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Kalman Filter Implementation With
Improved Numerical Properties

Mohinder S. Grewal, Senior Member, IEEE, and James Kain

Abstract—This paper presents a new form of Kalman filter-the
sigmaRho filter-useful for operational implementation in ap-
plications where stability and throughput requirements stress
traditional implementations. The new mechanization has the
benefits of square root filters in both promoting stability and
reducing dynamic range of propagated terms. State standard
deviations and correlation coefficients are propagated rather than
covariance square root elements and these physically meaningful
statistics are used to adapt the filtering for further ensuring reli-
able performance. Finally, all propagated variables can be scaled
to predictable dynamic range so that fixed point procedures can
be implemented for embedded applications. A sample problem
from communications signal processing is presented that includes
nonlinear state dynamics, extreme time-variation, and extreme
range of system eigenvalues. The sigmaRho implementation is
successfully applied at sample rates approaching 100 MHz to
decode binary digital data from a 1.5-GHz carrier.

Index Terms—Extended Kalman filter, sigmaRho Kalman filter,
square root Kalman filter.

I. INTRODUCTION

T HE Kalman filter’s [1] generalized model-based approach
to optimal estimation would appear to be ideal for acceler-

ating the transition from a conceptual definition of an estimation
problem to its final algorithm implementation—bypassing the
selection and testing of alternative suboptimal designs. This has
not been the case for engineering disciplines such as communi-
cations and speech processing. We offer two reasons. Kalman
filter robustness issues remain even after over 30 years of re-
fining the details of implementation. Also, processing speed for
Kalman filter solutions cannot approach the many-MHz update
cycle times demanded for modern signal processing algorithms.
In this paper, we present a new mechanization of the Kalman
filter that mitigates these handicaps.

Numerical stability issues of the Kalman filter were well
known from the early days of Kalman filter applications-the
very optimality of the estimation process suggests sensitivity
to various errors. Simon [2] summarizes widely implemented
solutions for these stability issues as: “ 1) increase arithmetic
precision; 2) some form of square root filtering; 3) symmetrize
the covariance matrix at each step; 4) initialize the covariance
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appropriately to avoid large changes; 5) use a fading memory
filter; and 6) use fictitious process noise”. All recent Kalman
filter instructional texts, such as [2]–[4], as well as early in-
structional texts [5], offer significant discussion of these issues
but stop short of suggesting universal solutions. For example,
multiple examples of preventing filter divergence are provided
in [3] showing how injection of fictitious process noise prevents
Kalman gains from approaching zero and thereby stabilizing
the otherwise divergent solution—but strategies for selecting
the fictitious noise characteristics are not discussed. Similarly,
[4] provides extensive material covering various possible
numerical issues as well as a suite of candidate solutions-but
stops short of offering a generally applicable implementation
approach. This paper proposes such a generalized approach
where non-problem-specific thresholds are used to control the
overall sensitivity of the solution.

Improvement of Kalman filter execution speed has received
less scrutiny although texts such as [4] provide detailed descrip-
tions of good Kalman filter programming methods and their
computational burden in terms of floating point operations. The
scaling methods proposed here used to enhance robustness have
the natural benefit for allowing mechanization into fixed point
arithmetics—thereby offering methods for transitioning a de-
sign to high-speed digital signal processors. The thrust of this
paper is to offer paths for more generalized robustness as well as
accelerated throughput gained from fixed point arithmetics. To
demonstrate our new approach, we address a communications
problem where 74-MHz sampling is used to decode binary data
from a 1.5-GHz carrier.

The covariance matrix must be symmetric and positive-defi-
nite; otherwise it cannot represent valid statistics for state vector
components. It was recognized during the early years of Kalman
filter applications that factored-form Kalman filters (square root
filters) are the preferred implementation for applications de-
manding high operational reliability [6]–[9]. Factored terms of
the covariance matrix are propagated forward between measure-
ments and updated at each measurement. The covariance ma-
trix, reformed by multiplying its factors together, is ensured to
be positive-semi-definite. Numerical comparison of several fac-
tored forms of the Kalman filter are described in [10]; deriva-
tions and software implementation detail for various factored-
form filter variations are provided in [4].

