
Linköping, June 2011

CasADi

Joel Andersson Moritz Diehl

Department of Electrical Engineering (ESAT-SCD) &
Optimization in Engineering Center (OPTEC)

Katholieke Universiteit Leuven

OPTEC (ESAT – SCD) – Katholieke Universiteit Leuven

Outline

1 Background

2 CasADi

3 Optimal control using CasADi

Motivation

Motivation – Large-scale Optimal Control Problems (OCP)

min
x,u,p

∫ T

0
l(t, x, u, p) dt + E(x(T), p)

subj. to

ẋ = f (t, x, u, p) = 0 t ∈ [0,T]

h(t, x, u, p) ≤ 0 t ∈ [0,T]

x(0) = x0

xmin ≤ x ≤ xmax t ∈ [0,T]

umin ≤ u ≤ umax t ∈ [0,T]

pmin ≤ p ≤ pmax

(1)

Here x(·) ∈ RNx (differential) states, u(·) ∈ RNu free control signals and p ∈ RNp free parameters.

CasADi — Joel Andersson Moritz Diehl

Motivation

Solving optimal control problems

Methods for solving OCP’s:

Dynamic programming/HJB
”Smart exhaustive search”

Indirect methods
”Solve necessary conditions for
optimality”

Direct methods
”Reformulate as a nonlinear
programming problem (NLP)”

Direct methods

Single shooting: parametrize only controls, eliminate state with ODE/DAE integrators

Simultaneous methods: parametrize controls and state

Direct collocation: Fine grid – interpolate between gridpoints
Direct multiple shooting: Coarse grid – integrate between gridpoints

Solve NLP with (structure exploiting) SQP or IP method

CasADi — Joel Andersson Moritz Diehl

Motivation

Solving optimal control problems

Methods for solving OCP’s:

Dynamic programming/HJB
”Smart exhaustive search”

Indirect methods
”Solve necessary conditions for
optimality”

Direct methods
”Reformulate as a nonlinear
programming problem (NLP)”

Direct methods

Single shooting: parametrize only controls, eliminate state with ODE/DAE integrators

Simultaneous methods: parametrize controls and state

Direct collocation: Fine grid – interpolate between gridpoints
Direct multiple shooting: Coarse grid – integrate between gridpoints

Solve NLP with (structure exploiting) SQP or IP method

CasADi — Joel Andersson Moritz Diehl

Background

Automatic differentiation, AD
Efficient procedure to automatically calculate derivatives:

F (x) : Rn → Rm ⇒ J(x) =
∂F

∂x
(x) : Rn → Rm×n (2)

How AD works

Write F as a sequence of elementary operations:

yi−n = xi , i ∈ {1, . . . , n} independent inputs (3)

yi = fi (yji
, yki

), ji < i, ki < i i ∈ {1, . . . , p} intermediate calculations (4)

zj = yij
, j ∈ {1, . . . ,m} function outputs (5)

Consider the equality (with y = [y1, . . . , yp]):

[
y
z

]
= F̃ (x, y) (6)

CasADi — Joel Andersson Moritz Diehl

Background

Automatic differentiation, AD
Efficient procedure to automatically calculate derivatives:

F (x) : Rn → Rm ⇒ J(x) =
∂F

∂x
(x) : Rn → Rm×n (2)

How AD works

Write F as a sequence of elementary operations:

yi−n = xi , i ∈ {1, . . . , n} independent inputs (3)

yi = fi (yji
, yki

), ji < i, ki < i i ∈ {1, . . . , p} intermediate calculations (4)

zj = yij
, j ∈ {1, . . . ,m} function outputs (5)

Consider the equality (with y = [y1, . . . , yp]):

[
y
z

]
= F̃ (x, y) (6)

CasADi — Joel Andersson Moritz Diehl

Background

Now differentiate the extended equation[
y
z

]
= F̃ (x, y)⇒

[
ẏ
ż

]
=

[
A L
B M

] [
ẋ
ẏ

]
(7)

Eliminate ẏ

ż =
[
B + M (I − L)−1 A

]
ẋ = J ẋ (8)

Forward and adjoint mode AD

Cheap to multiply J with a vector (A, B, L, M sparse, I − L lower triangular):

From the right (forward mode): J v = B v + M (I − L)−1 A v

From the left (adjoint mode): vT J = vT B + vT M (I − L)−1 A

To calculate the full Jacobian, multiply by several forward and/or adjoint directions

NP-hard optimization problem to find the least number of directions

AD software tools: ADOL-C, CppAD, OpenAD, . . .

CasADi — Joel Andersson Moritz Diehl

Background

Now differentiate the extended equation[
y
z

]
= F̃ (x, y)⇒

[
ẏ
ż

]
=

[
A L
B M

] [
ẋ
ẏ

]
(7)

Eliminate ẏ

ż =
[
B + M (I − L)−1 A

]
ẋ = J ẋ (8)

Forward and adjoint mode AD

Cheap to multiply J with a vector (A, B, L, M sparse, I − L lower triangular):

From the right (forward mode): J v = B v + M (I − L)−1 A v

From the left (adjoint mode): vT J = vT B + vT M (I − L)−1 A

To calculate the full Jacobian, multiply by several forward and/or adjoint directions

NP-hard optimization problem to find the least number of directions

AD software tools: ADOL-C, CppAD, OpenAD, . . .

