
Nonlinear observers
design techniques, part 1b

Erik Frisk

Dept. of Electrical Engineering, Linköping University

December 20, 2018

1 / 35

Today’s lecture and reading material

Today’s lecture covers particle filters and recalls some basics from last
lecture.

1 Particle filter [12,13]

2 / 35

Extended Kalman Filter

Measurement update

x̂t|t = x̂t|t−1 + Kt(yt − h(x̂t|t−1))

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1

Pt|t = Pt|t−1 − KtHtPt|t−1

Ht =
∂

∂x
h(x)|x=x̂t|t−1

Time update

x̂t+1|t = f (x̂t|t , 0)

Pt+1|t = FtPt|tF
T
t + GtQtG

T
t

Ft =
∂

∂x
f (x ,w)|x=x̂t|t ,w=0

Gt =
∂

∂w
f (x ,w)|x=x̂t|t ,w=0

3 / 35

UKF
Measurement update
From last lecture, we had

x̂t|t = x̂t|t−1 + Pxy
t|t−1P

−yy
t|t−1(yt − ŷt)

Pt|t = Pt|t−1 − Pxy
t|t−1P

−yy
t|t−1P

xyT
t|t−1

where

ŷt =
∑
i

w (i)y
(i)
t , y

(i)
t = h(x

(i)
t|t−1, e

(i)
t)

Pyy
t|t−1 =

∑
i

w (i)(y
(i)
t − ŷt)(y

(i)
t − ŷt)

T

Pxy
t|t−1 =

∑
i

w (i)(x
(i)
t|t−1 − x̂t|t−1)(y

(i)
t − ŷt)

T

Time update is done in a corresponding way, see Julier/Uhlmann or G.
Hendeby.

4 / 35

Outline

Nonlinear filtering

Particle representation of distributions

Time update

Measurement update

Resampling

Summary of algorithm

Exercises

5 / 35

Particle Filter
Objectives

approximative method for non-linear filtering
A bayesian approach (note that I did not use Bayesian arguments for
the EKF/UKF)
simple basic principle, but requires caution for it to work well
applicable to sytrongly non-linear systems, where EKF and linearizing
megthods fail
typical example, multimodal distributions, (coming from y = x2).

−3 −2 −1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f(x
)

6 / 35

Nonlinear bayesian filtering
With a basic model described by

xt+1 = f (xt , εt)

yt = h(xt) + et

where εt and et are white independent sequences with known (arbitrary)
distributions.
In Bayesian filtering, the estimate are represented by their distributions (i.e.
x is a random variable)

p(xt |Yt), Yt = (y1, . . . , yt)

Then the estimate could, e.g., be computed as

x̂t|t = E(xt |Yt) =

∫
xtp(xt |Yt) dxt

or even the maximum likelihood estimate.
7 / 35

Ideal measurement and time update
Measurement update

(x̂t|t−1,Pt|t−1)→ (x̂t|t ,Pt|t) ∼ p(xt |Yt−1)→ p(xt |Yt)

The measurement-update is given by a direct application of Bayes’ rule

p(xt |Yt) = · · · = p(yt |xt)
p(yt |Yt−1)

p(xt |Yt−1)

Time update

(x̂t|t ,Pt|t)→ (x̂t+1|t ,Pt+1|t) ∼ p(xt |Yt)→ p(xt+1|Yt)

p(xt+1|Yt) =

∫
p(xt+1|xt ,Yt)p(xt |Yt) dxt =

∫
p(xt+1|xt)p(xt |Yt) dxt

Basic message
This quantities can not be computed exactly except for special cases (linear
gaussian case gives Kalman Filter)

8 / 35

Outline

Nonlinear filtering

Particle representation of distributions

Time update

Measurement update

Resampling

Summary of algorithm

Exercises

9 / 35

Basic tool: Representing a distribution with samples

500 samples/particles

0 100 200 300 400 500
-3

-2

-1

0

1

2

3

x

Data

-4 -2 0 2 4

x

0

0.5

1

1.5

2

2.5

3
#10 -3 Particles and weights

-4 -2 0 2 4

x

0

10

20

30

40
Histogram

-4 -2 0 2 4

x

0

0.1

0.2

0.3

0.4

0.5

True density and kernel estimate

f(x)
fhat(x)

Representing a distribution with a random sample (N=500)