One widely used factored form Kalman filter is the
filter. The covariance matrix is defined in terms of the matrix
factors and as

(1)

The Kalman filter form, and others described in [4],
has worked well and specialized digital implementations have
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been developed so that processing times for factored covariance
filters are nearly the same as for traditional covariance propaga-
tion methods [4].

The individual terms of the covariance matrix can be inter-
preted as

(2)

where is the entry of the covariance matrix, is the
standard deviation of the estimate of the state component,
and is the correlation coefficient between and state
component. Both and contain important physical infor-
mation defining the progress of Kalman filter estimation—both
in terms of the current success of estimation as well as the likeli-
hood of future numerical issues. However, the individual terms
within matrices propagated for factored form filters have no
useful physical interpretation unless the covariance matrix, and
in turn the statistical parameters in (2), are computed.

The Kalman filter is optimal under assumptions that the
model is correct and thus can exhibit intolerance to model
error. Also, initial (pre-estimation) state values may be com-
pletely unknown, leading to assigning crude estimates for
initial states with associated large initial standard deviations.
Moreover, initial state correlations are often unknown and
assumed to be zero. Such expedient initial conditions often lead
to extreme initial transient behavior and early filter failure.

A class of adaptive Kalman filter methods has been used
to address impacts of modeling uncertainty [11]–[14]. Filter
real-time performance is evaluated using residual tests with
the process noise and/or measurement noise increased if the
residual variance is observed to be outside the expected range.
However, because the closed adaptation loop must be slower
than the estimator response time, the filter may have become
unrecoverable after the point the divergence is noticed. A
method that can anticipate future anomalous performance is
preferable.

One such approach is to recognize that instability often results
from extracting too much information too quickly from the es-
timation process. A slower rate of convergence and/or limiting
the lower threshold of the estimate standard deviation would be
preferable to potential divergence. One method to achieve this
result is to compute the Kalman filter updated covariance with
the physics-based model parameters and test the resulting co-
variance matrix. If too much estimate improvement is predicted,
then either the measurement noise or the process noise levels can
be increased and the covariance update recomputed before pro-
cessing the data at this step. Such an iterative procedure leads to
a limited information filter where the maximum standard devia-
tion improvement (per measurement) for any state is limited. In
a similar way, we could limit the lower extent of a state standard
deviation to an absolute value or to a percentage of its original
uncertainty level. The difficulties of such adaptive approaches
are primarily computational. A filter form could readily be de-
vised to cycle through the covariance update computations, it-
eratively adjusting noise models to limit the information extrac-
tion.

Fading memory filters [2], [15], [16] are also offered as
generalized solutions for mitigating divergence tendencies.
These filters de-weight less recent data, forcing the filter to
always accept new information, thus preventing Kalman gains

from approaching zero. However, as with adding fictitious
process noise, this stabilizing solution must use trial-and-error
methods to tune the manner in which prior measurement data
is de-weighted.

The computer word length issues that plagued early Kalman
filter implementations have been somewhat mitigated by the
power of today’s computers. However, Kalman filter solutions
rarely receive consideration for extreme speed embedded ap-
plications such as communications, speech and video data pro-
cessing where fixed point solutions are preferred.

This paper derives an alternative Kalman filter mechaniza-
tion with direct propagation of the standard deviation (sigma)
and correlation (Rho) matrix that we call the sigmaRho filter.
This new filter form offers a more generalized solution to the
numerical issues of the Kalman filter described above. The new
filter offers an added benefit in that its internal numerical values
are naturally scaled in a manner so that a fixed point implemen-
tation is straightforward. Section II derives the sigmaRho filter
for nonlinear continuous and discrete systems, the measurement
update step, and the adaptation strategy. Section III presents an
example of the fixed point sigmaRho filter applied to a commu-
nications problem, and Section IV gives the conclusions.