CasADi — Joel Andersson Moritz Diehl

Background

Now differentiate the extended equation[
y
z

]
= F̃ (x, y)⇒

[
ẏ
ż

]
=

[
A L
B M

] [
ẋ
ẏ

]
(7)

Eliminate ẏ

ż =
[
B + M (I − L)−1 A

]
ẋ = J ẋ (8)

Forward and adjoint mode AD

Cheap to multiply J with a vector (A, B, L, M sparse, I − L lower triangular):

From the right (forward mode): J v = B v + M (I − L)−1 A v

From the left (adjoint mode): vT J = vT B + vT M (I − L)−1 A

To calculate the full Jacobian, multiply by several forward and/or adjoint directions

NP-hard optimization problem to find the least number of directions

AD software tools: ADOL-C, CppAD, OpenAD, . . .

CasADi — Joel Andersson Moritz Diehl

Background

Now differentiate the extended equation[
y
z

]
= F̃ (x, y)⇒

[
ẏ
ż

]
=

[
A L
B M

] [
ẋ
ẏ

]
(7)

Eliminate ẏ

ż =
[
B + M (I − L)−1 A

]
ẋ = J ẋ (8)

Forward and adjoint mode AD

Cheap to multiply J with a vector (A, B, L, M sparse, I − L lower triangular):

From the right (forward mode): J v = B v + M (I − L)−1 A v

From the left (adjoint mode): vT J = vT B + vT M (I − L)−1 A

To calculate the full Jacobian, multiply by several forward and/or adjoint directions

NP-hard optimization problem to find the least number of directions

AD software tools: ADOL-C, CppAD, OpenAD, . . .

CasADi — Joel Andersson Moritz Diehl

Background

Now differentiate the extended equation[
y
z

]
= F̃ (x, y)⇒

[
ẏ
ż

]
=

[
A L
B M

] [
ẋ
ẏ

]
(7)

Eliminate ẏ

ż =
[
B + M (I − L)−1 A

]
ẋ = J ẋ (8)

Forward and adjoint mode AD

Cheap to multiply J with a vector (A, B, L, M sparse, I − L lower triangular):

From the right (forward mode): J v = B v + M (I − L)−1 A v

From the left (adjoint mode): vT J = vT B + vT M (I − L)−1 A

To calculate the full Jacobian, multiply by several forward and/or adjoint directions

NP-hard optimization problem to find the least number of directions

AD software tools: ADOL-C, CppAD, OpenAD, . . .

CasADi — Joel Andersson Moritz Diehl

Outline

1 Background

2 CasADi

3 Optimal control using CasADi

CasADi

Existing tools for OCP

Tools exist that accept OCP:s in a standard form and solves the problem...

Shooting methods (e.g. MUSCOD-II, ACADO Toolkit)
Direct collocation (e.g. DIRCOL)
...

... but advanced users often prefer to take the “NLP approach” (using e.g. AMPL)

The user reformulates the OCP as an NLP
Derivative information is generated automatically and passed to the NLP solver

Advantages:

Can formulate arbitrarily complex non-standard OCP:s
User gets a better insight

Drawback:

Until now only for collocation methods

CasADi — Joel Andersson Moritz Diehl

CasADi

Existing tools for OCP

Tools exist that accept OCP:s in a standard form and solves the problem...

Shooting methods (e.g. MUSCOD-II, ACADO Toolkit)
Direct collocation (e.g. DIRCOL)
...

... but advanced users often prefer to take the “NLP approach” (using e.g. AMPL)

The user reformulates the OCP as an NLP
Derivative information is generated automatically and passed to the NLP solver

Advantages:

Can formulate arbitrarily complex non-standard OCP:s
User gets a better insight

Drawback:

Until now only for collocation methods

CasADi — Joel Andersson Moritz Diehl

CasADi

Existing tools for OCP

Tools exist that accept OCP:s in a standard form and solves the problem...

Shooting methods (e.g. MUSCOD-II, ACADO Toolkit)
Direct collocation (e.g. DIRCOL)
...

... but advanced users often prefer to take the “NLP approach” (using e.g. AMPL)

The user reformulates the OCP as an NLP
Derivative information is generated automatically and passed to the NLP solver

Advantages:

Can formulate arbitrarily complex non-standard OCP:s
User gets a better insight

Drawback:

Until now only for collocation methods

CasADi — Joel Andersson Moritz Diehl

CasADi

Existing tools for OCP

Tools exist that accept OCP:s in a standard form and solves the problem...

Shooting methods (e.g. MUSCOD-II, ACADO Toolkit)
Direct collocation (e.g. DIRCOL)
...

