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Today’s lecture, objectives
1 The objective of the course is not to understand, in detail, a large

number of design techniques. Too small course for that.
2 The objective is to give common knowledge and insight into general

principles and some design experience in Matlab.

A few observer approaches that are (more or less) common
Stochastic filters KF/EKF/EKF-iterated/UKF/partikelfilter/. . .
Direct Lyapunov design
Linearized transformations into observable canonical form (or similar)
Observer design using Lyapunov’s auxiliary theorem
Observers with (sufficiently) high gain (high gain observers)
Sliding mode observers
. . .

Today: focus on stochastic filters.
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Reading material

1 References [3] and [4] survey papers (a bit dated). [17] page 55-82
gives a quick overview of stochastic filters.

2 KF/EKF [17] + references therein
3 Array implementation of Kalman filter [22]
4 Constant gain Extended Kalman Filter [9]
5 Unscented Kalman Filter [14, 23] (with introduction in [17])
6 Particle filter [12,13]
7 Sliding mode observer [10]
8 High gain observer [11] + references therein

Today: Methods under bullets 2-6.
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Kalman filter

For the linear Kalman filter, typically state-space models in the form

xt+1 = Ftxt + Gtwt

yt = Htxt + et

Use the model without input u, direct to introduce.

Basic idea
The Kalman filter is a linear estimator that updates expected value and
covariance for a minimum-variance estimator.

Optimality
If the noises et and wt are Gaussian, the Kalman filter is the optimal filter
(not just in the class of linear filters).
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Kalman filter

The filter is often written as:
1 Initialize the filter with apriori information

x̂0|−1 = x0, P0|−1 = P0

2 Measurement update; take a new measurement yt and compute

x̂t|t , Pt|t

3 Time update; proceed to next time-step and compute

x̂t+1|t , Pt+1|t

Iterate from step 2.
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Kalman filter, the equations
If you look up the equations, the might look like

Measurement update

x̂t|t = x̂t|t−1 + Kt(yt − Ht x̂t|t−1)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1

Pt|t = Pt|t−1 − KtHtPt|t−1

Time update

x̂t+1|t = Ft x̂t|t

Pt+1|t = FtPt|tF
T
t + GtQtG

T
t

Again, trivial to extend with input signal u.

Now, an illustration where the equations come from and links to non-linear
extensions.
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Hand wave the time update equations
The dynamic equations is

xt+1 = Ftxt + Gtwt

and the objective of the time update is to

x̂t|t ,Pt|t → x̂t+1|t ,Pt+1|t

where
Pt|t = cov(x̂t|t − xt), Qt = covwt

For the state, since E (wt) = 0,

x̂t+1|t = Ft x̂t|t + E (Gtwt) = Ft x̂t|t

and

Pt+1|t = cov (x̂t+1|t − xt+1) = cov (Ft x̂t|t − Ftxt − Gtwt) =

= cov (Ft(x̂t|t − xt)) + cov (Gtwt) = FtPt|tF
T
t + Gtcov wtG

T
t =

= FtPt|tF
T
t + GtQtG

T
t
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Estimation, some basics
Assume two random variables x and y with expected value 0. A linear
estimator that estimates x from y is then

x̂ = Ky

With the notation Pxy = E{x yT}, the covariance for the estimation error
is then

E{(x̂ − x)(x̂ − x)T} = E{(Ky − x)(Ky − x)T} =

= KPyyK
T − KPT

xy − PxyK
T + Pxx =

= Pxx − PxyP
−1
yy PT

xy + (Pxy − KPyy )P−1
yy (Pxy − KPyy )T

The last term is a positive definite matrix, which gives that the optimal
estimator K and minimal covariance is given by:

K = PxyP
−1
yy , Px̂ x̂ = Pxx − PxyP

−1
yy PT

xy
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Hand wave the measurement update equations
We have the measurement equation

yt = Htxt + et

and
x̂t|t−1 ∼ N (xt ,Pt|t−1), et ∼ N (0,Rt)

and the objective of the measurement update is to

x̂t|t−1,Pt|t−1 → x̂t|t ,Pt|t

Introduce x̃t = xt − x̂t|t−1 and rewrite

zt = yt − Ht x̂t|t−1 = Hx̃t + et ,

We now have the exact same situations as before x̃t and zt , with

x̂t|t = x̂t|t−1 + Kt(yt − Ht x̂t|t−1)

where
Kt = Px̃zP

−1
zz

Direct computations (do them!) gives

Pzz = HtPt|t−1H
T
t + Rt , Px̃z = Pt|t−1H

T
t
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Kalman-Bucy - Kalman filtering in continuous time
A continuous time model

ẋ(t) = A(t)x(t) + G (t)w(t)

y(t) = H(t)x(t) + e(t)

with the covariance function

E{
(
w(t)
v(t)

)(
w(s)
v(s)