II. A NEW KALMAN FILTER MECHANIZATION FOR

CONTINUOUS NON-LINEAR SYSTEMS

A. The System Dynamics

For a Kalman filter, the system state differential equations are
given by

(3)

where

state variable vector of length ;

state dynamics, often linearized with
;

system white noise vector inputs with
.

The scalar measurement process is described by

(4)

where

scalar measurement value;

measurement model, often linearized by
;

measurement noise with
.

There is no loss of generality by treating only scalar mea-
surements. The scalar measurement model is equivalent to
an -vector measurement model under conditions where the
measurements are uncorrelated (diagonal matrix ). For this
case, each of the measurements is processed sequentially at a
single measurement epoch. Moreover, correlated measurements
( contains off-diagonal elements) can be decomposed into
an equivalent uncorrelated representation with a net benefit in
execution time over direct inclusion of a non-diagonal matrix

through matrix inversion [4].
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B. The SigmaRho Filter Covariance and State Propagation
With Continuous Dynamics

The estimation problem description is frequently based on
a continuous linear or nonlinear differential equation with the
general form of (3). The continuous dynamic state estimate and
its covariance matrix must be transitioned from a measurement
epoch to the next measurement epoch. This transition process
can be accomplished by a simple trapezoidal integration of the
continuous filter dynamics when measurement sample times are
fast with respect to system dynamics. For linear or linearizable
systems, matrix exponential solutions are often used to trans-
form the continuous system to a discrete form using the tran-
sition matrix. For system models that do not fall into either of
these categories, direct numerical integration of nonlinear con-
tinuous differential equations can provide an effective solution.
The discrete form is discussed in Section II-C.

The state propagation step between measurements for the
Kalman filter is governed by

(5)

We consider a scaling of this state vector as follows:

(6)

where is the component of the state vector and is the
instantaneous (time varying) standard deviation of the state
vector component. Thus, we can write

(7)

Equation (7) provides the dynamics for the transformed state
vector . Covariance propagation for a continuous linear or lin-
earized dynamic system is governed by

(8)

Taking the time derivative of (2)

(9)

We first investigate the terms of this equation where and
are identical. Noting that and , then, from (9)

(10)

From (8) expressed in scalar form

(11)

and, substituting from (10) and setting

(12)

Equation (12) reduces to the simple form

(13)

We introduce an auxiliary variable that aids the computational
process. The matrix is often sparse, particularly when state

vectors are large. Thus the summation in (13) might require con-
siderable multiples by zero or one; otherwise some sparse ma-
trix logic must be added to bypass these multiplies. However,
the general expression , where is an arbitrary vector quan-
tity, is easily computed using a problem-specific procedure with
a vector quantity result. Numerical methods that capitalize on
this form of sparse matrix treatment are referred to as Krylov
techniques [17]. We introduce the following equation as an aid
to avoid specialized sparse matrix logic

(14)

Thus (13), scaled with to remove physical units, becomes

(15)

We return to the more general case where . Using (9)
and (11) gives the following result:

(16)

Solving for gives

(17)

The standard deviation in the propagation step (15) is the only
statistical term that is not scaled. The standard deviation has the
same physical units as the original states and may have large dy-
namic range depending on the engineering model. Dividing by
a pre-defined maximum expected value (unique for each state)
can normalize the standard deviation derivatives. It is often the
case that the initial state standard deviation is set to its max-
imum expected value over time with the subsequent standard
deviations improved by the estimation process.

Table I shows the final propagation equations when all
statistic variables are scaled to predictable ranges. The
subscripted terms are the state-specific maximum standard
deviation values and the primed standard deviation terms are
the normalized terms (expected to be between 0 and 1). The
attention to normalization not only promotes numerical stability
but, as we shall demonstrate later, enables a straightforward
transition to a fixed point implementation.