... but advanced users often prefer to take the “NLP approach” (using e.g. AMPL)

The user reformulates the OCP as an NLP
Derivative information is generated automatically and passed to the NLP solver

Advantages:

Can formulate arbitrarily complex non-standard OCP:s
User gets a better insight

Drawback:

Until now only for collocation methods

CasADi — Joel Andersson Moritz Diehl

CasADi

What is CasADi?
CasADi = Computer algebra system for Automatic Differentiation. An
open-source (LGPL) symbolic framework for quick, yet efficient,
implementation of derivative based algorithms for dynamic optimization

Takes the NLP approach to solving optimal control problems and extends
it to shooting methods (multiple shooting method in 30–50 lines)

www.casadi.org

CasADi — Joel Andersson Moritz Diehl

CasADi

What is CasADi?
CasADi = Computer algebra system for Automatic Differentiation. An
open-source (LGPL) symbolic framework for quick, yet efficient,
implementation of derivative based algorithms for dynamic optimization

Takes the NLP approach to solving optimal control problems and extends
it to shooting methods (multiple shooting method in 30–50 lines)

www.casadi.org

CasADi — Joel Andersson Moritz Diehl

CasADi

What is CasADi?
CasADi = Computer algebra system for Automatic Differentiation. An
open-source (LGPL) symbolic framework for quick, yet efficient,
implementation of derivative based algorithms for dynamic optimization

Takes the NLP approach to solving optimal control problems and extends
it to shooting methods (multiple shooting method in 30–50 lines)

www.casadi.org

CasADi — Joel Andersson Moritz Diehl

CasADi

The core of CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Matlab-like syntax “everything is a matrix”
Use from C++ or Python (soon also Octave)

8 flavors of automatic differentiation

Forward or adjoint mode
Directional derivatives or source-to-source transformation with new graph for Jacobian
Scalar or matrix graph representation

Automatic differentiation in CasADi

CasADi applies AD to a sequence of vector/matrix valued operations

Conventional AD-tools support only unary or binary elementary operations (+, -, *, sin, sqrt, ...)
Matrix operations are expanded into a large set of scalar operations

CasADi allows multiple matrix-valued input, multiple-matrix valued output: [x, p]→ [f , ∂f
∂x

, ∂f
∂p

]

Also e.g. matrix multiplication, implicitly defined functions (solve linear or nonlinear system), etc.

CasADi — Joel Andersson Moritz Diehl

CasADi

The core of CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Matlab-like syntax “everything is a matrix”

Use from C++ or Python (soon also Octave)

8 flavors of automatic differentiation

Forward or adjoint mode
Directional derivatives or source-to-source transformation with new graph for Jacobian
Scalar or matrix graph representation

Automatic differentiation in CasADi

CasADi applies AD to a sequence of vector/matrix valued operations

Conventional AD-tools support only unary or binary elementary operations (+, -, *, sin, sqrt, ...)
Matrix operations are expanded into a large set of scalar operations

CasADi allows multiple matrix-valued input, multiple-matrix valued output: [x, p]→ [f , ∂f
∂x

, ∂f
∂p

]

Also e.g. matrix multiplication, implicitly defined functions (solve linear or nonlinear system), etc.

CasADi — Joel Andersson Moritz Diehl

CasADi

The core of CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Matlab-like syntax “everything is a matrix”
Use from C++ or Python (soon also Octave)

8 flavors of automatic differentiation

Forward or adjoint mode
Directional derivatives or source-to-source transformation with new graph for Jacobian
Scalar or matrix graph representation

Automatic differentiation in CasADi

CasADi applies AD to a sequence of vector/matrix valued operations

Conventional AD-tools support only unary or binary elementary operations (+, -, *, sin, sqrt, ...)
Matrix operations are expanded into a large set of scalar operations

CasADi allows multiple matrix-valued input, multiple-matrix valued output: [x, p]→ [f , ∂f
∂x

, ∂f
∂p

]

Also e.g. matrix multiplication, implicitly defined functions (solve linear or nonlinear system), etc.

CasADi — Joel Andersson Moritz Diehl

CasADi

The core of CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Matlab-like syntax “everything is a matrix”
Use from C++ or Python (soon also Octave)

8 flavors of automatic differentiation

Forward or adjoint mode
Directional derivatives or source-to-source transformation with new graph for Jacobian
Scalar or matrix graph representation

Automatic differentiation in CasADi

CasADi applies AD to a sequence of vector/matrix valued operations

Conventional AD-tools support only unary or binary elementary operations (+, -, *, sin, sqrt, ...)
Matrix operations are expanded into a large set of scalar operations

CasADi allows multiple matrix-valued input, multiple-matrix valued output: [x, p]→ [f , ∂f
∂x

, ∂f
∂p

]

Also e.g. matrix multiplication, implicitly defined functions (solve linear or nonlinear system), etc.

