
Decision theoretic troubleshooting of coherent systems

Helge Langseth*, Finn V. Jensen

Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg, Denmark

Received 5 June 2002; accepted 8 October 2002

Abstract

We present an approach to efficiently generating an inspection strategy for fault diagnosis. We extend the traditional troubleshooting

framework to model non-perfect repair actions, and we include questions. Questions are troubleshooting steps that do not aim at repairing the

device, but merely are performed to capture information about the failed equipment, and thereby ease the identification and repair of the fault.

We show how Vesely and Fussell’s measure of component importance extends to this situation, and focus on its applicability to compare

troubleshooting steps. We give an approximate algorithm for generating a ‘good’ troubleshooting strategy in cases where the assumptions

underlying Vesely and Fussell’s component importance are violated, and discuss how to incorporate questions into this troubleshooting

strategy. Finally, we utilize certain properties of the domain to propose a fast calculation scheme.

q 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Repair strategies; Bayesian networks; Fault diagnosis; Vesely and Fussell component importance

1. Introduction

This paper describes a troubleshooting system which has

been developed in the SACSO1 project, and which is partly

implemented in the BATS2 tool. This is a troubleshooting

(TS) system for performing efficient troubleshooting of

electro-mechanical equipment, and it is currently employed

in the printer domain. It is important to notice that the BATS

tool is created to offer printer users a web-based interface to a

decision-theoretic TS-system; it is not intended exclusively

for maintenance personnel who are trained to handle the

equipment that is to be repaired. The goal is that any user,

however, inexperienced, should be able to repair the failed

equipment on his own instead of relying on professional help.

By design, the TS-system we describe, therefore, differs from

other TS-systems [1–7] in several aspects. Most importantly

the users of the TS-system may be inexperienced with

handling and repairing the failed equipment. Hence, they

may fail to repair broken components, e.g. by seating a new

network card incorrectly. Furthermore, this may even happen

without the user realizing the mistake. It is, therefore, crucial

for the TS-system to explicitly include the possibility that

users perform prescribed repair actions incorrectly in the TS-

model.

Secondly, the users are expected to have limited

knowledge about (and interest in) the design of the

malfunctioning equipment. They cannot be expected to be

interested in finding the cause of a problem; they merely

want to repair it. Focusing on the identification of the faulty

minimal cutset, as in Refs. [4–7], is therefore not expected

to be relevant for the foreseen group of users. The

troubleshooting will thus be terminated as soon as the

equipment is repaired; that is, we assume that the user is

satisfied with a minimal repair of the failed equipment.

Perfect repair is not necessarily accomplished by using our

TS-system (and not by the methods in Refs. [4–7] either),

but may be considered using other means.

Finally, as the faulty device can be located under a

variety of external conditions, the TS-system can pose

questions in order to survey the faulty equipment’s

surroundings. Although these questions initially increase

the cost of the troubleshooting, they may shed light on the

situation, and ultimately decrease the overall cost of

repairing the equipment.

0951-8320/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.

PII: S0 95 1 -8 32 0 (0 2) 00 2 02 -8

Reliability Engineering and System Safety 80 (2003) 49–62

www.elsevier.com/locate/ress

* Corresponding author. Present address. Department of Mathematical

Sciences, Norwegian University of Science and Technology, N-7491

Trondheim, Norway.

E-mail addresses: helgel@math.ntnu.no (H. Langseth), fvj@cs.auc.dk

(F.V. Jensen).
1 The SACSO (Systems for Automated Customer Support Operations)

project constitutes joint work between the Research Unit for Decision

Support Systems at Aalborg University and Customer Support R&D at

Hewlett-Packard.
2 BATS (Bayesian Automated Troubleshooting System) is available from

Dezide over the internet: http://www.dezide.dk/

http://www.elsevier.com/locate/ress
http://www.dezide.dk/

To formalize, let the faulty equipment consist of K

components x ¼ {X1;…;XK}: Each component is either

faulty ðXi ¼ faultyÞ or operating ðXi ¼ okÞ: The equipment

consists of R minimal cut sets (MCSs), and we use C ¼

{C1;…;CR} for the collection of these. A MCS is faulty

ðCi ¼ faultyÞ if all its members are faulty. Otherwise it is

operating ðCi ¼ okÞ: The equipment is assumed to be faulty

at the time when troubleshooting starts; troubleshooting is

terminated as soon as the equipment is brought back to

operating modus. We will assume that only one MCS is in

its faulty state, and use CF to denote the faulty MCS (named

the actual MCS in Ref. [4]). This assumption is common for

most TS-systems, and it is usually justified by considering

systems that are used almost continuously, and thus (like a

printer) tested frequently. It is unlikely that several

components should fail approximately, simultaneously.

Common cause failures (due to, e.g. stroke of lightning,

pouring coffee into the printer, etc.) are easily detected, and

are handled separately. Note that if more than one MCS is

faulty the proposed method will still repair the equipment,

although not necessarily in an optimal fashion.3 The TS-

system may choose from a set of N possible actions A ¼

{A1;…;AN} to remedy the problem. There are also M

predefined questions Q ¼ {Q1;…;QM} that may be posed.

The goal of a TS-system is to provide a ‘good’ TS-strategy.

Formally, a strategy S is called a TS-strategy if it describes

the process of repeatedly performing the next step in the

strategy until the equipment is repaired or all steps have

been performed. A TS-step is a step in a TS-strategy, either a

repair step (termed action) or an information-gathering step

(termed question). To each TS-step Bi the associated cost is

denoted by Ci: The system is informed about the outcome of

each TS-step after it has been performed.

Any TS-strategy can be represented by a strategy tree, see

Fig. 1, for an example. The internal nodes in the strategy tree

(depicted as ovals) represent chance nodes; TS-steps that we

do not know the outcome initially. Each possible outcome of

a chance node corresponds to a unique sub-tree in the strategy

tree, which is found by selecting the edge labelled with that

particular outcome. If, e.g. QS ¼ q; the strategy tree in Fig. 1

prescribes to perform action A2; if QS ¼: q; then the

question QK should be posed. The terminal nodes (depicted

as diamonds) signify that the troubleshooting strategy has

ended, either because the problem is solved or because the set

of actions has been exhausted.

How ‘good’ a TS-strategy is, is judged by its expected cost

of repair (ECR). This is in-line with the decision-theoretic

formulation of the troubleshooting task: one should balance

the cost of a TS-step with the likelihood of the step to be

beneficial, so that the optimal TS-strategy can be found [3].

Breese and Heckerman [9] used Bayesian networks (BNs) to

model the troubleshooting domain, and Jensen et al. [10]

report extensions to that framework. In Refs. [9,10], the

domains under study were restricted to be serial systems, i.e.

systems where all cutsets were singletons. In this paper we

will extend these frameworks to work with any coherent

system (represented by its cutsets).

The printer industry spends millions of dollars every year

on customers support; mainly to provide telephone-support

and on-site troubleshooting. This has sparked an interest for

building automated troubleshooting systems which can

resolve some of the printer users’ problems without requiring

support from call agents. A printing system consists of several

components: The application from which the printing

command is sent, the printer driver, the network connection,

the server controlling the printer, the printer itself, etc. It

typically has about 40 different failure-modes, e.g. Light

print. Each failure-mode can be caused by several component

failures, and we have one TS-system for each of them.4 The

typical size of these TS-models is about 30 actions and 15

questions. We will not describe the printer model in further

detail, as the TS-system we propose is general in nature; the

interested reader is referred to Refs. [10,11].

The rest of the paper is outlined as follows. In Section 2,

we describe the basic system model, and the formal language

used to describe it. Section 3 is devoted to how the TS-

system sequences actions, and handling of questions are

described in Section 4. The calculation scheme is described

in detail in Section 5, and we conclude in Section 6.

2. The troubleshooting model

In this section, we will describe the troubleshooting

model, and in particular focus on the modelling assumptions

that we make. To do so, we start by introducing BNs, which

constitute the representation language we employ. We then

give a detailed description of how we generate a BN-

representation of the troubleshooting domain.

2.1. Bayesian networks

Our system represents the TS-domain by a BN [12,13].