C. The SigmaRho Filter Covariance and State Propagation
With Discrete Dynamics

Often it is desirable to recast a continuous dynamic system
into a discrete form for state propagation from epoch to epoch

using the transition matrix and discrete noise
using

(18)

Covariance propagation is performed by

(19)

where .
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TABLE I
SIGMARHO PROPAGATION FOR CONTINUOUS SYSTEM DYNAMICS

For the discrete sigmaRho form, we begin by normalizing the
state vector at the beginning of each propagate step

(20)

where is the standard deviation value for the state com-
ponent after the last measurement update.

We will define

(21)

Note that

(22)

We propagate the covariance matrix of the normalized system
from the last measurement to the next measurement, noticing
from (22) that the covariance matrix of the normalized system
is just the correlation matrix after the prior measurement

(23)

where . The “ ” superscript represents values im-
mediately after the last measurement and the “ ” superscript
indicates the value at the next measurement but before the mea-
surement update processing. From (22) and (23), it can be seen
that

(24)

and

(25)

TABLE II
SIGMARHO PROPAGATION FOR DISCRETE SYSTEM DYNAMICS

We also must update the state between measurements. The
update to account for the transformed state is performed by

(26)

The state is normalized by its standard deviation and the cor-
relation coefficients are naturally normalized to between .
However, as for the continuous case, the standard deviation dy-
namic range may vary significantly among states for a specific
problem. As before, we use the normalization

(27)

where is the maximum expected value of the state
standard deviation. The normalized state dynamics use transfor-
mations

(28)

(29)

Note that (24), (25) and (26) that propagate the standard de-
viation, correlation matrix, and state, respectively, all use only
ratios of the standard deviation change between measurements.
Therefore, these computations do not change as a result of the
time-invariant scaling of (27).

The states are normalized by their individual standard devi-
ations. This strategy deems the various states unitless, poten-
tially reducing dynamic range; however, there may remain a
large state dynamic range for states that have a large physical
variation with small estimate standard deviation. Further state
estimate scaling by a constant, , applied to all states, can be
useful and requires no modification of the propagation equa-
tions. The final normalized state estimate is

(30)

The final propagation equations for the discrete dynamics are
provided in Table II.
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D. The SigmaRho Filter State and Covariance Update at a
Measurement

The covariance update process for traditional Kalman filters
uses the equations

(31)

(32)

where is the Kalman gain used in the following manner

(33)

with variables and represented as scalars without loss of
generality [4].

We begin to decompose (31) and (32) by introducing the sub-
script notation and the sigma and rho terms as before. Thus, we
can form the expression

(34)

As with the auxiliary parameters used in the covariance prop-
agation, sparse matrix procedures can be avoided by using the
terms

(35)

Thus, (34) becomes

(36)

Continuing this theme to develop the terms from (31)

(37)

and finally

(38)

We introduce an additional variable

(39)

that is useful for normalization of the residual term. In this ex-
pression, is the standard deviation of the residual process.
An excellent measure of performance of a Kalman filter is the
whiteness of the residual time sequence and the containment of
the residuals within the one-sigma residual bound defined by .
The Kalman gain is formed by

(40)

Now we must perform the covariance update computation.
Using subscripts, (32) becomes

(41)

Substituting the sigma and rho notation, (41) becomes

(42)

Using the auxiliary notation gives

(43)

and inserting the definition of the Kalman gain

(44)

Equation (44) is a general expression for an arbitrary entry of
the covariance matrix. Restricting the computation to the diag-
onal entries gives

(45)

Now, solving for the standard deviation improvement ratio
across a measurement

(46)

At this point, we return to the general expression, (44).
Solving this expression for the new correlation coefficient after
the measurement gives

(47)

The non-normalized state update at the measurement sample
period is given by

(48)