CasADi — Joel Andersson Moritz Diehl

CasADi

The core of CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Matlab-like syntax “everything is a matrix”
Use from C++ or Python (soon also Octave)

8 flavors of automatic differentiation

Forward or adjoint mode

Directional derivatives or source-to-source transformation with new graph for Jacobian
Scalar or matrix graph representation

Automatic differentiation in CasADi

CasADi applies AD to a sequence of vector/matrix valued operations

Conventional AD-tools support only unary or binary elementary operations (+, -, *, sin, sqrt, ...)
Matrix operations are expanded into a large set of scalar operations

CasADi allows multiple matrix-valued input, multiple-matrix valued output: [x, p]→ [f , ∂f
∂x

, ∂f
∂p

]

Also e.g. matrix multiplication, implicitly defined functions (solve linear or nonlinear system), etc.

CasADi — Joel Andersson Moritz Diehl

CasADi

The core of CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Matlab-like syntax “everything is a matrix”
Use from C++ or Python (soon also Octave)

8 flavors of automatic differentiation

Forward or adjoint mode
Directional derivatives or source-to-source transformation with new graph for Jacobian

Scalar or matrix graph representation

Automatic differentiation in CasADi

CasADi applies AD to a sequence of vector/matrix valued operations

Conventional AD-tools support only unary or binary elementary operations (+, -, *, sin, sqrt, ...)
Matrix operations are expanded into a large set of scalar operations

CasADi allows multiple matrix-valued input, multiple-matrix valued output: [x, p]→ [f , ∂f
∂x

, ∂f
∂p

]

Also e.g. matrix multiplication, implicitly defined functions (solve linear or nonlinear system), etc.

CasADi — Joel Andersson Moritz Diehl

CasADi

The core of CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Matlab-like syntax “everything is a matrix”
Use from C++ or Python (soon also Octave)

8 flavors of automatic differentiation

Forward or adjoint mode
Directional derivatives or source-to-source transformation with new graph for Jacobian
Scalar or matrix graph representation

Automatic differentiation in CasADi

CasADi applies AD to a sequence of vector/matrix valued operations

Conventional AD-tools support only unary or binary elementary operations (+, -, *, sin, sqrt, ...)
Matrix operations are expanded into a large set of scalar operations

CasADi allows multiple matrix-valued input, multiple-matrix valued output: [x, p]→ [f , ∂f
∂x

, ∂f
∂p

]

Also e.g. matrix multiplication, implicitly defined functions (solve linear or nonlinear system), etc.

CasADi — Joel Andersson Moritz Diehl

CasADi

The core of CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++

Matlab-like syntax “everything is a matrix”
Use from C++ or Python (soon also Octave)

8 flavors of automatic differentiation

Forward or adjoint mode
Directional derivatives or source-to-source transformation with new graph for Jacobian
Scalar or matrix graph representation

Automatic differentiation in CasADi

CasADi applies AD to a sequence of vector/matrix valued operations

Conventional AD-tools support only unary or binary elementary operations (+, -, *, sin, sqrt, ...)
Matrix operations are expanded into a large set of scalar operations

CasADi allows multiple matrix-valued input, multiple-matrix valued output: [x, p]→ [f , ∂f
∂x

, ∂f
∂p

]

Also e.g. matrix multiplication, implicitly defined functions (solve linear or nonlinear system), etc.

CasADi — Joel Andersson Moritz Diehl

CasADi

How to get it to work efficiently?

Matrix sparsity always fixed, sparsity shared between nodes

Delay generation of Jacobians of function evaluations until the whole graph is known

Use two different computational graph representations (scalar / matrix)

Avoids that the extra generality comes at the expense of memory use and speed

Highly efficient, scalar graph ∼10 ns per elementary operation (< 1 ns with code generation)
Less efficient matrix graph, called orders of magnitude more seldom
User responsible for choosing which one to use

Two graph representations

Scalar-valued nodes Sparse, matrix-valued nodes
design objective ”maximum speed” ”maximum generality”

type of operations built-in built-in or user-defined
number of inputs one or two arbitrary
number of output one arbitrary
branching/jumps no yes

parallelization no yes

CasADi — Joel Andersson Moritz Diehl

CasADi

How to get it to work efficiently?

Matrix sparsity always fixed, sparsity shared between nodes

Delay generation of Jacobians of function evaluations until the whole graph is known

Use two different computational graph representations (scalar / matrix)

Avoids that the extra generality comes at the expense of memory use and speed
Highly efficient, scalar graph ∼10 ns per elementary operation (< 1 ns with code generation)

Less efficient matrix graph, called orders of magnitude more seldom
User responsible for choosing which one to use

Two graph representations

Scalar-valued nodes Sparse, matrix-valued nodes
design objective ”maximum speed” ”maximum generality”

type of operations built-in built-in or user-defined
number of inputs one or two arbitrary
number of output one arbitrary
branching/jumps no yes

parallelization no yes

CasADi — Joel Andersson Moritz Diehl

CasADi

How to get it to work efficiently?