)T

} =

(
Q(t)δ(t − s) 0

0 R(t)δ(t − s)

)
then the Kalman filter is given by

˙̂x(t) = A(t)x(t) + K (y(t)− H(t)x̂(t))

K (t) = P(t)HT (t)R−1(t)

Ṗ(t) = F (t)P(t) + P(t)FT (t) + G (t)Q(t)GT (t)− K (t)R(t)KT (t)

with
x̂(0) = x0, P(0) = P0
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Extended Kalman Filter (EKF)
Extended Kalman Filter is a method where the same methodology is used
for non-linear systems. Again, left out u but it is straightforward to include.

xt+1 = f (xt ,wt)

yt = h(xt) + et

Difficulty 1
Expected value and variance in linear transformations are easy to express
explicitly.

This is not true for nonlinear transforms.

Idea
Compute the observer gain and covariance matrices by linearizing around
the current state xt .

The problem is that we do not know xt , instead linearize around our best
guess x̂ .
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EKF, the equations

Measurement update

x̂t|t = x̂t|t−1 + Kt(yt − h(x̂t|t−1))

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1

Pt|t = Pt|t−1 − KtHtPt|t−1

Ht =
∂

∂x
h(x)|x=x̂t|t−1

Time update

x̂t+1|t = f (x̂t|t , 0)

Pt+1|t = FtPt|tF
T
t + GtQtG

T
t

Ft =
∂

∂x
f (x ,w)|x=x̂t|t ,w=0

Gt =
∂

∂w
f (x ,w)|x=x̂t|t ,w=0
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EKF - some comments

very common approach and have, according to reports, worked well in
many applications
requires availability of gradients
unclear robustness properties
a bad initial guess (or if you temporarily gets lost), or possibly strong
non-linearities, could lead to divergence since it relies on a linerization.
It is possible to derive higher order, at least 2:nd order, EKF. But then
you have to have access to Hessians.
several formulations of the (E)KF equations. The most common,
shown here, is called the covariance form. It is possible to formulate
using the inverse of P and is then called the information form. Have a
little different numerical properties.
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Iterated Extended Kalman Filter
With strong non-linearities, you could get into problems with convergence
with the EKF.
A simple idea that could help
In the measurement update the filter linearizes around x̂t|t−1 to compute
x̂t|t . Why not iterate and linearize around the new, and improved, estimate
of xt?

IEKF, measurement update

x̂t|t = x̂
(m)
t|t , Pt|t = Pt|t−1 − K

(m)
t H

(m)
t Pt|t−1

where x̂
(0)
t|t = x̂t|t−1

x̂
(i)
t|t = x̂t|t−1 + K

(i)
t (yt − h(xt|t−1))

K
(i)
t = Pt|t−1H

(i)T
t (H

(i)
t Pt|t−1H

(i)T
t + Rt)

−1

H
(i)
t =

∂

∂x
h(x)|

x=x̂
(i)
t|t
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Constant Gain Extended Kalman Filter
To reduced the computational burden, sometimes what is referred to as
Constant Gain Extended Kalman Filter (CGEKF) is used. For a system

ẋ = F (z)x + G (z)w

y = H(z)x + e

where z is a known time-function (typically y , u etc.). Then the CGEKF is
˙̂x = F (z)x̂ + K (z)(y − h(x̂))

where K (z) is computed as the stationary Kalman gain

K (z) = P(z)HT (z)R−1

0 = F (z)P(z) + P(z)FT (z) + G (z)QGT (z)− K (z)RKT (z)

Similar to a gain scheduled observer design
For a simple alternative, pre-compute the gains in a number of
operating points and interpolate the corresponding K (z).
Can be formulated for more general non-linearities
IS even more sensitive than an EKF for non-linearities and bad initial
guesses.
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Array/square-root algorithms

Source of problems
Badly scaled problems might lead to divergence in (E)KF due to

Pt non-symmetric
Pt not positive definite

Array/square-root algorithms

Square root algorithms circumvent the problem by only computing the
square root P1/2

t instead of Pt

Notation: Matrix A is a square root of a matrix P if

P = AAT
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Array/square-root algorithms

There are many algorithms, but here’s a simple one I like

Square root measurement update
Form matrix A and make upper triangular, e.g., by QR factorization of
AT

A =

(
R

1/2
t HtP

1/2
t|t−1

0 P
1/2
t|t−1

)
, AΘ =

(
X 0
Y Z

)
Then

X = R
1/2
e,t , Y = Pt|t−1H

T
t R
−T/2
e,t , Z = P

1/2
t|t

i.e.
P

1/2
t|t = Z , Kt = Pt|t−1H

T
t R−1

e,t = YX−1

The inverse of X is simple to compute since it is triangular.