Note the impact on (48) of using state normalization factors.
Divide both sides by the standard deviation before measurement

and multiply both sides by . We must also renormalize the
state to the new standard deviation, in preparation for the
next propagation step so that, finally

(49)

Equation (49) summarizes the sigmaRho Kalman filter state
update. However, we have used a normalized standard deviation
during the continuous and discrete propagate steps. Fortunately,
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TABLE III
DISCRETE SIGMARHO FILTER MEASUREMENT UPDATE

the update processing mathematics requires ratios of the stan-
dard deviations in all cases except for the computation of the
residuals. We can define a normalized measurement matrix as

(50)

With this definition we can express the final measurement up-
date process as in Table III. The primed standard deviation terms
correspond to the normalized standard deviations that will have
predictable dynamic range for use in a fixed point implementa-
tion.

E. SigmaRho Filter Adaptation

One of the benefits of the SigmaRho filter is the ready avail-
ability of the standard deviation and correlation coefficient sta-
tistics for use in monitoring the filter performance. However,
monitoring the performance is not sufficient to prevent numer-
ical ill-conditioning. We must both monitor and control these
statistics before they attain meaningless values (i.e., negative
standard deviations or correlations outside ). There are two
user-defined noises that are available for controlling the stan-
dard deviations and correlation coefficients: measurement noise
and process noise. The process noise is typically more useful
for adaptation because: 1) process noise is often more uncer-
tain than measurement noise; 2) added process noise elevates the
steady state performance (often desirable to the designer); and
3) process noise can be used to more surgically control issues
that are posed by single states within the model without inter-
fering with other states that may be well-behaved. Alternatively,
measurement noise adaptation is particularly useful during the
initial startup stage of the Kalman filter. We will first discuss our
adaptation using measurement noise and then describe adapta-
tion using process noise.

Initial state estimates, before any measurement processing,
are sometimes assumed to be completely unknown, suggesting
an infinite standard deviation. Computationally, this policy is
implemented by setting the initial standard deviations to a large
number. Also, state correlations are often assumed to be zero.
The initial transient numerical issues almost always result from
the update step. A key observation can be made by inspecting the

term beneath the radical in (46): The scalar quantity can take
any value, provided that the following constraint is maintained:

(51)

where .
Using the above definition for in (46), we see that the stan-

dard deviation update ratio is given by

(52)

The term on the left must be between 0 and 1 with 1 being
no improvement from the measurement and 0 being a non-real-
izable improvement to zero standard deviation. As the term on
the left approaches 0, the filter tends to become unstable. Thus
we can define

(53)

where is the desired lower limit value for .
Setting to a higher value (closer to 1), results in a more
stable filter with less reduction in the post-update standard de-
viations.

We can compute the effective measurement variance for a
given value of as

(54)

Thus selecting a value for can be considered as a mecha-
nism for adapting the scalar measurement noise . However, it
is important to note that being above 1.0 does not ensure a
positive value for . However, need not be computed using
(54). In fact, it is not numerically desirable to compute be-
cause the squaring of the terms on the right of (54) spreads the
dynamic range of computed variables. From Table III, we see
that

(55)

For the important initial transient period, the first term on the
right of (55) is typically much larger than the measurement vari-
ance and is reduced through the course of the initial estimation
as the values are reduced. We have observed benefits from
the following conservative approximation:

(56)

so that .
The assumption of (56) is exact if H has only a single non-

zero term. With the approximation (56), we can monitor and
trigger the measurement noise adaptation only when

The adaptation using measurement noise described in this
section has the following benefits: easily implemented in
software, will not promote covariance matrix indefiniteness, re-
duces dynamic range of computed variables, and is well suited
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for treating frequently encountered initial transient instability
issues.