Matrix sparsity always fixed, sparsity shared between nodes

Delay generation of Jacobians of function evaluations until the whole graph is known

Use two different computational graph representations (scalar / matrix)

Avoids that the extra generality comes at the expense of memory use and speed
Highly efficient, scalar graph ∼10 ns per elementary operation (< 1 ns with code generation)
Less efficient matrix graph, called orders of magnitude more seldom

User responsible for choosing which one to use

Two graph representations

Scalar-valued nodes Sparse, matrix-valued nodes
design objective ”maximum speed” ”maximum generality”

type of operations built-in built-in or user-defined
number of inputs one or two arbitrary
number of output one arbitrary
branching/jumps no yes

parallelization no yes

CasADi — Joel Andersson Moritz Diehl

CasADi

How to get it to work efficiently?

Matrix sparsity always fixed, sparsity shared between nodes

Delay generation of Jacobians of function evaluations until the whole graph is known

Use two different computational graph representations (scalar / matrix)

Avoids that the extra generality comes at the expense of memory use and speed
Highly efficient, scalar graph ∼10 ns per elementary operation (< 1 ns with code generation)
Less efficient matrix graph, called orders of magnitude more seldom
User responsible for choosing which one to use

Two graph representations

Scalar-valued nodes Sparse, matrix-valued nodes
design objective ”maximum speed” ”maximum generality”

type of operations built-in built-in or user-defined
number of inputs one or two arbitrary
number of output one arbitrary
branching/jumps no yes

parallelization no yes

CasADi — Joel Andersson Moritz Diehl

CasADi

How to get it to work efficiently?

Matrix sparsity always fixed, sparsity shared between nodes

Delay generation of Jacobians of function evaluations until the whole graph is known

Use two different computational graph representations (scalar / matrix)

Avoids that the extra generality comes at the expense of memory use and speed
Highly efficient, scalar graph ∼10 ns per elementary operation (< 1 ns with code generation)
Less efficient matrix graph, called orders of magnitude more seldom
User responsible for choosing which one to use

Two graph representations

Scalar-valued nodes Sparse, matrix-valued nodes
design objective ”maximum speed” ”maximum generality”

type of operations built-in built-in or user-defined
number of inputs one or two arbitrary
number of output one arbitrary
branching/jumps no yes

parallelization no yes

CasADi — Joel Andersson Moritz Diehl

CasADi

“Smart interfaces“ to numerical codes

NLP solvers: IPOPT, KNITRO, LiftOpt

* Automatic generation of exact, sparse Hessians and Jacobians, “lifting”

Integrators: CVODES, IDAS

* Automatic formulation of forward and adjoint sensitivitity equations
* Generation of Jacobian information, sparse direct linear solvers (CSparse, SuperLU)

Other tools: ACADO Toolkit, KINSOL, CPLEX

CasADi — Joel Andersson Moritz Diehl

CasADi

“Smart interfaces“ to numerical codes

NLP solvers: IPOPT, KNITRO, LiftOpt

* Automatic generation of exact, sparse Hessians and Jacobians, “lifting”

Integrators: CVODES, IDAS

* Automatic formulation of forward and adjoint sensitivitity equations
* Generation of Jacobian information, sparse direct linear solvers (CSparse, SuperLU)

Other tools: ACADO Toolkit, KINSOL, CPLEX

CasADi — Joel Andersson Moritz Diehl

CasADi

“Smart interfaces“ to numerical codes

NLP solvers: IPOPT, KNITRO, LiftOpt

* Automatic generation of exact, sparse Hessians and Jacobians, “lifting”

Integrators: CVODES, IDAS

* Automatic formulation of forward and adjoint sensitivitity equations
* Generation of Jacobian information, sparse direct linear solvers (CSparse, SuperLU)

Other tools: ACADO Toolkit, KINSOL, CPLEX

CasADi — Joel Andersson Moritz Diehl

CasADi

“Smart interfaces“ to numerical codes

NLP solvers: IPOPT, KNITRO, LiftOpt

* Automatic generation of exact, sparse Hessians and Jacobians, “lifting”

Integrators: CVODES, IDAS

* Automatic formulation of forward and adjoint sensitivitity equations

* Generation of Jacobian information, sparse direct linear solvers (CSparse, SuperLU)

Other tools: ACADO Toolkit, KINSOL, CPLEX

CasADi — Joel Andersson Moritz Diehl

CasADi

“Smart interfaces“ to numerical codes

NLP solvers: IPOPT, KNITRO, LiftOpt

* Automatic generation of exact, sparse Hessians and Jacobians, “lifting”

Integrators: CVODES, IDAS

* Automatic formulation of forward and adjoint sensitivitity equations
* Generation of Jacobian information, sparse direct linear solvers (CSparse, SuperLU)

Other tools: ACADO Toolkit, KINSOL, CPLEX

CasADi — Joel Andersson Moritz Diehl

CasADi

“Smart interfaces“ to numerical codes

NLP solvers: IPOPT, KNITRO, LiftOpt

* Automatic generation of exact, sparse Hessians and Jacobians, “lifting”

Integrators: CVODES, IDAS

* Automatic formulation of forward and adjoint sensitivitity equations
* Generation of Jacobian information, sparse direct linear solvers (CSparse, SuperLU)