BNs have a long history of usage in the reliability and safety

sciences, ranging from the early works [14,15] to the more

recent contributions [8–11,16–21]. BNs offer a flexible

language to describe the TS-model, and we utilize this to

make a realistic model of the interactions one can have with

the failed equipment; specifically we can define repair steps

3 Srinivas [8] presents a modified algorithm to handle troubleshooting in

serial systems where more than one component (and hence more than one

MCS) may be faulty; it turns out that optimal troubleshooting in this case

requires a balance between cost and probability of successful repair that is

different from what is optimal in our situation. When presented with a

system where more than one MCS is in its faulty state, our system may thus

perform sub-optimally: The user may be asked to perform the repair in a

way more expensive than had been required if we had not made this

assumption.

4 The first information the user enters into the system is the failure-mode

he wants to troubleshoot. If some failure-modes are not easily

distinguishable we have joined them into one TS-model.

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–6250

including non-perfect repair, as well as information-

gathering steps.

A BN describing a multivariate random variable X is a

compact representation of the distribution function PðX ¼

xÞ: A BN consists of a qualitative part; a directed acyclic

graph, and a quantitative part; a set of conditional

probability distributions. More formally, a BN representing

the distribution function of a stochastic vector X is a 2-tuple

ðG;PÞ: G is a directed acyclic graph G ¼ ðV;EÞ; where V
is the set of nodes in the graph and E is the set of directed

edges. There is bijection between the random variables X

and the nodes in V, and the edges are used to represent

dependence between the variables of X is annotated with P,

a set of conditional probability distributions over the domain

V. In the TS-domain we only work with discrete BNs,

where each node V [V takes on values from a finite state-

space denoted spðVÞ: We define the parent set of V, paðVÞ; as

the set of nodes having outgoing edges directed into V. The

graph is annotated with the probability distributions P s.t.

each node V [V is associated with a conditional

probability table PðV lpaðVÞÞ: The full joint distribution

over the variables V can now be calculated as PðVÞ ¼Q
V[V PðVlpaðVÞÞ:

The essential property of the distribution function that is

utilized in the BN representation of PðX ¼ xÞ is the set of

conditional independencies encoded in the distribution

function: If Y, Z and W are vectors of random variables

with joint probability distribution PðY;Z;WÞ; then we say

that Y is conditionally independent of Z given W, written

Y n ZlW; if PðYlZ;W ¼ wÞ ¼ PðYlW ¼ wÞ for all w

where PðW ¼ wÞ . 0: If Y n Zl{Y}; then Y and Z are

(marginally) independent (written Y n Z for short).

An example of conditional independence from our

domain is as follows. If the toner is low, then this can be

detected in at least two ways: (i) There may be an error

message on the control panel, and (ii) the last page may be

printed lightly. There is a slight possibility for the error

message not to show up, and for the last page not be visibly

light-printed, even when the toner is low. If we learn that the

last page was printed lightly, we may assume this was

because the toner is low, and that will in turn increase our

belief in finding the error message on the control panel;

hence these two events are not (marginally) independent.

On the other hand, if we know that the toner is low, then

information about a message on the control panel will not

change our belief regarding the last page being light-printed.

The two events are conditionally independent given the

toner’s status.

2.2. The basic troubleshooting model

The faulty equipment and the effect of interactions

between the repair personnel and this equipment are

modelled in a BN. As our starting point we use a BN

model of the system generated from the MCS representation

(see Ref. [21] for how this translation can be done). This

part of the BN is denoted the system layer in Fig. 2; the

system layer is the part of the BN that mimics the fault tree

in Fig. 3. Note that we have introduced a constraint node5 L

to enforce the assumption that exactly one MCS is in its

faulty state. Next, the MCSs are modelled by logical

functions, such that Ci ¼ faulty if and only if all

the components in the MCS are in the faulty state. Hence,

paðCiÞ are exactly those components that are members of the

cutset Ci; and PðCilpaðCiÞÞ is used to encode this

deterministic relationship. Note that the cutset nodes of

the system layer are not really required to encode the

equipment model; the probabilistic relationship could have

been encoded in the constraint node L. There are, however,

at least two reasons to include the cutset nodes in the model:

firstly, reliability engineers are used to working with the

notion of cutsets, and including the cutsets explicitly makes

the model more understandable and easier to build.

Secondly, including the cutset nodes in the model typically

Fig. 1. A TS-strategy represented by a strategy tree.

5 A constraint node is a node which is used to enforce other variables into

specific configurations. In the example model we use L to enforce that

exactly one cutset is faulty. This is done by defining L ¼ yes if exactly one

of the cutsets is faulty and L ¼ no otherwise. The evidence {L ¼ yes} is

entered into the system before the calculations are performed, and the cutset

nodes are thereby constrained s.t. the MCS assumption is fulfilled.

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–62 51

makes the overall model more compact (i.e. the total

number of required parameters is reduced).6 PðX‘ ¼ faultyÞ

is given as the a priori probability for the component to have

failed, i.e. the probability unconditioned on the equipment

failure. After a propagation in the BN (see Ref. [22] for a

description of how this is done) the posterior probability for

a component failure given that the equipment is faulty

(enforced by using the constraint node) can be read off the

node representing that component in the BN, and the

probability for each MCS to be the actual MCS can be found

in the corresponding nodes.

Next, the system model is extended by an explicit model of

the effect of the interaction between the equipment and the

repair personnel. These interactions are limited to the

predefined sets of actions A and questions Q. First, we look

at how the actions are modelled (see the action layer in Fig. 2).

Actions are connected to the system layer by making

them children of the components they can repair, that is,

paðAiÞ # X: We explicitly describe the joint effect an action

A has on all the components it can repair. This is done by

extending the state space of A. For the state space we use the

notation þrX for the event that A repairs X and 2rX

otherwise; note that this notation is unconditioned on the

state of X. For example, see Fig. 4, where action A can repair

the components Xk and X‘: Then, paðAÞ ¼ {Xk;X‘}; and the

state-space of A is spðAÞ ¼ { þ rXk þ rX‘;þrXk 2

rX‘;2rXk þ rX‘;2rXk 2 rX‘}: Without referring to spðAÞ

we use the notation {A#X ¼ yes} for the event that A repairs

X, and {A#X ¼ no} otherwise. Thus, in the current example

the shorthand {A#Xk ¼ yes} denotes the event {A ¼ þrXk þ

rX‘ _ A ¼ þrXk 2 rX‘}:

We make a number of assumptions about the TS-domain.

Some are made to simplify the model definition, whereas

others turn out to be beneficial when we perform

calculations in the BN:

† We disregard component failure induced by trouble-

shooting personnel;7 note that this is related to the

assumption that only one MCS is faulty.

† By construction of the model it is made sure that an

action only can repair components in its parent set,

PðA#X ¼ yeslX ¼ faultyÞ ¼ 0 whenever X � paðAÞ:

† The state of a component X‘ does not influence the user’s

ability to repair component Xk; A#Xk n X‘lXk; k – ‘: That

is, we assume, for instance, that it is not more difficult to

replace an MIO card when the toner cartridge is faulty

than it would have been had the toner cartridge been

operating.

† If we were to receive information about a user’s failure to

perform one repair action, then this would not influence

our beliefs about his ability to perform other actions.

Thus, when the user fails to repair some component we

assume it is due to ‘bad luck’ and not ‘clumsiness’.

Formally, we write A
#Xk

i n A
#X‘

j l{Xk;X‘} whenever i – j:

This assumption requires that the group of users is

homogeneous. In real-world applications, where we

typically have ‘novice’ and ‘expert’ users, it can be

beneficial to maintain two TS-systems; one for the

‘novices’ and one for the ‘experts’.

† We use the convention that an action cannot repair a

component that is already operating, PðA#X ¼ yeslX ¼

okÞ ¼ 0: This may seem counterintuitive, but we use

A#X ¼ yes to denote the event that the user has improved

the system, it is not used to describe the state of the system.

These assumptions suffice for the TS-system to be

operational, and for the calculation scheme (Section 5) to

work. For simplicity we may also make the additional

Fig. 2. The BN representation of the example model. Note that this model is extremely simple; more complex models in which, e.g. an action Ai can repair more

than one component can easily be defined.

6 If we choose not to include the cutset nodes in the BN representation we

can, at the cost of a larger model, relax the binary system-model we employ.

This can be utilized to create multi-state systems to, e.g. model ‘degrees of

failure’. We have nevertheless chosen to work with the MCS

representation, primarily to render the fast calculation scheme of Section

5 possible.

7 In the models underlying the BATS tool we have increased the cost of

an action to partly reflect the risk of performing it. If the probability of

introducing new component failures into the domain is high, then the risk is

high, and the cost will be increased to reflect this potential danger.