Next consider the adaptation using the process noise. The key
drawback of adaptation using measurement noise is that this
penalizes all states where only a single state may be problematic.
Insertion of process noise can be used to better target individual
state estimation issues within a complex large-scale problem.
Consider the following covariance matrix modification

(57)

where is a diagonal matrix with each diagonal term having
the effect of adding process noise to an individual state. We see
that

(58)

and

(59)

Now let

(60)

so that

(61)

(62)

Equations (61) and (62) provide a simple but statistically-cor-
rect way to compute to adapt the process noise to prevent indi-
vidual state estimate standard deviations from getting too small
or individual correlation coefficients getting too close to .
In this manner, we can anticipate the onset of stressful numer-
ical situations and take action to prevent them from occurring.
Equations (61) and (62) must be performed together to ensure
positive-definiteness of the covariance matrix.

III. APPLICATION TO SIGNAL PROCESSING

We demonstrate here how the sigmaRho filter can be applied
to a communication problem: estimation of information mod-
ulated onto a noisy carrier waveform. We use a linear second-
order system to represent a highly coherent sinusoidal signal
with the degree of coherence (ability to predict forward in time)
adjusted with a design parameter. The represented carrier signal
has uncertain amplitude as well as an uncertain component to
its frequency. The carrier is modulated with digital informa-
tion using Binary Phase Shift Key (BPSK) encoding resulting
in phase shifts of 180 at the data encoding rate. The carrier
waveform is directly sampled at a rate well below the carrier
frequency but faster than the encoding rate.

A sinusoidal signal with frequency can be represented as
a second order system with low damping . An oscillator can
be represented by the following differential equation:

(63)

or, using state-space notation

(64)

where is the sinusoidal signal output. The covariance matrix
is given by

(65)

with steady state solution given by

(66)

Using this stochastic model with a low value for damping
generates a near-constant frequency signal so that the signal
spectrum peaks near the indicated frequency. If we set the model
output variance to unity ( is equal to one), then we can create
a representation of a single-frequency tone with RMS amplitude
of one. The degree of prescribed stochastic variability (ampli-
tude and phase) for this model can be used to represent real-
world communication signal uncertainties.

The transition matrix for this system is given by [4]

(67)

(68)

The Power Spectral Density (PSD) [4] is given by

(69)

The autocorrelation [4] of the near-sinusoidal response is

(70)

We see from Fig. 1 how the model can be adjusted to represent
any degree of single-frequency signal coherence. For example,
we see for damping of 0.0001 and , a signal value
100 cycles forward in time is correlated to the current signal
value with a correlation coefficient of 0.90.

The communications sample problem is formed from two
interconnected second-order systems as shown in Fig. 2. One
of the second order systems represents a highly coherent single
frequency carrier and the second second-order low pass system
represents an unknown frequency component of the carrier.
The digital sample rate of the carrier is chosen to be much
lower than the carrier frequency. Finally, the phase of the
carrier will be changed instantaneously to represent a BPSK
digital data encoding (Fig. 3). The objective is to estimate the
uncertain carrier frequency and, simultaneously, estimate the
phase transitions to recover the encoded data. The nonlinear
state dynamics are given by (71), shown at the bottom of the
next page, where low pass frequency uncertainty
model with output , and sinusoidal carrier
signal model with output . The state represents the car-
rier-plus-information signal to be measured.
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Fig. 1. Autocorrelation of near-sinusoidal carrier model.

Fig. 2. Uncertain carrier model formed from two second order linear processes.

The continuous nonlinear system propagation between mea-
surements is given by

(72)

The dynamics matrix for covariance propagation between
measurements is given by (73), shown at the bottom of the
page.

Fig. 3. Binary phase shift key (BPSK) data encoding represented as two model
classes.

Note the coupling between the mean state and covariance
propagation as represented by the state-dependent system ma-
trix. The term in the third row, second column of
is a particular issue because it is both large in magnitude and
rapidly time-varying between measurements.