Other tools: ACADO Toolkit, KINSOL, CPLEX

CasADi — Joel Andersson Moritz Diehl

CasADi

Other features

Just-in-time compilation

Generate C-code from CasADi computational graphs
Compile to a dynamic library
Dynamic loading

Import of DAE-systems formulated in Modelica

Modelica – DAE modelling language

Symbolic reformulation of DAE:s

Sorting/scaling of variables and equations
Elimination of some or all algebraic states symbolically

CasADi — Joel Andersson Moritz Diehl

CasADi

Other features

Just-in-time compilation

Generate C-code from CasADi computational graphs
Compile to a dynamic library
Dynamic loading

Import of DAE-systems formulated in Modelica

Modelica – DAE modelling language

Symbolic reformulation of DAE:s

Sorting/scaling of variables and equations
Elimination of some or all algebraic states symbolically

CasADi — Joel Andersson Moritz Diehl

CasADi

Other features

Just-in-time compilation

Generate C-code from CasADi computational graphs
Compile to a dynamic library
Dynamic loading

Import of DAE-systems formulated in Modelica

Modelica – DAE modelling language

Symbolic reformulation of DAE:s

Sorting/scaling of variables and equations
Elimination of some or all algebraic states symbolically

CasADi — Joel Andersson Moritz Diehl

Outline

1 Background

2 CasADi

3 Optimal control using CasADi

Optimal control using CasADi

Direct collocation

NLP approach: User writes NLP objective and constraint functions

Matrix algebra keeps size of constructed graphs small

Automatic calculation of Jacobian and Hessian information

Solve with an interfaced NLP solver (IPOPT, KNITRO)

Shooting methods

Everything above is valid

Add ODE/DAE integrator calls to the computational graph

Automatic formulation of ODE/DAE sensitivity equations

Automatic ODE/DAE Jacobian information, preconditioning

CasADi — Joel Andersson Moritz Diehl

Optimal control using CasADi

Direct collocation

NLP approach: User writes NLP objective and constraint functions

Matrix algebra keeps size of constructed graphs small

Automatic calculation of Jacobian and Hessian information

Solve with an interfaced NLP solver (IPOPT, KNITRO)

Shooting methods

Everything above is valid

Add ODE/DAE integrator calls to the computational graph

Automatic formulation of ODE/DAE sensitivity equations

Automatic ODE/DAE Jacobian information, preconditioning

CasADi — Joel Andersson Moritz Diehl

Optimal control using CasADi

Direct collocation

NLP approach: User writes NLP objective and constraint functions

Matrix algebra keeps size of constructed graphs small

Automatic calculation of Jacobian and Hessian information

Solve with an interfaced NLP solver (IPOPT, KNITRO)

Shooting methods

Everything above is valid

Add ODE/DAE integrator calls to the computational graph

Automatic formulation of ODE/DAE sensitivity equations

Automatic ODE/DAE Jacobian information, preconditioning

CasADi — Joel Andersson Moritz Diehl

Optimal control using CasADi

Direct collocation

NLP approach: User writes NLP objective and constraint functions

Matrix algebra keeps size of constructed graphs small

Automatic calculation of Jacobian and Hessian information

Solve with an interfaced NLP solver (IPOPT, KNITRO)

Shooting methods

Everything above is valid

Add ODE/DAE integrator calls to the computational graph

Automatic formulation of ODE/DAE sensitivity equations

Automatic ODE/DAE Jacobian information, preconditioning

CasADi — Joel Andersson Moritz Diehl

Optimal control using CasADi

Direct collocation

NLP approach: User writes NLP objective and constraint functions

Matrix algebra keeps size of constructed graphs small

Automatic calculation of Jacobian and Hessian information

Solve with an interfaced NLP solver (IPOPT, KNITRO)

Shooting methods

Everything above is valid

Add ODE/DAE integrator calls to the computational graph

Automatic formulation of ODE/DAE sensitivity equations

Automatic ODE/DAE Jacobian information, preconditioning

CasADi — Joel Andersson Moritz Diehl

Optimal control using CasADi

Direct collocation

NLP approach: User writes NLP objective and constraint functions

Matrix algebra keeps size of constructed graphs small

Automatic calculation of Jacobian and Hessian information

Solve with an interfaced NLP solver (IPOPT, KNITRO)

Shooting methods

Everything above is valid

Add ODE/DAE integrator calls to the computational graph

Automatic formulation of ODE/DAE sensitivity equations

Automatic ODE/DAE Jacobian information, preconditioning

CasADi — Joel Andersson Moritz Diehl

Optimal control using CasADi

Direct collocation

NLP approach: User writes NLP objective and constraint functions

Matrix algebra keeps size of constructed graphs small

Automatic calculation of Jacobian and Hessian information

Solve with an interfaced NLP solver (IPOPT, KNITRO)