10 samples/particles

0 2 4 6 8 10
-2

-1

0

1

2

x

Data

-4 -2 0 2 4

x

0

0.05

0.1

0.15
Particles and weights

-4 -2 0 2 4

x

0

0.5

1

1.5

2
Histogram

-4 -2 0 2 4

x

0

0.1

0.2

0.3

0.4

0.5

True density and kernel estimate

f(x)
fhat(x)

Representing a distribution with a random sample (N=10)

Weight can be used to place different importance to different particles
(more later)

10 / 35

Particle representation of distribution
Basic tool: approximate a probability density with a number of weighted
samples from the distribution.
With samples and associated weights

x (i) ∼ p(x), i = 1, . . . ,N

w (i) (possibly 1/N)

then
p(x) ≈

∑
i

δ(x − x (i))w (i)

With such an approximation, it is straightforward to estimate any statistics.
For example

µ̂x =
∑
i

x (i)w (i)

P̂x =
∑
i

w (i)(x (i) − µ̂x)(x (i) − µ̂x)T

11 / 35

Particle approximation of p(x)
As long as you can draw samples from a distribution, you can represent it
(but Rn can be a big space)

t+1
t

Figure borrowed from G. Hendeby
12 / 35

Outline

Nonlinear filtering

Particle representation of distributions

Time update

Measurement update

Resampling

Summary of algorithm

Exercises

13 / 35

Partikelfilter - tidsuppdatering

As before, we want to update the state estimate distribution from t to
t + 1, i.e.,

p(xt|t)⇒ p(xt+1|t)

and since we have a particle representation,

(x
(i)
t|t ,w

(i)
t|t)⇒ (x

(i)
t+1|t ,w

(i)
t+1|t), i = 1, . . . ,N

under the dynamic equation

xt+1 = f (xt , εt), εt ∼ pε(εt)

where f (·) is a non-linear function.

The process noise εt is distributed as pε(εt). It is assumed that we can
draw samples from this distribution. This could be a gaussian, but there is
no restriction really.

14 / 35

Partikelfilter - tidsuppdatering
A simple, suboptimal, way is to draw N random samples from pε(εt)

ε
(i)
t , i = 1, . . . ,N

and insert into the dynamic equation

x
(i)
t+1|t = f (x

(i)
t|t , ε

(i)
t) i = 1, . . . ,N

With this sinple strategy, there is no reason to change the
weights/importance, of each particle and thus

w
(i)
t+1|t = w

(i)
t|t

representing the distribution p(xt+1|Yt). The estimate of the mean
aposteriori is then

x̂t+1|t =
N∑
i=1

w
(i)
t+1|tx

(i)
t+1|t

15 / 35

Outline

Nonlinear filtering

Particle representation of distributions

Time update

Measurement update

Resampling

Summary of algorithm

Exercises

16 / 35

Measurement update
As before, we want to update the state estimate distribution from t|t − 1
to t|t using the information in a measurement yt , i.e.,

p(xt|t−1)
yt⇒ p(xt|t)

and since we have a particle representation,

(x
(i)
t|t−1,w

(i)
t|t−1)

yt⇒ (x
(i)
t|t ,w

(i)
t|t), i = 1, . . . ,N

under the measurement equation

yt = h(xt) + et et ∼ pe(et)

where h(·) is a non-linear function.

The measurement noise et is distributed as pe(et). It is assumed that we
can evaluate the density function. This could be a gaussian, but there is no
restriction really.

17 / 35

Measurement update - illustration
Consider the measurement equation

y = x2 + e, e ∼ N (0, σ2)

where the true x =
√
0.5.

Assume we know that the true value lies in [−1, 1], let the particles be
drawn from U(−1, 1). After the measurement update we get:

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6
Kernel estimate of distribution

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
ei

gh
t

0

0.002

0.004

0.006

0.008

0.01

Particles before measurement update (Neff=100.0)

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Kernel estimate of distribution

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
ei

gh
t

0

0.01

0.02

0.03

0.04

0.05
Particles after likelihood update (Neff=29.3)

18 / 35

Measurement update

We have an particle approximation for p(xt |Yt−1) and the measurement
equation

yt = h(xt) + et , et ∼ pe(et)

and a new measurement yt is obtained.