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–6252

assumption that A#Xk n A#X‘ l{Xk;X‘} whenever k – ‘: This

means that a conditional probability PðAlpaðAÞÞ is fully

specified by the collection of probabilities {PðA#Xk ¼

yeslXk ¼ faultyÞ : Xk [paðAÞ}; this is often referred to as

restrictive independence of causal influence [23]. Hence, if

A can repair t components, then it is enough to enter only t

conditional probabilities to describe PðAlpaðAÞÞ: This should

be compared to the 2t numbers needed if this independence

assumptions had not been made. Note that we do not require

the repair actions to be perfect; non-perfect repair is

modelled by PðA#X‘ ¼ yeslX‘ ¼ faultyÞ ¼ g; 0 # g , 1:

There is an important difference between what is

modelled in the action layer and what is actually observed.

The action layer describes the events {A#X ¼ yeslX ¼

faulty}; however, we may only observe whether the

equipment is repaired or not, i.e. if the event {A#X ¼

yes ^ X [CF} occurs. To be able to work with the actual

observations as evidence, we extend the model with a result

layer consisting of a set of nodes RðAÞ; one for each A [A:

RðAÞ; the result of A at the system level, is defined as RðAÞ ¼

ok if A#X ¼ yes for some X [CF and RðAÞ ¼ no otherwise.

The probability that action A repairs the equipment,

PðRðAÞ ¼ okÞ; naturally extends Vesely and Fussell’s

measure of component importance8 [24] when A can repair

only one component X. Let IVFðXÞ be defined as the

probability for X to be critical, i.e. X [CF ; given that the

equipment is faulty. Then

PðRðAÞ ¼ okÞ ¼ PðX [CFÞPðA
#X ¼ yeslX ¼ faultyÞ

¼ IVFðXÞPðA#X ¼ yeslX ¼ faultyÞ: ð1Þ

When A can repair a set of components, we have (with a

slight abuse of notation)

PðRðAÞ ¼ okÞ ¼ P
_

X[X

{A#X ¼ yes ^ X [CF}

 !

¼
X

C‘[C

IVFðC‘Þ
a

X[C‘>paðAÞ

PðA#X ¼ yeslX ¼ faultyÞ;

where IVFðC‘Þ is the probability that all components in C‘

are critical, i.e. IVFðC‘Þ equals the probability that C‘ is the

actual cutset.

Regarding questions, we distinguish between symptom

questions and configuration questions. Symptom questions

are used to examine possible failure manifestations; an

example from the printer-domain is ‘Does the printer
test-page print correctly?’ These questions are

designed to shed light on the fault at the cutset level, e.g. by

trying to replicate the equipment’s faulty modus in other

slightly different situations. (If the test-page prints correctly

the problem is probably related to the application generating

the print job.) Symptom questions are connected to the MCS

nodes in the domain, see the node QS in Fig. 2. The edges

are pointing in the direction of the causal influence, i.e. from

the MCS nodes to the questions. The parent set of a

symptom question QS; paðQSÞ # C; determines the set of

MCSs that directly influences the likelihood of the different

answers to the question.

Configuration questions are used to uncover the

environment in which the equipment is embedded, by

trying to reveal any configuration settings that are applied.

An example from our domain is ‘What operating
system do you use?’. Configuration settings does not

directly relate to a given MCS, but may change the

likelihood for components to be operating. (If the operating

system is Linux, the printing problem is not related to the

Windows printer drivers.) The edges connecting a

configuration node to the system layer are therefore

directed from the configuration node to the components,

see K in Fig. 2. The user may be unable to correctly answer

questions regarding the configuration settings. The answer

to a configuration question is therefore modelled as a

random variable, see QK in Fig. 2. That is, we will receive

Fig. 3. A fault tree describing our example model.

Fig. 4. Action A can repair both and Xk and X‘:

8 IVFðXÞ is defined as the probability that at least one minimal cutset

which contains component X is faulty, given that the system is faulty. Under

the assumptions in this paper this is simply IVFðXÞ ¼ PðX [CFÞ:

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–62 53

information about QK (and not K directly) when the model

is used, and QK is therefore needed explicitly in the model

together with K.

2.3. Building the TS-models

The theme of this paper is to find a close to optimal TS-

strategy in a given TS-model, but we will close this section

by briefly touching upon the knowledge acquisition process

used to generate the TS-model.9 Building BNs has

traditionally been considered such a complex task that

BN experts would have to be deeply involved in the

process. The BATS system consists of about 40 separate

BN models, each representing a specific failure-mode.

Some models are quite small, but the largest contains about

80 actions and 40 questions. To build these models we

solely relied on a team of 6–7 experts. The number of

models made it necessary to build a special tool for

knowledge acquisition [25]. This tool, which is termed

BATS Author, is designed to ensure that no knowledge

about BNs is required to build the TS-models. The

information required to generate the models can be

specified in a terminology close to the experts’ own, and

the conditional probabilities can be expressed in the

direction most natural for the expert. The BN structure is

made s.t. the conditional independence statements encoded

in the graph are easily verified. Skaanning [25] reports that

all the models required to describe the failure-modes for

another printer was built and validated in one man-month

using this tool.

3. Action sequences

In this section we look at the situation where the only

available troubleshooting steps are actions. In this case the

TS-strategy is simply a TS-sequence, i.e. a string of actions

performed one after another until the equipment is

repaired. Let e denote arbitrary evidence collected so far

during troubleshooting, i.e. a list of actions that all have

failed to repair the equipment. To be more specific, we use

ej to denote the evidence that the first j actions in the

sequence S ¼ kA1;…;ANl have all failed to repair

the equipment, ej ¼ {RðAiÞ ¼ no; i ¼ 1;…; j}: If Ak solves

the problem with certainty, then PðekÞ ¼ 0; which reflects

the fact that the TS-sequence is terminated after the kth

step. Note that e0 ¼ {Y}; and Pðe0Þ ¼ 1 as the equipment is

assumed to be faulty at the beginning of the

troubleshooting.

The ECR of a troubleshooting sequence S ¼

kA1;…;Anl; where action Ai is allocated the cost Ci;

the mean cost until an action succeeds or all actions have

been performed:

ECRðSÞ ¼
XN
i¼1

CiPðei21Þ: ð2Þ

A TS-sequence is said to be optimal if it achieves the

minimum ECR of all TS-sequences. Note that it might

be slightly misleading to use the term ECR as we

consider a situation where a repair sequence may fail to

repair the equipment (since some actions may be

imperfect, and therefore fail to fix the critical com-

ponents). Thus, a repair sequence may leave the

equipment faulty, and the ECR is in this case the

expected cost of performing the sequence and not of

repairing the equipment (see the terminal nodes p, r and

s in Fig. 1). The probability of a sequence failing to

repair the equipment is however determined by the set A
only, and does not depend on the sequencing of the

actions. Hence, as we are only interested in finding the

cheapest sequence, we will disregard this slight twist.10

In this paper we focus our attention towards the cost of

performing the TS-strategy, and we will continue to call

this cost the ECR.

3.1. The greedy approach

Vesely and Fussell’s component importance is com-

monly regarded as the best search heuristic when each

component is repaired by a perfect action, and all repair

actions have the same cost. Furthermore, when the costs are

unequal the Vesely and Fussell’s component importance

can be scaled by the action’s cost. The idea of using IVFð·Þ to

sequence the actions generalizes to our situation, see Eq. (1),

and we therefore define an action’s efficiency in the

following way:

Definition 1. Let A [A be a repair action, let CA be the

cost of performing A, and let e be the evidence compiled so

far during troubleshooting. The efficiency of A given e is

defined as

efðAleÞ ¼
PðRðAÞ ¼ okleÞ

CA

:

The efficiency has an important property when verifying

that a TS-sequence S is sub-optimal:

Proposition 2. Let S ¼ kA1;…;ANl be an optimal TS-

sequence of actions for which the cost of each action is

9 This outline is based on Skaanning [25] and Jensen et al. [10]; further

details can be found in those papers.

10 If, on the other hand, we were interested in the monetary value of the

expected cost of the cheapest sequence, our approach would be misleading.

To work in such situations, Breese and Heckerman [9] propose to introduce

a new action named Call Service as the final act in a TS-sequence.

Performing this action will put the equipment back in operating modus, but

presumably at a high cost since external personnel is involved in fixing the

problem.