The continuous system noise matrix is given by

(74)

where the diagonal terms result from the steady state solutions
for the two second order systems as given by (66). The measure-
ment model for the Kalman filter is

(75)

A closed form solution for the transition matrix, obviating the
need for solving the matrix exponential or use of numerical inte-
gration techniques, is the key to high-speed embedded Kalman
filter applications. For the communications problem, we can
write the general form of the 4 4 transition matrix as

(76)

The 2 2 sub-matrices and along the diagonal
will be defined from the transition matrix for second order sys-
tems (67) with appropriate damping and frequency, noting that

(71)

(73)
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the frequency error varies slowly with respect to the sample
time and is a small fraction of the carrier frequency. The top
right entry is zero because the carrier signal model does not in-
fluence the frequency error model. The lower left entry reflects
the effect of the frequency error on the future composite signal
and requires careful consideration. We can derive an approxi-
mation to by recognizing that

We can write

(77)

Our transition matrix for the carrier frequency second order
system is based upon assumption of a constant fre-
quency (and thus constant frequency error). We approximate

using a Taylor’s expansion with the value for at the
midpoint of the measurement interval. Thus

(78)

Taking the partial derivative from (72) we can write

(79)

Equations (77) and (78) allow computation of from par-
tial derivatives as indicated by (79). Note that is a strong
function of the rapidly varying carrier model states as expected
for the nonlinear system.

We also require a closed form solution for the discrete noise
matrix. Fortunately, the discrete noise matrix for a generalized
second order system has been solved in closed form in [4]. The
results are summarized as follows:

(80)

(81)

(82)

(83)

(84)

The generalized expression for , with suitable damping
and frequency, can be used for the two 2 2 sub-matrices of the
discrete noise for the software radio problem. We assume that

the contribution of the frequency error stochastic dynamics to
the carrier frequency model is negligible. Thus the off-diagonal
2 2 terms in the discrete noise matrix are assumed to be zero.

We simulate the data encoding by modifying the phase of the
perturbed carrier by 180 as illustrated in Fig. 3. The binary
data detection scheme will use maximum likelihood hypothesis
testing principles [18] based on the assumption of a two-class
structure. The normalized residual is tested at each measure-
ment epoch against a threshold (e.g., ). If the threshold is
violated, the sign of the estimated carrier signal states, along
with the correlation coefficients between the carrier states and
carrier error states, are changed to represent the alternative hy-
pothesized class with 180 phase change of the carrier. If this
change brings the residual within the threshold, a phase change
is assumed. That is, we detect the occurrence of an abnormal
residual, modify the signal state and covariance to represent the
alternative signal class for the assumed two-class model repre-
sentation, and then retest the normalized residual as verification.
This process is readily extended to other forms of PSK data en-
coding.

For this example, we have used a practically useful carrier
frequency of 1.5 GHz , sampled at 1/20.25 the car-
rier frequency (74 MHz) with measurement noise amplitude of
10% of the carrier, and with BPSK encoding at 1/200 the carrier
frequency (7.5 MHz). The perturbation carrier model assumes a
bandwidth of 0.1 Hz . The simulated carrier frequency
error is held constant at reflected as times an
initial assumed carrier uncertainty of 100 PPM. Filter adapta-
tion, using both measurement and process noise, as described
in Section E, was used to limit the state standard deviation im-
provement to 50% per sample, the standard deviation floor to
10% of original uncertainty, and correlation coefficients to be
within .

Fig. 4 shows results for 200 000 carrier cycles for a double
precision implementation of the sigmaRho filter. The top pane
in Fig. 4 shows the actual noisy measurement (red) and the
prediction of the measurement from the Kalman filter (blue).
The middle pane shows the Kalman filter normalized residuals.
The normalization factor is the Kalman filter prediction of the
residual one-sigma bound-so that 68% of the data should be con-
tained with for a well-performing Kalman filter. The bottom
pane shows the estimate of the carrier frequency error (red) and
its predicted one-sigma value (blue), both in terms of improve-
ment factor with respect to the initial uncertainty (100 PPM).
The inset on Fig. 4 shows the detail of the detected BPSK coded
data that was encoded as alternating zero-one. For this example,
all indicators suggest the sigmaRho filter and data decoding per-
forms as expected with 100% success of the data decoding.