Shooting methods

Everything above is valid

Add ODE/DAE integrator calls to the computational graph

Automatic formulation of ODE/DAE sensitivity equations

Automatic ODE/DAE Jacobian information, preconditioning

CasADi — Joel Andersson Moritz Diehl

Optimal control using CasADi

Direct collocation

NLP approach: User writes NLP objective and constraint functions

Matrix algebra keeps size of constructed graphs small

Automatic calculation of Jacobian and Hessian information

Solve with an interfaced NLP solver (IPOPT, KNITRO)

Shooting methods

Everything above is valid

Add ODE/DAE integrator calls to the computational graph

Automatic formulation of ODE/DAE sensitivity equations

Automatic ODE/DAE Jacobian information, preconditioning

CasADi — Joel Andersson Moritz Diehl

Optimal control using CasADi

Code example: Complete single-shooting method in 30 lines of code!

from casadi import *

Declare variables (use simple, efficient DAG)

t = SX("t") # time

x=SX("x"); y=SX("y"); u=SX("u"); L=SX("cost")

ODE right hand side function

f = [(1 - y*y)*x - y + u, x, x*x + y*y + u*u]

rhs = SXFunction([[t],[x,y,L],[u]],[f])

Create an integrator (CVodes)

I = CVodesIntegrator(rhs)

I.setOption("abstol",1e-10) # abs. tolerance

I.setOption("reltol",1e-10) # rel. tolerance

I.setOption("steps_per_checkpoint",100)

I.init()

All controls (use complex, general DAG)

NU = 20; U = MX("U",NU)

The initial state (x=0, y=1, L=0)

X = MX([0,1,0])

Time horizon

T0 = MX(0); TF = MX(20.0/NU)

State derivative, algebraic state (not used)

XP = MX(); Z = MX()

Build up a graph of integrator calls

for k in range(NU):

[X,XP,Z] = I.call([T0,TF,X,U[k],XP,Z])

Objective function: L(T)

F = MXFunction([U],[X[2]])

Terminal constraints: 0<=[x(T);y(T)]<=0

G = MXFunction([U],[X[0:2]])

Create NLP solver

solver = IpoptSolver(F,G)

solver.setOption("tol",1e-5)

solver.setOption("hessian_approximation", \

"limited-memory")

solver.setOption("max_iter",1000)

solver.init()

Set bounds and initial guess

solver.setInput(NU*[-0.75], NLP_LBX)

solver.setInput(NU*[1.0],NLP_UBX)

solver.setInput(NU*[0.0],NLP_X_INIT)

solver.setInput([0,0],NLP_LBG)

solver.setInput([0,0],NLP_UBG)

Solve the problem

solver.solve()

CasADi — Joel Andersson Moritz Diehl

Summary

Summary

CasADi

Open-source project, www.casadi.org

Computer algebra system with AD using two graph representations
Use from C++, Python or (soon) Octave
“Smart interfaces“ to popular numerical codes

Dynamic optimization using CasADi

“NLP approach”, extended to shooting methods
Automatic generation of derivative/sensitivity information
Automatic generation of sparse NLP Jacobians
A number of codes already written (multiple shooting/collocation,..)

CasADi — Joel Andersson Moritz Diehl

Summary

Summary

CasADi

Open-source project, www.casadi.org
Computer algebra system with AD using two graph representations

Use from C++, Python or (soon) Octave
“Smart interfaces“ to popular numerical codes

Dynamic optimization using CasADi

“NLP approach”, extended to shooting methods
Automatic generation of derivative/sensitivity information
Automatic generation of sparse NLP Jacobians
A number of codes already written (multiple shooting/collocation,..)

CasADi — Joel Andersson Moritz Diehl

Summary

Summary

CasADi

Open-source project, www.casadi.org
Computer algebra system with AD using two graph representations
Use from C++, Python or (soon) Octave

“Smart interfaces“ to popular numerical codes

Dynamic optimization using CasADi

“NLP approach”, extended to shooting methods
Automatic generation of derivative/sensitivity information
Automatic generation of sparse NLP Jacobians
A number of codes already written (multiple shooting/collocation,..)

CasADi — Joel Andersson Moritz Diehl

Summary

Summary

CasADi

Open-source project, www.casadi.org
Computer algebra system with AD using two graph representations
Use from C++, Python or (soon) Octave
“Smart interfaces“ to popular numerical codes

Dynamic optimization using CasADi

“NLP approach”, extended to shooting methods
Automatic generation of derivative/sensitivity information
Automatic generation of sparse NLP Jacobians
A number of codes already written (multiple shooting/collocation,..)

CasADi — Joel Andersson Moritz Diehl

Summary

Summary

CasADi

Open-source project, www.casadi.org
Computer algebra system with AD using two graph representations
Use from C++, Python or (soon) Octave
“Smart interfaces“ to popular numerical codes

Dynamic optimization using CasADi

“NLP approach”, extended to shooting methods

Automatic generation of derivative/sensitivity information
Automatic generation of sparse NLP Jacobians
A number of codes already written (multiple shooting/collocation,..)