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–6254

independent of the other actions taken. Then it must hold

that efðAilei21Þ $ efðAiþ1lei21Þ:

Proof. Examine the two TS-sequences S ¼

kA1;…;Ai;Aiþ1;…;ANl and S0 ¼ kA1;…;Aiþ1;Ai;…;ANl:
From Eq. (2) we get

ECRðSÞ2 ECRðS0Þ ¼ ðCiPðei21Þ þ Ciþ1Pðei21;RðAiÞ

¼ noÞÞ2 ðCiþ1Pðei21Þ þ CiPðei21;RðAiþ1Þ ¼ noÞÞ;

hence, ECRðSÞ2 ECRðS0Þ # 0 iff

PðRðAiÞ ¼ oklei21Þ

Ci

$
PðRðAiþ1Þ ¼ oklei21Þ

Ciþ1

: A

Note that Proposition 2 can in general not be used to decide

whether a TS-sequence S is optimal, it is merely a

characterization of some sub-optimal sequences.

A direct corollary of Proposition 2 is that if action Ai has

the highest efficiency amongst all remaining actions given

the aggregated evidence e, and no evidence e0 . e
excluding Ai exists such that this changes, then it is optimal

to perform Ai before any other action. Some situations

where this formulation is useful is given in Proposition 3,

which is a simple reformulation of [10, Proposition 1]:

Proposition 3.

(1) The equipment has N components and N actions.

(2) There are no questions.

(3) Exactly one MCS is faulty.

(4) Each action has a specific probability of repairing the

components. It is given by PðA
#Xi

i ¼ yeslXi ¼ faultyÞ .

0; PðA
#Xj

i lXj ¼ faultyÞ ¼ 0 for i – j:

(5) The cost Ci of action Ai does not depend on the

sequencing of the actions.

(6) The equipment is designed as a serial system, i.e. the

MCSs are singletons: Ci ¼ {Xi}; i ¼ 1;…;N:

Then we have: If efðAjle0Þ # efðAkle0Þ then efðAjleÞ #
efðAkleÞ; where e is any evidence of the type ‘Actions A0 #
A w {Aj;Ak} have failed’.

Propositions 2 and 3 motivate the greedy approach:

Algorithm 1 (Greedy approach).

(1) For all Aj [A Calculate efðAjle0Þ;

(2) Let S be the list of actions ordered according to

efð·le0Þ;

(3) Return S;

It follows that the greedy approach is optimal under the

assumptions of Proposition 3. Note that it is not always

optimal to sequence the actions based on the efficiencies. A

counter-example is given below:

Example 4. Consider the domain described in Fig. 2

(with failure data from Fig. 3). We assume perfect repair

actions, let Ci ¼ 1 for all actions, and disregard the

questions QS and QK. The greedy approach selects the

sequence kA3;A2;A4l with ECR ¼ 1:58: The optimal

sequence found by exhaustive search is kA2;A4l; with

ECR ¼ 1:47: (Note that this result is not contradictory to

Proposition 2; the efficiencies are calculated as efðA2l
e0Þ ¼ :529; efðA3le0Þ ¼ :624 and efðA4le0Þ ¼ :486; hence

it is in accordance with Proposition 2 to start with A2 as

long as it is not followed by A3:Þ

An obvious attempt to improve the results of Example 4

is to recalculate the efficiencies each time new evidence

comes in. In this way we make sure that all information

available when the ith step is to be chosen is actually taken

into account; recall that we use Bj to denote the jth step in

the strategy S.

Algorithm 2 (Greedy approach with recalculations).

(1) e ˆ {Y}; A0 ˆ {A1;…;AN}; S ¼ k·l;
(2) For i ¼ 1 to N

(a) For all Aj [A0 Calculate efðAjleÞ;
(b) Select Ak [A0 s.t. efðAkleÞ is maximized;

(c) Bi ˆAk; A
0ˆA0 w {Ak}; eˆe<{RðAkÞ ¼ no}:

(3) Return S;

Applied to the model in Example 4 this algorithm

generates the sequence S ¼ kA3;A4;A2l with ECR ¼ 1:53:

This is better than the greedy approach, but still not optimal.

A result similar to Proposition 3 can be shown for arbitrary

sized but disjoint MCSs if we assume that all actions are

perfect.

Proposition 5. Let S ¼ kA1;…;Anl be a repair sequence

for a troubleshooting problem fulfilling conditions 1–5 in

Proposition 3. The MCSs are disjoint, Ci > Cj ¼ {Y};

i – j; and all repair actions are perfect, i.e. PðA
#Xi

i ¼

oklXi ¼ faultyÞ ¼ 1 for i ¼ 1;…;N: Let S be the output

of Algorithm 2. Then S is an optimal repair sequence.

It should be emphasized that the actions are assumed to

be perfect in Proposition 5. When the actions are non-

perfect, optimality is no longer assured, as can be seen from

Example 6.

Example 6. Consider a TS-model with two cutsets C1 ¼

{X1;X2} and C2 ¼ {X3;X4;X5}: Let PðXi ¼ faultyÞ ¼ 3 £

1026 for i ¼ 1; 3; 4; 5 and PðX2 ¼ faultyÞ ¼ 7 £ 1026: Each

component Xi is repaired by a dedicated action Ai: Let the

cost of the actions be C1 ¼ 9; C2 ¼ 12; and Ci ¼ 10

for i ¼ 3; 4; 5: Finally, PðX
#A1

1 ¼ oklX1 ¼ faultyÞ ¼ :9;

PðX
#Ai

i ¼ oklXi ¼ faultyÞ ¼ :98 for i ¼ 2; 3; and PðX
#Ai

i ¼

oklXi ¼ faultyÞ ¼ :95 for i ¼ 4; 5: Then Algorithm 2 returns

S1 ¼ kA5;A1;A3;A4;A2l with ECRðS1Þ ¼ 14:95; whereas

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–62 55

the optimal sequence is S2 ¼ kA5;A3;A4;A1;A2l with

ECRðS2Þ ¼ 14:84:

3.2. Dependent actions

The crucial step when optimality is proven in the setting

of Proposition 3 is the fact that no evidence obtained

during troubleshooting can change the ordering of the

remaining actions under consideration; the residual prob-

ability mass, i.e. the probability PðRðAiÞ ¼ oklei21Þ; is

absorbed uniformly by all these actions. Hence, the initial

ordering of two actions, Ai a Aj; say, cannot change when

some new evidence RðAkÞ ¼ no; Ak � {Ai;Aj} arrives. In

the general case, however, the ordering of a subset of

actions A0 , A may depend on what evidence e is

collected, even if e does not contain explicit information

about any of the actions in A0: We call this situation

dependent actions [26].

A domain for which the cost of an action does not depend

on the sequence of actions taken is said to have dependent

actions whenever there exists actions Ai; Aj and Ak s.t.

efðAilYÞ
efðAjlYÞ

–
efðAilRðAkÞ ¼ noÞ

efðAjlRðAkÞ ¼ noÞ
:

A domain has dependent actions if there exists two actions Ai

and Aj s.t. paðAiÞ> paðAjÞ – Y or there exists two actions Ai

and Aj; two components Xk [paðAiÞ and X‘ [paðAjÞ; and

an MCSCm s.t. {Xk;X‘} # Cm:An example from the printer

domain is the action-pair ‘Reseat toner cartridge’

and ‘Change toner cartridge’ as both may solve

problems related to bad seating of the cartridge.

Examples 4 and 6 showed that Vesely and Fussell’s

component importance is not optimal, in general, when the

domain has dependent actions. This is hardly a surprise,

since the problem of finding an optimal troubleshooting

strategy is known to be NP-hard in this case [27]. To try to

improve a sub-optimal strategy we employ an adapted

version of a standard algorithm for combinatorial optimiz-

ation (similar to the algorithm presented by Norstrøm et al.

[7]). This algorithm starts from an initial seed, and

iteratively improves this sequence until it converges to a

local optimum. Note that BðiÞ
k (Step 2a) denotes the kth TS-

step in the action sequence S when starting the ith step of

the iteration. Note also that the algorithm is said to converge

(Step 3) when the ECR of the found sequence is not lower

than the ECR of the sequence found previously.

Algorithm 3 (Discrete optimization).