Next, we will illustrate the fixed-point implementation of the
sigmaRho filter. The objective is that all internal filter variables
can be represented by a single fixed point number format using
the available sigmaRho scaling parameters. The total bits in the
fixed point format are where is the number of bits in the
integer part of the fixed point word and is the number of bits
in the fixed point fraction. By multiplying all variables by ,
the add and subtract operations are handled by standard integer
math operations. The goal is that so that all internal
variables are scaled to a dynamic range of . The fraction
bits are adjusted to maintain performance similar to the double
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Fig. 4. Simulation results for 1.5 GHz carrier with BPSK encoding at 7.5 MHz.

precision implementation. In order to limit the fixed point math
operations to add, subtract, multiply and divide, the square root
operations were approximated using the following forms:

(85)

(86)

These approximated values are larger than the exact value,
which results in a more conservative filter. That is, errors in
these approximations tend to result in a more positive-definite
covariance matrix.

Implementing the fixed point math operations requires two
special numerical procedures that are used to implement fixed
point multiply and divide:

1) Fixed point multiply:

(87)

2) Fixed point divide:

(88)

where , and are fixed point formatted variables
converted to an integer through multiplication by . Software
can be developed to move between double precision and fixed
point implementation by using a custom selectable procedure
for mechanizing all multiply and divide operations. A custom
floating point multiply and divide procedure is also used to track
the maximum and minimum of all internally computed variables
so that the required value for a fixed point mantissa (L) can
be determined using either simulated processing or actual data
processing using a double precision form.

Fig. 5. SigmaRho Kalman filter fixed point mechanization with 2-b mantissa
and 10-b fraction.

Fig. 6. Sigma\Rho Kalman filter fixed point mechanization with 2-b mantissa
and 8-b fraction.

For the sample problem parameters (but with the error
switched to ), we found that a 16-b fixed point
implementation ) provided indistinguishable
results from the double precision version; moreover even fur-
ther word size reduction provided stable results. Figs. 5 and 6
show the graceful degradation of the estimation result as the
fixed point word length was reduced from 16 b to 12 b and then
to 10 b—both with 2-b integer part. The 10-b implementation
begins to show signs of deterioration; however, the ability to
decode the binary data remains intact.

IV. CONCLUSION

The Kalman filter has enjoyed wide acceptance in complex
high-end aerospace and defense applications where high-per-
formance computers are an accepted element of the processing
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architecture. However, it is rare for the Kalman filter to receive
even minimal coverage in texts describing digital signal pro-
cessing techniques. In order for Kalman filtering to receive more
attention as a signal processing tool for high-speed commercial
applications, software designers must 1) become more confident
that stable performance can be guaranteed, and 2) know there
exists a generalized implementation path for fixed point digital
processing hardware. This paper has presented the sigmaRho
variant of the Kalman filter to address these shortcomings.

The sigmaRho filter offers a fundamentally different ap-
proach to traditional stable Kalman filter forms that are based
on a factored covariance matrix and/or noise adaptations based
on monitoring residual processes. Factored forms mask the
underlying statistical terms that can provide a preventative
diagnostic, and residual-based adaptations can only react
to divergence. The sigmaRho filter naturally propagates the
standard deviation and correlation coefficients for all vari-
ables without added computational complexity. As a natural
extension, generalized methods are readily available to both
monitor and control these critical statistical parameters in a
manner to promote operational stability while specifying the
impact of desensitization on estimation performance. Of equal
importance, the sigmaRho filter algorithm offers a normal-
ized solution to allow the control of the dynamic range of all
computational variables. This normalization, in turn, offers a
straightforward path to the implementation of the sigmaRho
filter using high-speed embedded digital processors.
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