CasADi — Joel Andersson Moritz Diehl

Summary

Summary

CasADi

Open-source project, www.casadi.org
Computer algebra system with AD using two graph representations
Use from C++, Python or (soon) Octave
“Smart interfaces“ to popular numerical codes

Dynamic optimization using CasADi

“NLP approach”, extended to shooting methods
Automatic generation of derivative/sensitivity information

Automatic generation of sparse NLP Jacobians
A number of codes already written (multiple shooting/collocation,..)

CasADi — Joel Andersson Moritz Diehl

Summary

Summary

CasADi

Open-source project, www.casadi.org
Computer algebra system with AD using two graph representations
Use from C++, Python or (soon) Octave
“Smart interfaces“ to popular numerical codes

Dynamic optimization using CasADi

“NLP approach”, extended to shooting methods
Automatic generation of derivative/sensitivity information
Automatic generation of sparse NLP Jacobians

A number of codes already written (multiple shooting/collocation,..)

CasADi — Joel Andersson Moritz Diehl

Summary

Summary

CasADi

Open-source project, www.casadi.org
Computer algebra system with AD using two graph representations
Use from C++, Python or (soon) Octave
“Smart interfaces“ to popular numerical codes

Dynamic optimization using CasADi

“NLP approach”, extended to shooting methods
Automatic generation of derivative/sensitivity information
Automatic generation of sparse NLP Jacobians
A number of codes already written (multiple shooting/collocation,..)

CasADi — Joel Andersson Moritz Diehl

Summary

Outlook

More efficient Jacobians using graph coloring

Bidirectional (combination of AD forward and adjoint)

Partial colorings (calculate only parts of the Jacobian)
Substitution-based methods
Symmetry exploitation (for Hessians)

Push the limits on the speed and maximum problem sizes

Large-scale DAEs from Modelica
PDE constrained optimization?

New optimization algorithms

Applications

Thank you for listening!

CasADi — Joel Andersson Moritz Diehl

Summary

Outlook

More efficient Jacobians using graph coloring

Bidirectional (combination of AD forward and adjoint)
Partial colorings (calculate only parts of the Jacobian)

Substitution-based methods
Symmetry exploitation (for Hessians)

Push the limits on the speed and maximum problem sizes

Large-scale DAEs from Modelica
PDE constrained optimization?

New optimization algorithms

Applications

Thank you for listening!

CasADi — Joel Andersson Moritz Diehl

Summary

Outlook

More efficient Jacobians using graph coloring

Bidirectional (combination of AD forward and adjoint)
Partial colorings (calculate only parts of the Jacobian)
Substitution-based methods

Symmetry exploitation (for Hessians)

Push the limits on the speed and maximum problem sizes

Large-scale DAEs from Modelica
PDE constrained optimization?

New optimization algorithms

Applications

Thank you for listening!

CasADi — Joel Andersson Moritz Diehl

Summary

Outlook

More efficient Jacobians using graph coloring

Bidirectional (combination of AD forward and adjoint)
Partial colorings (calculate only parts of the Jacobian)
Substitution-based methods
Symmetry exploitation (for Hessians)

Push the limits on the speed and maximum problem sizes

Large-scale DAEs from Modelica
PDE constrained optimization?

New optimization algorithms

Applications

Thank you for listening!

CasADi — Joel Andersson Moritz Diehl

Summary

Outlook

More efficient Jacobians using graph coloring

Bidirectional (combination of AD forward and adjoint)
Partial colorings (calculate only parts of the Jacobian)
Substitution-based methods
Symmetry exploitation (for Hessians)

Push the limits on the speed and maximum problem sizes

Large-scale DAEs from Modelica
PDE constrained optimization?

New optimization algorithms

Applications

Thank you for listening!

CasADi — Joel Andersson Moritz Diehl

Summary

Outlook

More efficient Jacobians using graph coloring

Bidirectional (combination of AD forward and adjoint)
Partial colorings (calculate only parts of the Jacobian)
Substitution-based methods
Symmetry exploitation (for Hessians)

Push the limits on the speed and maximum problem sizes

Large-scale DAEs from Modelica
PDE constrained optimization?

New optimization algorithms

Applications

Thank you for listening!

CasADi — Joel Andersson Moritz Diehl

Summary

Outlook

More efficient Jacobians using graph coloring

Bidirectional (combination of AD forward and adjoint)
Partial colorings (calculate only parts of the Jacobian)
Substitution-based methods
Symmetry exploitation (for Hessians)

Push the limits on the speed and maximum problem sizes

Large-scale DAEs from Modelica
PDE constrained optimization?

New optimization algorithms

Applications

Thank you for listening!

CasADi — Joel Andersson Moritz Diehl

Summary

Outlook

More efficient Jacobians using graph coloring

Bidirectional (combination of AD forward and adjoint)
Partial colorings (calculate only parts of the Jacobian)
Substitution-based methods
Symmetry exploitation (for Hessians)

Push the limits on the speed and maximum problem sizes

Large-scale DAEs from Modelica
PDE constrained optimization?

New optimization algorithms

Applications

Thank you for listening!

CasADi — Joel Andersson Moritz Diehl

	Motivation
	Background
	CasADi
	Optimal control using CasADi
	Summary