(1) Initialization: Sˆ kB1;…;BNl for some ordering of

A;

(2) For i ¼ 1 to N

(a) For j ¼ i to N

Rj ˆ kBðiÞ
1 ;…;BðiÞ

i21;B
ðiÞ
j ;BðiÞ

i ;…;BðiÞ
j21;B

ðiÞ
jþ1;…;BðiÞ

N l;

(b) Select j0 [½i;…;N	 s.t. ECRðRj0
Þ is minimized;

(c) SˆRj0
;

(3) If not converged then goto 2;

(4) Return S;

A sequence S ¼ kA1;A2;…;Ai;…;Aj;…;ANl is a local

optimum if, whenever we insert Aj before Ai ðj . iÞ in S to

obtain S0 ¼ kA1;A2;…;Ai21; Aj;Ai;…;Aj21; Ajþ1;…;ANl;
then ECRðSÞ # ECRðS0Þ: It is obvious that Algorithm 3

converges to a local optimum since ECRðSÞ is guaranteed

to be non-increasing after each loop of the algorithm (the

algorithm can decide to stay put by selecting j0 s.t. Rj0
¼ S

in Step 2b. It is, however, not guaranteed that the algorithm

converges to the globally optimal sequence. The crucial

choice to be made in Algorithm 3 is the initialization of S in

Step 1. To ensure quick convergence to an approximately

optimal solution, it can be beneficial to select a seed

sequence that is close to the optimum. A natural choice is to

initialize S as found by Algorithm 2. It is, however, easy to

see that this sequence is a local optimum itself (confer

Proposition 2), and it will, therefore, not be improved by

Algorithm 3. Instead, we suggest to initialize the action

sequence by ordering w.r.t. the observation-based efficiency

(obef). We outline the derivation of the observation-based

efficiency [26] below.

Consider a situation where the evidence e has been

collected and it has been decided that the next action to

perform is A. To calculate the observation-based efficiency,

the TS-system should consider what information can be

gained about the failed equipment by just getting to know

that A does not solve the problem, and more importantly,

the value of this information. It is natural to quantify this

value as the difference in ECR between two degenerate

models: (i) The TS-system where the collected evidence is

e0 ¼ {e;RðA ¼ noÞ} and (ii) The TS-system where A has

been made unavailable, but where the collected evidence is

e00 ¼ e: Assume that the sequence of remaining actions

when given evidence e0 is Sðe0Þ and that the sequence of

the actions when given evidence e00 and A is unavailable is

Sðe00Þ: We define the conditional ECR of the sequence S ¼

kA1;…;ANl given e0 as ECRðSle0Þ ¼
PN

j¼1 CjPðej21le0Þ:
Finally, we define the value of the information contained in

the event that RðAÞ ¼ no given the current evidence e as

VOIðRðAÞ ¼ noleÞ ¼ ECRðSðe0Þle0Þ2 ECRðSðe00Þle0Þ;

i.e. VOIðRðAÞ ¼ noleÞ is the difference of the expected cost

of the strategies Sðe0Þ and Sðe00Þ: Note that both expected

costs are calculated conditioned on e0; the evidence actually

collected as the two strategies are considered to be employed.

To recapitulate, we want to consider the value of

information an action that fails has to offer when we

determine how to sequence the actions. This amount is

calculated as VOIðRðAÞ ¼ noleÞ; and we receive this gain

with probability PðRðAÞ ¼ noleÞ: If we regard this amount

as a refund, it is natural to approximate the ‘real’ cost of

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–6256

action A as

~CA ¼ CA 2 PðRðAÞ ¼ noleÞVOIðRðAÞ ¼ noleÞ;

where ~CA is the cost we ‘spend’ by performing A; CA 2 ~CA

is the expected reduction in ECR of the remaining sequence

of action, which is obtained by learning that A fails. It is

argued by Langseth and Jensen [26] that if one couples

Definition 1 with Algorithm 2, one implicitly assumes that

VOIðRðAÞ ¼ noleÞ ¼ 0: On the other hand, if ~CA is used as

the cost of A in the efficiency calculation, this will change

the troubleshooting strategy in a way that attempts to

incorporate the actual value of the information we receive.

This leads to the definition of the observation-based

efficiency:

Definition 7. Let A [A be a repair action, let the cost of A

be CA; and let e be the evidence compiled so far during

troubleshooting (i.e. not containing A). Let VOIðRðAÞ ¼

noleÞ be the value of information A will have if it fails (by

altering the sequencing of the remaining actions). Then the

observation-based efficiency of A given e is:

obefðAleÞ ¼
PðRðAÞ ¼ okleÞ

CA 2 PðRðAÞ ¼ noleÞVOIðRðAÞ ¼ noleÞ
:

An algorithm that orders the actions according to the

observation-based efficiency does in general not offer an

optimal solution; a sequence ordered in this way may even

violate the optimality check of Proposition 2. This is,

however, of minor importance, as we only use the sequence

as a seed to Algorithm 3 and do not regard it as a final

solution on its own. Note however, that the probability

update is proportional under the assumptions in Proposition

3, which means that VOIðRðAÞ ¼ noleÞ ¼ 0 in this case. The

observation-based efficiency is therefore exact under the

assumptions of Proposition 3. ‘Cycle power’ is an

example of an action from our domain which has high

value of information. Power cycling repairs many temporal

problems, and ruling these out can be very beneficial for the

future troubleshooting.

A problem with Definition 7 is that VOIðRðAÞ ¼ noleÞ
cannot be calculated unless one is able to correctly sequence

all remaining actions (after performing A) in order to

calculate ECRðSðe0Þle0Þ and ECRðSðe 00Þle0Þ; a computa-

tionally prohibitive task. Langseth and Jensen discuss two

approximations of VOIðRðAÞ ¼ noleÞ : one based on the

Shannon entropy of the efficiencies of the remaining

actions, and the computationally simpler approach to use

the myopic ordering of actions (i.e. based on Definition 1),

see Ref. [26] for details.

Table 1 shows results of a small simulation study. Three

troubleshooting models have been used: the example model

of Fig. 3 (with N ¼ 5 actions and R ¼ 4 cutsets), the

CPQRA model [28] ðN ¼ 25; R ¼ 20Þ and Norstrøm et al.’s

example [7] ðN ¼ 6; R ¼ 4Þ: For each model the actions’

costs and the failure probabilities of the components have

been randomized. Additionally, the probability of an action

to successfully repair a component in its parent set was

randomly selected in the interval [0.9,1.0]. Then Algor-

ithms 2 and 3 were run, and compared by difference in

ECR.11 The simulations were run for 500 iterations. The

reported numbers give the relative number of times

Algorithm 2 found a result inferior to that of Algorithm

3, the average relative difference in ECR in those runs

(Avg. rel. diff.), and the maximum relative difference in

ECR (Max. rel. diff.).

The results in Table 1 show that even for the relatively

small models we have considered, a strategy generated by

the Vesely and Fussell’s component importance (Algorithm

2) fails fairly frequently, and the additional cost of following

an inferior sequence may be considerable.

As it is NP-hard to find the optimal repair sequence,

Algorithm 3 is not infallible; it may sometimes be stuck in

sub-optimal solutions. This did, for instance, happen for the

CPQRA model (Table 1), where Algorithm 3 even was

inferior to Algorithm 2 in 1.2% of the simulations, with

maximum relative cost difference equal to 2.1%.

4. Questions

When we add questions to our TS-model, the strategy is

represented by a strategy tree, see Fig. 1. Note that the ECR

cannot be calculated by Eq. (1) in this case, instead we use a

recursive calculation scheme to compute the expected cost

of repair.

Proposition 8. Let S be a TS-strategy which starts with the

step Bð1Þ and then continues with the strategy conditioned on

the possible outcomes of Bð1Þ: Then the ECR of S can be

calculated recursively as:

ECRðSÞ¼Cð1Þþ
X

bð1Þ[spðBð1ÞÞ

PðBð1Þ¼bð1ÞÞECRðSlBð1Þ¼bð1ÞÞ;

ð3Þ

where Cð1Þ is the cost of step Bð1Þ and ECRðSlBð1Þ¼bð1ÞÞ is

the ECR of the sub-tree S following the branch for which

Bð1Þ¼bð1Þ: The recursion is terminated by ECRðYl·Þ¼
ECRð·lRðAjÞ¼okÞ¼0:

Table 1

Algorithms 2 and 3 are compared through a small simulation study

Rel. num.

(%)

Avg. rel. diff.

(%)

Max. rel. diff.

(%)

Example model of Fig. 3 8.2 4.0 7.5

The CPQRA model [28] 9.4 4.2 8.2

Norstrøm et al.’s example [7] 4.0 4.9 9.2

11 Algorithm 3 was initialized by the sequence obtained when the actions

were ordered according to the observation-based efficiency; the value of

information was approximated by employing a myopic strategy.