See Chapter 12 in Linear Estimation by Kailath, Sayed, Hassibi for more
information (can be downloaded via reference [22] on the course page).
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Unscented Kalman Filter
Advantages with (E)KF

Propagates expected value µ and covariance P , which gives relatively
few paramaters to compute in each step.
Linear transformations of µ/P is simple.
Is possible to generalize to sets of expected values/covariances for
multi-modal distributions etc.

Disadvantagew with EKF
works well if the linearization for most purposes well describes the
nonlinear dynamics
Requires access to gradientents of fx and hx . Thee can be
expensive/hard to compute, or maybe they are even non-differentiable.
Primarily unimodal distributions.

UKF
Unscented Kalman Filter is an algorithm that avoids linearization and
approaches the filtering more direct. 25 / 33

Unscented Transform
Basic idea
The difficulty in nonlinear filtering is to describe distributions under
nonlinear transformations

z = f (x)

Idea is to carefully choose a set of points, called sigma points, to represent
the distribution for x . Send these through the non-linearity and compute a
weighted average and covariance for the transformed points

Unscented transform - a standard version
There are many ways (and this is important!), to choose sigma points.
2N + 1 points are chosen as

x (0) = E{x}, w0 parameter

x (±i) = x (0) ±
√

nx
1− w (0) ui , w (±i) =

1− w (0)

2nx

ui is the i :th column in the square root of cov{x}. 26 / 33

Unscented Transform
We have a random variable x that is transformed through a nonlinear
functionz = f (x). What is the expected value and covariance of z?

1 Compute sigma points/weights x (i)/w (i) and the corresponding
z(i) = f (x (i)).

2 the expected value is estimated as

µz =
∑
i

w (i)z(i)

3 the covariance is estimated as

Σz =
∑
i

w (i)(z(i) − µz)(z(i) − µz)T

Often, different weights are used for estimating expected value and
covariance. See Julier/Uhlmann for more details.
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Unscented Transform (figure borrowed from G. Hendeby)

X1

X2

Z1

Z2

z = f(x

µz =
∑
i

w (i)z(i), Σz =
∑
i

w (i)(z(i) − µz)(z(i) − µz)T
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UKF - Unscented Transform to propagate µ and P
In the model

xt+1 = f (xt ,wt)

yt = h(xt) + et

it is the extended random variable

Xe =

xt
wt

et


that is passed through nonlinear functions. Here, there are opportunities for
simplifications, there are typically 2N + 1 sigma points.

For example in

xt+1 = f (xt) + Gwt)

yt = h(xt) + et

it is only x that goes through non-linearities which reduces the number of
sigma points substantially from 4nx + 2m + 1 to 2nx + 1.

29 / 33

UKF
Measurement update
From the beginning of the lecture, we had

x̂t|t = x̂t|t−1 + Pxy
t|t−1P

−yy
t|t−1(yt − ŷt)

Pt|t = Pt|t−1 − Pxy
t|t−1P

−yy
t|t−1P

xyT
t|t−1

where

ŷt =
∑
i

w (i)y
(i)
t , y

(i)
t = h(x

(i)
t|t−1, e

(i)
t )

Pyy
t|t−1 =

∑
i

w (i)(y
(i)
t − ŷt)(y

(i)
t − ŷt)

T

Pxy
t|t−1 =

∑
i

w (i)(x
(i)
t|t−1 − x̂t|t−1)(y

(i)
t − ŷt)

T

Time update is done in a corresponding way, see Julier/Uhlmann or G.
Hendeby.
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UKF, some comments

Doesn’t need any gradients, but more evaluations of functions f () and
h().
Can be compared to a numerical approximation approximation of the
gradients that typically requires (at least) 2n evaluations (2 per
dimension).
Tuning parameters are, as usual, matrices P(0), Q, R and choice of
sigma points.
Choice of sigma points can have significant impact on filter
performance.
The choice shown here is a simple first approach, more sophisticated
chjoices are possible. For example, more points and weight to preserve
higher order moments.

31 / 33

Exercise

Objective
The objective is to implement and evaluate general purpose EKF and UKF
algorithms.

Tasks
For the EKF you should implement both a standard, and a square root
algorithm. To help evaluate your implementation, two skeleton files are
provided: task1.m and EKF.m. The file EKF.m is where you can implement
your EKF. The file task1.m generates data, and gives a skeleton for calling
the EKF function for a robot position estimation task.
The UKF can be implemented using a similar design.

A scenario will be described on the next slide.
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Exercise, cont’
The scenario is a mobile robot, travelling at constant speed V , with range
and heading measurements. The model, in discrete time form, is

xt+1 = xt + TsV cos(θt) y1,t =
√

x2
t + y2

t

yt+1 = yt + TsV sin(θt) y2,t = tan−1(yt/xt)

θt+1 = θt + Tsut

where ut is the control-signal (steer rate). The sampling rate Ts = 0.1 sec
and velocity V = 3 m/s. Tune the EKF to obtain plots similar to (or better
than)
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Direct computation from measurements
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