 5) leading
diagnoses.The exceptionis that all diagnoseshaving
probabilityapproximatelyequal to the k1th diagnosis
are included (to accommodateroundoffdifficulties).

• Candidateswith probability less than ~-th (usually
k2 = 100) of the bestdiagnosisare not considered.

• The diagnosesneednot includemorethan k3 (usually
k3 = .75) of the total probability massof the candi-
dates.

This approachfocussescandidategenerationto a small
tractableset of leadingdiagnoses.

The primary remainingsourceof combinatorialexplo-
sion is the sizeof the ATMS labels for Sherlock’s predic-
tions. This is dealt with usingageneralizationof the fo-
cussingstrategiesoutlined in [9] and are similar to some
suggestedin [8]. To handlethis both the ATMS and the
underlyingconstraintpropagatorusedby Sherlockare re-
stricted to focus their reasoningonly on the leading di-
agnosesor tentative leading diagnoses.No prediction is
madeunlessits results hold (i.e., oneof its environments
is a subsetof some focusenvironment)in the current fo-
cus. Furthermore,no environmentis addedto anyATMS
label unlessit holdsin some current focus. If the ATMS
discoversan environmentnot part of any current diagno-
sis, it doesnot addit to the prediction’slabel and instead
storesit on its “blocked” label.

Unfortunately,thereis a bootstrappingproblem. The
leadingdiagnosescannotbe accuratelyidentified without
sufficientminimal conflicts. The reasoningcannotproduce
enoughminimal conflictsunlessthereare leadingdiagnoses
to focuson. Anothercomplication is that Sherlockcannot
correctlyevaluatetheprobabilityof a candidatevia Bayes
rule unlessit is in the focus.

The following is an outline of the procedureSherlock
uses to identify the leading diagnosesand consistsof a
backtrackingbest-firstsearchcoupledwith focussingtac-
ticsjust discussed.The normalizationfactor of Bayesrule
is left out in the searchsinceit doesnot changethe prob-
ability orderingof diagnosesand is the samefor all candi-
dates. The searchestimatesthe probability of a tentative
diagnosis— acandidatewhich is consistentwith the pre-
dictions (more preciselycontainsno known conflict as a
subset),but which has not yet beenfocussedupon — to
be simply its prior probability (correctedby the normal-
ization). This is anupperboundof its correctprobability.
Focussingthe attentionof the predictor on the tentative
diagnosismight produceaconflict whicheliminatesit (i.e.,
drivesits probabilityto zero)or it might be discoveredthat
thediagnosisdoesnot predictevery measurementoutcome
(in which caseits probability needsto be adjusteddown-
wardsby Bayesrule). Using thesetechniquesthe following
searchguaranteesthat it finds the sameleadingdiagnoses
an unfocussedSherlockwould find.

1. If, accordingto the criteria, therearesufficient leading
candidates,stop. Let b be the upper-bound of the
probabilitiesof thediagnoseswhichare reachablefrom
the next place to pushthe best-first searchforward.
The key test is: is b less than the leadingcandidates?

2. Continue a best-first search for the next highest-
probability (estimatedby its upperbound) candidate
which accountsfor all the minimal conflicts.

3. Focusthepredictoron thecandidate(i.e., by unblock-
ing the ATMS labels and permitting consumerexe-
cution). This finds any conflicts. It also finds any
new predictionswhich follow from this candidatebut
which haven’tbeendiscoveredearlier.

4. If the candidatecontainsa conflict, go to stepi.

5. Computethe probability of the candidateaccording
to Bayes rule by multiplying its probability by ~
wheren is the numberof timesthe candidatefails to
predictsomemeasurementoutcome.

6. Go to 1.

This searchmay find more than the requirednumberof
diagnosesbecausethe correctedprobabilityof a bestnext
candidatemay be much lower than estimated. Although
suchcandidatesare diagnoses,they arenotnecessarilythe
leadingones.

Thus far we presumedthat it is important to discrimi-
natebetweenall modesand that the d-partitions are the
simple diagnoses. If it is not important to discriminate
amongcertain modes,the precedingalgorithmsmust be
modifiedto identify d-partitions.

To identify d-partitionsefficiently requiressomesubtle
changesto the best-first search. Whenevera diagnosisis
found, all the other candidatespotentially in the samed-
partition mustbe identified to fill out the d-partition and
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The table indicatesthat the majorfailure modesto con-
siderare C stuck-at-0,andB stuck-at-i and that all other
faults are unlikely.

The resultingATMS labelsare (for this simple example
focussing no longer has any affecton labels):
X=0, {G(B),G(C)}{S0(A)}
X = 1, {G(A)} {S1(A)}
Y= 0, {G(A), G(B)} {G(B), Si(A)} {S0(B)}
Y= i, {G(C)} {G(B),S0(A)} {Si(B)}

{S1(A),G(B),G(C)}{S0(B),G(C)} {S1(C)}
Supposethat we applieda secondtestvectorwith I = 1

(the first testvector was I = 0), and evaluatedthe hypo-
theticalmeasurements:

$(X1) = .72(.72),$(X2)= .94(.92),$(Yj) = .3i(.31)

$(Y2) = .91(.90),$(02)= .89(.89).
Thus we see that measuringY usingthe first test vector
(I = 0) is the bestmeasurement.This is becausemeasur-
ing Y will differentiatebetweenthe two high probability
candidates.However, measuring0 under the secondtest
vector (I = 1) is usefulas well. Suppose0 = 0 underthe
secondtest vector. The resulting probabilities are:

p([G(A), G(B),S0(C)])= 0.450(.444)

p([G(A),Si(B),G(C)]) = 0.450(.444)

p([S0(A),G(B),G(C)]) = 0.056(.056)

p([G(A), G(B),U(C)]) = 0.014(.014)

p([U(A),G(B),G(C)])= 0.014(.0i4)

p([G(A),G(C),U(B)]) = 0.014(.0i4)

Although measuring0 = 0 againdoesnot eliminate any
diagnosis,it providesfurther evidence that a componentis
not behavingin someunknownmode,thusslightly raising
the probabilitiesof the first threediagnoses.
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