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–62 57

The obvious way to decide whether it pays to pose a

question Q, is to calculate the value of information for that

particular question. Let the strategy be defined as kQ;Sl;
where S is the optimal strategy conditioned on the answer

to the question Q, and let S0 be the optimal strategy when

we are refused to pose Q. We define VOIðQÞ as:

VOIðQÞ ¼ ECRðS0Þ2
X

q[spðQÞ

PðQ ¼ qÞECRðSlQ ¼ qÞ:

The system should pose the question if VOIðQÞ . CQ:

A problem with this approach is that we must correctly

position all other questions in the strategy before we can

calculate ECRðS0Þ and ECRðSlQ ¼ qÞ; this will lead to a

too expensive recursion. Breese and Heckerman [9]

propose to use a myopic approach to this problem: Assume

that it is sufficient to sequence only actions when VOIðQÞ

is to be calculated, i.e. one should consider the effect of the

question Q only on the sequencing of actions, and

disregard the effect of the other questions. The two action

sequences S and S0 are then approximated by ordering the

actions according to their efficiencies by Algorithm 2. In

Ref. [10] it is argued that this approach will over-rate

the effect of the question, because one in this case

only compares the effect of asking the question now,

with ECRnow ¼ CQ þ
P

q[spðQÞ PðQ ¼ qÞECRðSlQ ¼ qÞ; or

never, ECRnever ¼ ECRðS0Þ: The decision rule is to pose

the question iff

ECRnow , ECRnever: ð4Þ

Jensen et al. [10] argue that one should also compare

ECRnow to the ECR of a strategy starting with what appears

to be the best action, followed by Q, and thereafter a TS-

sequence S00, which depends on the outcome of Q. This

approach has ECR given by

ECRA;QðA;Q;S00Þ ¼ CA þPðRðAÞ ¼ noÞCQ

þ
X

q[spðQÞ

PðQ ¼ q;RðAÞ ¼ noÞECRðS00lQ ¼ q;RðAÞ ¼ noÞ:

The question should be posed iff

ECRnow , min{ECRA;QðA;Q;S00Þ;ECRnever}: ð5Þ

To emphasize the importance of including questions in the

troubleshooter system we reproduce and extend a set of

experimental results from Vomlel [29]. We have examined

nine of the troubleshooter models included in the BATS

tool; for each of them we calculated the ECR of the

optimal TS-strategy, the ECR of the TS-strategy produced

when combining Algorithm 2 with Eq. (5), the ECR of the

TS-strategy produced when combining Algorithm 2 with

Eq. (4), and finally the ECR of the TS-sequence generated

from Algorithm 2 when questions were disregarded. The

models we used for testing were moderately sized with N

(number of actions) ranging from 6 to 16 and M (number of

questions) in the interval from 2 to 10. The results clearly

show how important the questions are in these real-life

TS-models, and they also indicate that the approximations

made in Algorithm 2 combined with the decision rule of

Eq. (5) may be quite reasonable (Table 2).

5. Calculation scheme

In this section we will consider how to perform the

required calculation in the model. As the TS-system will

continuously interact with the user, it is important that the

system can perform its calculations in ‘real time’ (that is, the

calculations should be performed using an amount of time

that seems negligible to the user). The important point to

make is that performing calculations is in principle of time

complexity exponential in the number of components in the

model. It is therefore crucial to identify the ‘idle time’ of the

system (i.e. the time when the user is not interacting with it),

and use those points in time to perform the calculations. Idle

time is available before the system is put into use, and at

times when the user is busy performing an action or trying to

find information to answer a question. Before the system is

ready to be used it has to go through an initialization phase,

which basically amounts to calculating the initial probabil-

ities for each component to be in its faulty state given that

the equipment is faulty, the probabilities for the actions to be

successful, and the initial beliefs regarding possible answers

to the different questions. These calculations can be

performed off-line and are thus not subject to speed

requirements. In the following we will therefore focus on

how to incorporate information from the performed TS-

steps into the system, that is, how to update the probability

distributions when the compiled evidence e is extended.

5.1. Action sequences

First we will look at TS-systems that only consists of

actions, and describe a method for calculating PðRðAÞ ¼

Table 2

Empirical comparison of the effect of including questions into nine of the

BATS TS-models. The results are extended from those reported by Vomlel

[29]

N M Optimal Algorithm 2

þ Eq. (5)

Algorithm 2

þ Eq. (4)

Algorithm 2

6 2 433.24 442.39 442.43 444.54

9 3 129.21 129.21 205.54 155.10

11 3 106.20 108.07 111.75 116.80

12 3 38.38 40.01 52.86 43.05

13 4 124.32 125.56 125.94 300.85

14 4 115.41 115.86 116.74 236.58

9 9 70.67 77.67 76.53 121.10

16 5 161.38 162.25 162.49 286.75

10 10 250.45 256.96 445.93 479.96

Avg. rel. diff. from

opt.

2.51% 21.5% 59.16%

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–6258

okleÞ for an action A [A where is some evidence not

involving A. Next, we will describe a method to calculate

PðeÞ (required by the ECR-calculations, see Eq. (2)). Note

that the evidence e will contain only a list of failed actions,

i.e. e ¼ {RðAÞ ¼ no : A [A0}: If an action is successful,

the troubleshooting ends, and there is no need to incorporate

that evidence into the system.

The key point during the calculations is that of

conditional independence. Let ndðVÞ be the non-descen-

dants of V in a directed graph G; Y [ndðXÞ iff there is no

directed path X ! · · · ! Y in G. An important result we

shall use frequently is that V n ndðVÞlpaðVÞ for any variable

V [V:

The backbone of our calculating scheme is the

observation that if we know that Ci is the actual cutset,

then it is easy to calculate the success probabilities given the

evidence e. It turns out that PðRðAÞ ¼ oklCi ¼ faulty;

eÞ ¼ PðRðAÞ ¼ oklCi ¼ faultyÞ; see Lemma 9 below. Since

the actual cutset is not known during troubleshooting, we

use

PðRðAÞ ¼ okleÞ
¼

X
C‘[C

PðRðAÞ ¼ oklC‘ ¼ faulty; eÞ PðC‘ ¼ faultyleÞ

¼
X

C‘[C

PðRðAÞ ¼ oklC‘ ¼ faultyÞ PðC‘ ¼ faultyleÞ;

to calculate PðRðAÞ ¼ okleÞ: Next, we formalize the above

statement:

Lemma 9. Let A [A be a repair action, and let

evidence compiled during troubleshooting be denoted by

e, e ¼ {RðAiÞ ¼ no : Ai [A0} ðA � A0Þ: Assume that the

user’s ability to repair one component X does not depend

on the state of the other components, A#X n X0lX for all

X0 [X w {X}; and that information about the user failing

to perform one repair action will not influence our beliefs

about his ability to perform other actions, A
#Xk

i n
A
#X‘

j l{Xk;X‘} whenever i – j: Then PðRðAÞlCm ¼ faulty;

eÞ ¼ PðRðAÞlCm ¼ faultyÞ: That is, the evidence e does

not influence RðAÞ when conditioning on the actual MCS.

Proof. First, notice that if PðRðAÞ ¼ oklCm ¼ faultyÞ ¼ 0;

then no evidence e can change this belief. Hence,

PðRðAÞlCm ¼ faulty; eÞ ¼ PðRðAÞlCm ¼ faultyÞ if A cannot

repair any component in Cm: Next, assume that the action A

can repair components in only one MCS, C‘: If C‘ ¼ faulty;

then all components Xj [C‘ are in their faulty state. Hence,

we have evidence on the set pa(A), and since e only contains

non-descendant of A by construction of the domain model,

A n el{C‘ ¼ faulty}: It follows that RðAÞ n el{C‘ ¼

faulty}; and therefore PðRðAÞlC‘ ¼ faulty; eÞ ¼
PðRðAÞlC‘ ¼ faultyÞ: (See A1 in Fig. 5; the probability for

A1 to repair the equipment is determined by the state of C1

only. If C1 is the actual MCS then A1 repairs the equipment

with probability PðA
#X1

1 ¼ yeslX1 ¼ faultyÞ no matter what

actions have earlier been performed; if C1 is not faulty, then

A1 can never repair the equipment.)

In the general case action A can repair more than one

MCS. To see that the Lemma holds also in this case, we

introduce the random variable zðC‘Þ; which is defined s.t.

zðC‘Þ ¼ yes if {Xi ¼ faulty : Xi [C‘ ^ Xj ¼ ok : Xj �
C‘}; zðC‘Þ ¼ no otherwise. Notice that the effect of

conditioning on the event zðC‘Þ ¼ yes is that all X [X
are given evidence, and by construction of the domain

model, the set paðAÞ # X is instantiated. Hence PðRðAÞ ¼

oklzðC‘Þ ¼ yes;eÞ ¼PðRðAÞ ¼ oklzðC‘Þ ¼ yesÞ: Since A#X

nX0X for X0 [Xw {X}; we have PðRðAÞlC‘ ¼ faulty;

eÞ ¼PðRðAÞlzðC‘Þ ¼ yes;eÞ: Finally, it follows that

PðRðAÞlC‘ ¼ faulty;eÞ ¼PðRðAÞlC‘ ¼ faultyÞ: (Look at

action A3 in Fig. 5, and assume that C3 is known to

be faulty, which means that X3 ¼X4 ¼ faulty: The event

{RðA3Þ ¼ ok} is in this case equivalent to {A
#X3

3 ¼

yes_A
#X4

3 ¼ yes}: So far we only have observations on

X3 and X4; X1 and X2 are not instantiated. Hence,

information may flow from RðA1Þ to RðA3Þ; and thereby

break the required independence (which is problematic if

{RðA1Þ ¼ no} has been observed). The assumption A
#Xj

i n
XklXj does however justify that we may set X1 ¼X2 ¼ ok

without changing the required probability PðRðA3ÞlC3 ¼

faulty;eÞ: All flow of information from any compiled

evidence e to RðA3Þ is blocked when these stochastic

variables are instantiated, and the desired conditional

independence follows.) A

We utilize Lemma 9 to calculate the probability that an

action A [A repairs the equipment:

PðRðAÞleÞ ¼
X

C‘[C

PðRðAÞlC‘ ¼ faultyÞPðC‘ ¼ faultyleÞ: ð6Þ

That is, calculating PðRðAÞleÞ amounts to finding

PðRðAÞlC‘ ¼ faultyÞ and PðC‘ ¼ faultyleÞ for all C‘ [C:
The values of PðRðAÞlC‘ ¼ faultyÞ can easily be calculated

from the model description before the troubleshooting

starts, whereas PðC‘ ¼ faultyleÞ must be calculated in each

case.

We now show that Lemma 9 can be used also to calculate

PðC‘ ¼ faultyleiÞ rather efficiently; recall that ei is used to

Fig. 5. Example TS-model to exemplify the proof of Lemma 9.

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–62 59

denote the evidence that the first i actions in the sequence

S ¼ kA1;…;ANl have all failed to repair the equipment. We

first use Bayes’ rule to investigate how to update this

probability when new evidence {RðAiÞ ¼ no} is received

and appended to the compiled knowledge ei21 :

PðC‘ ¼ faultyleiÞ ¼PðC‘ ¼ faultylei21;RðAiÞ ¼ noÞ

¼
PðRðAiÞ ¼ nolC‘ ¼ faulty;ei21ÞPðC‘ ¼ faultylei21Þ

PðRðAiÞ ¼ nolei21Þ

¼
PðRðAiÞ ¼ nolC‘ ¼ faultyÞPðC‘ ¼ faultylei21Þ

PðRðAiÞ ¼ nolei21Þ
;

ð7Þ

PðRðAiÞ ¼ nolei21Þ is just a normalization constant in this

calculation, which can be found by

PðRðAiÞ ¼ nolei21Þ

¼
X

Ck[C

PðRðAiÞ ¼ nolCk ¼ faultyÞPðCk ¼ faultyle21Þ:

Hence PðC‘ ¼ faultyleiÞ can be calculated by expanding the

evidence iteratively. The first step of this procedure requires

the a priori distribution over the MCSs, PðC‘ ¼ faultyle0Þ:

This distribution should be calculated by a full propagation

in the BN, see Ref. [22]; remember that this propagation can

be performed off-line (i.e. before troubleshooting starts).

The evidence ei is then incorporated by using Eq. (7) until

we obtain PðC‘ ¼ faultyleiÞ: This means that calculating

PðRðAÞleiÞ is of complexity OðRÞ; where R is the number of

MCSs in the domain if we have stored PðC‘ ¼ faultylei21Þ:

As a consequence, the complexity of Algorithm 1 is OðNRþ

N logðNÞÞ and the complexity of Algorithm 2 is OðNðNRþ

NÞ ¼OðN2RÞ:

Next, we look at how to calculate PðeiÞ; a number required

by the ECR calculations, see Eq. (2). This can be done by

using the identity PðeiÞ ¼ PðRðAiÞ ¼ nolei21ÞPðei21Þ and

make the calculations iteratively; PðRðAiÞ ¼ nolei21Þ is given

by Eq. (6); Pðe0Þ ¼ 1 by convention. Calculating PðeiÞ is

therefore of complexityOðRÞ if we store the values Pðei21Þ: In

total, the calculation of ECR is thus of time complexity

OðNRÞ:

The time complexity of generating a full action sequence

based on the observation-based efficiency (Definition 7) is

dominated by the expensive calculations required to find

VOIð·leÞ: If this value is approximated by calculating the

ECR of the sequence generated by Algorithm 2, then the

time complexity of generating a complete action sequence

by the observation-based efficiency is OðN3RÞ: If one settles

for the cruder approximation offered by Algorithm 1 the

time complexity of generating the sequence is reduced to

OðN2ðlogðNÞ þ RÞÞ:

The time complexity of Algorithm 3 is given by the

complexity of the initialization and the cost of OðN2Þ

calculations of ECR. This means that the total complex-

ity of Algorithm 3 when initialized according to

the obef-sequence is OðN3RÞ: This should be compared

to the corresponding calculations performed in a fault

tree, which Norstrøm et al. [7] report to be OðN23NÞ:

5.2. Questions

In this section we consider the cost of belief updating

when the TS-model is extended to incorporate questions.

5.2.1. Symptom questions

We start the treatment of questions by considering

symptom questions. Recall that symptom questions are used

to examine possible failure symptoms; they are connected to

the system layer at the MCS level, with edges directed from

problem causes to the questions, see QS in Fig. 2. By

construction, the parent set of a symptom question QS in our

BN representation is therefore restricted to the MCS nodes,

paðQSÞ # C: Furthermore, symptom questions do not have

descendants in the graph. It follows that QS n
Vw {C;QS}lC: Therefore, to calculate the effect of a

symptom question on the remaining strategy, it is only

required to calculate the effect on the distribution over the

MCSs, PðC‘ ¼ faultylQS ¼ q; eÞ: This can be done by using

Bayes’ rule

PðC‘ ¼ faultylQS ¼ q; eÞ

¼
PðQS ¼ qlC‘ ¼ faulty; eÞPðC‘ ¼ faultyleÞ

PðQS ¼ qleÞ

¼
PðQS ¼ qlC‘ ¼ faultyÞPðC‘ ¼ faultyleÞ

PðQS ¼ qleÞ
; ð8Þ

where PðQS ¼ qleÞ ¼
P

Ck[C
PðQS ¼ qlCk ¼ faultyÞ PðCk ¼

faultyleÞ: Hence, the complexity of calculating PðC‘ ¼

faultylQS ¼ q;eÞ from PðC‘ ¼ faultyleÞ is OðRÞ: If we

assume that the ordering of actions needed to calculate the

ECR values in the decision rule of Eq. (5) is based on

Algorithm 2, then a question can be evaluated in time

complexity OðN2RÞ: Note that the calculations will require

the computation of ECR for several action sequences

(described in Section 5.1); one for each possible answer to

the question.

Note that QS n V w {C;QS}lC implies that symptom

questions will not corrupt the calculations of RðAleÞ in Eq.

(6); we can use that calculation scheme to calculate RðAleÞ
even when the evidence e contains answers to symptom

questions.

5.2.2. Configuration questions

Configuration questions are designed to highlight the

likelihood of component failures by uncovering the

environment in which the failed equipment is embedded.

Configuration nodes are connected to the system layer via

the component layer, with edges directed from question to

components, see K in Fig. 2. The answer to the question is

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–6260

modelled as a random variable dependent on the configur-

ation, see QK in Fig. 2.

As for symptom questions, we are interested in

evaluating QK according to Eq. (5). First, however, we

note that RðAÞ n el{C‘ ¼ faulty} also when configuration

questions have been posed, {QK ¼ q} # e: Recall that

PðRðAÞle0; C‘ ¼ faultyÞ ¼ PðRðAÞlC‘ ¼ faultyÞ when e0 is a

list of actions (not containing A) that have failed. This result

trivially extends to the case where e contain answers to

questions because configuration questions are non-descen-

dants of the actions’ result nodes. We can therefore

calculate the efficiency of an action using Eq. (6) also in

the case when configuration questions have been answered.

Similarly, we can calculate the ECR-values required to

evaluate a configuration question QK (according to Eq. (5)

efficiently by incorporating the effect of a question QK at the

cutset nodes by using Eq. (8).

Special attention is however required for the case when

one configuration question QK1
is evaluated, and the

evidence e already contains the answer to another

configuration question QK2
together with a list of failed

actions e0; e ¼ {QK2
¼ q; e0}: The answer to the two

configuration questions QK1
and QK2

are not independent

given the actual cutset; we have PðQK1
¼ q; le;C‘ ¼

faultyÞ ¼ PðQK1
¼ qlQK2

¼ q;C‘ ¼ faultyÞ: Hence, we

must take the answers to all earlier configuration questions

into account when we want to calculate PðQK1
¼ qleÞ: A

consequence of this conditional dependence is that the fast

rules to incorporate new evidence into the system, see Eqs.

(7) and (8), cannot be generalized to evidence containing

configuration questions if the distribution of other configur-

ation questions should be updated correctly. We therefore

have to perform a propagation in the model as soon as a

configuration question is answered; note that it is not

required to perform any propagations as long as the TS-

system just considers to pose the question. The complexity

of evaluating a configuration question is therefore OðN2RÞ;

the time complexity of incorporating the answer into the

system is exponential in the number of components.

6. Concluding remarks

We have described a decision-theoretic troubleshooting

system, which builds on a BN describing the faulty

equipment and its surroundings. The expressive power of

the BN framework outperforms that of more commonly

used model description paradigms as, e.g. fault trees, see

Ref. [21]. We utilized this to make a rich description of the

troubleshooting domain, which may include, e.g. non-

perfect actions and information-gathering troubleshooting

steps. Finally, we showed how our BN models allow fast

calculation of the probabilities required to generate a

reasonable troubleshooting strategy.

Acknowledgements

We would like to thank our project coworkers, in particular

Claus Skaanning, Jiřı́ Vomlel, and Olav Bangsø, for

interesting discussions. Jiřı́ Vomlel also supplied the software

used to generate the results in Table 2. An anonymous referee

gave comments that helped improving the paper.

References

[1] Vesely WE. Fault tree handbook. Technical report. NUREG-0492. US

Nuclear Regulatory Committee, Washington, DC; 1981.

[2] Zhang Q, Mei Q. A sequence of diagnosis and repair for a 2-state

repairable system. IEEE Trans Reliab 1987;R-36(1):32–3.

[3] Kalagnanam J, Henrion M. A comparison of decision analysis and

expert rules for sequential analysis. Uncertainty in artificial

intelligence 4, New York: North-Holland; 1990. p. 271–81.

[4] Xiaozhong W. Fault tree diagnosis based on Shannon entropy. Reliab

Engng Syst Safety 1991;34:143–67.

[5] Xiaozhong W, Cooke RM. Optimal inspection sequence in fault

diagnosis. Reliab Engng Syst Safety 1992;37:207–10.

[6] Reinertsen R, Xiaozhong W. General inspection strategy for fault

diagnosis-minimizing the inspection costs. Reliab Engng Syst Safety

1995;48(3):191–7.

[7] Norstrøm J, Cooke RM, Bedford TJ. Value of information based

inspection-strategy of a fault-tree. Proceedings of the Tenth European

Conference on Safety and Reliability; 1999. p. 621–6.

[8] Srinivas S. A polynomial algorithm for computing the optimal repair

strategy in a system with independent component failures. Proceed-

ings of the Eleventh Annual Conference on Uncertainty in Artificial

Intelligence, San Fransisco, CA; 1995. p. 515–22.

[9] Breese JS, Heckerman D. Decision-theoretic troubleshooting: a

framework for repair and experiment. Proceedings of the Twelfth

Conference on Uncertainty in Artificial Intelligence, San Francisco,

CA: Morgan Kaufmann Publishers; 1996. p. 124–32.

[10] Jensen FV, Kjærulff U, Kristiansen B, Langseth H, Skaanning C,

Vomlel J, Vomlelová M. The SACSO methodology for troubleshoot-

ing complex systems. Artif Intell Engng, Des, Anal Manufact 2001;

15(5):321–33.

[11] Skaanning C, Jensen FV, Kjærulff U, Pelletier P, Rostrup-Jensen

L. Printing system diagnosis: a Bayesian network application.

Workshop on Principles of Diagnosis, Cape God, MA; 2000.

[12] Pearl J. Probabilistic reasoning in intelligent systems: networks of

plausible inference. San Mateo, CA: Morgan Kaufmann; 1988.

[13] Jensen FV. Bayesian networks and decision graphs. New York:

Springer; 2001.

[14] Barlow RE. Using influence diagrams. In: Clarotti CA, Lindley DV,

editors. Accelerated life testing and experts’ opinions in reliability.

1988. p. 145–57.

[15] Call HJ, Miller WA. A comparison of approaches and implemen-

tations for automating decision analysis. Reliab Engng Syst Safety

1990;30:115–62.

[16] Torres-ToledanoJG,SucarLE.Bayesiannetworksforreliabilityanalysis

of complex systems. Lect Notes Artif Intell 1998;1484:195–206.

[17] Fenton NE, Littlewood B, Neil M, Strigini L, Sutcliffe A, Wright D.

Assessing dependability of safety critical systems using diverse

evidence. IEE Proc Software Engng 1998;145(1):35–9.

[18] Fenton NE, Neal M. Bayesian belief nets: a causal model for

predicting defect rates and resource requirements. Software Test Qual

Engng 2000;2(1):48–53.

[19] Dahll G, Gran BA. The use of Bayesian belief nets in safety

assessment of software based systems. Int J Gen Syst 2000;29(2):

205–29.

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–62 61

[20] Ibargüengoytia PH, Sucar LE, Morales E, A probabilistic model

approach for fault diagnosis. Eleventh International Workshop on

Principles of Diagnosis; 2000. p. 79–86.

[21] Bobbio A, Portinale L, Minichino M, Ciancamerla E. Improving the

analysis of dependable systems by mapping fault trees into Bayesian

networks. Reliab Engng Syst Safety 2001;71(3):249–60.

[22] Jensen FV, Lauritzen SL, Olesen KG. Bayesian updating in causal

probabilistic networks by local computations. Comput Stat Q 1990;4:

269–82.

[23] Heckerman D, Breese JS. A new look at causal independence.

ProceedingsoftheTenthAnnualConferenceonUncertaintyinArtificial

Intelligence, San Francisco, CA: Morgan Kaufmann; 1994. p. 286–92.

[24] Vesely WE. A time-dependent methodology for fault tree evaluation.

Nucl Engng Des 1970;13:339–60.

[25] Skaanning C. A knowledge acquisition tool for Bayesian-network

troubleshooters. Uncertainty in Artificial Intelligence: Proceedings of

the Sixteenth Conference, San Francisco, CA: Morgan Kaufmann;

2000. p. 549–57.

[26] Langseth H, Jensen FV. Heuristics for two extensions of basic

troubleshooting. Seventh Scandinavian Conference on Artificial

Intelligence, SCAI’01, Frontiers in Artificial Intelligence and

Applications, Odense, Denmark: IOS Press; 2001. p. 80–9.

[27] Sochorová M, Vomlel J. Troubleshooting: NP-hardness and solution

methods. The Proceedings of the Fifth Workshop on Uncertainty

Processing, WUPES’2000, Jindřichův Hradec, Czech Republic; 2000.

p. 198–212.

[28] Center for Chemical Process Safety, Guidelines for chemical process

quantitative risk analysis. New York: American Institute of Chemical

Engineers; 1989.

[29] Vomlel J. On quality of BATS troubleshooter and other approxi-

mative methods. Technical report. Department of Computer Science,

Aalborg University, Denmark; 2000.

H. Langseth, F.V. Jensen / Reliability Engineering and System Safety 80 (2003) 49–6262

	Decision theoretic troubleshooting of coherent systems
	Introduction
	The troubleshooting model
	Bayesian networks
	The basic troubleshooting model
	Building the TS-models

	Action sequences
	The greedy approach
	Dependent actions

	Questions
	Calculation scheme
	Action sequences
	Questions

	Concluding remarks
	Acknowledgements
	References