Measurement update
Update weights/importance of each particle accoring to how likely the new
output yt is for each particle.

p(xt |Yt) = p(xt |yt ,Yt−1) =
p(yt |xt ,Yt−1) p(xt |Yt−1)

p(yt |Yt−1)

=
p(yt |xt) p(xt |Yt−1)

p(yt |Yt−1)
∝ p(yt |xt) p(xt |Yt−1)

19 / 35

Measurement update
Then, for each particle we have

p(x
(i)
t|t |Y

t) ∝ p(yt |x (i)t|t−1) p(x
(i)
t|t−1|Y

t−1), i = 1, . . . ,N

and with the measurement equation

yt = h(xt) + et , et ∼ pe(et)

we have

p(yt |x (i)t|t−1) = pe(yt − h(x
(i)
t|t−1)), p(xt |Yt−1) = wt|t−1

Thus, the weights are updated according to w
(i)
t|t ∝ p(x

(i)
t |Yt), i.e.,

w
(i)
t|t ∝ p(yt |x (i)t)w

(i)
t|t−1

N∑
i=1

w
(i)
t|t = 1

20 / 35

It doesn’t work!
With this we have defined both a time update and measurement update.
Only one problem: It doesn’t work

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6
Kernel estimate of distribution

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
ei

gh
t

0

0.002

0.004

0.006

0.008

0.01

Particles before measurement update (Neff=100.0)

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Kernel estimate of distribution

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
ei

gh
t

0

0.01

0.02

0.03

0.04

0.05
Particles after likelihood update (Neff=29.3)

Lots of particles with small weight, i.e., unlikely. The number of particles
are reduced at each measurement update until there are “none” left.

A solution
Resampling!

21 / 35

Outline

Nonlinear filtering

Particle representation of distributions

Time update

Measurement update

Resampling

Summary of algorithm

Exercises

22 / 35

Resampling

Problem

Particles loses weight, w (i) → 0, number of effective particles can be
defined as

Neff =
1∑

i (w
(i))2

If all particles have equal weight 1/N, then Neff = N.

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6
Kernel estimate of distribution

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
ei

gh
t

0

0.002

0.004

0.006

0.008

0.01

Particles before measurement update (Neff=100.0)

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Kernel estimate of distribution

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
ei

gh
t

0

0.01

0.02

0.03

0.04

0.05
Particles after likelihood update (Neff=29.3)

23 / 35

Resampling

Solution: Place the particles where they are needed which corresponds to
where they are likely, i.e., where p(x (i)) is high which is where the weight
w (i) is high. This is referred to as resampling.

There are many methods for this, a simple (used in the original paper) is
called SIR (sampling importance resampling)

Draw N new particles from the discrete distribution

p(x = x (i)) = w (i)

and let all particles have equal weight w (i) = 1/N.

24 / 35

Resampling

Revisit the example with
y = x2 + e

Before resampling ... after resampling

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Kernel estimate of distribution

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
ei

gh
t

0

0.01

0.02

0.03

0.04

0.05
Particles after likelihood update (Neff=29.3)

x
-1.5 -1 -0.5 0 0.5 1 1.5

p(
x)

0

0.5

1

1.5
Kernel estimate of distribution

x
-1.5 -1 -0.5 0 0.5 1 1.5

w
ei

gh
t

0

0.002

0.004

0.006

0.008

0.01

Particles after resampling (Neff=100.0)

25 / 35

Outline

Nonlinear filtering

Particle representation of distributions

Time update

Measurement update

Resampling

Summary of algorithm

Exercises

26 / 35

Particle filter - summary oif simplest version
1 Initialise: Draw particles x (i)0 and weights w (i)

0|−1 according to initial
guess.

2 Measurement update:

w
(i)
t|t ∝ p(yt |x (i)t)w

(i)
t|t−1,

N∑
i=1

w
(i)
t|t = 1

where
p(yt |x (i)t) = pe(yt − h(x

(i)
t|t−1))

3 Compute

Neff =
1∑

i (w
(i))2

and resample if Neff < threshold.
4 Time update:

w
(i)
t+1|t = w

(i)
t|t

x
(i)
t+1 = f (x

(i)
t , ε

(i)
t)

5 Go to step 2
27 / 35

Particle filter - some comments

There are much more to be said, the algorithm here is the basic
version, SIR (Sampling Importance Resampling)
Read Gordon et.al. which is the original reference. Easy to read and
short.
Computationally heavy, number of particles important.
Any non-linearity, any distribution
You have to generate samples from process noise distribution.
Scales badly in high dimensions (Rn can be a big space)
Utilize linear sub-structures and use Kalman filters for those
(Rao-Blackwellised particle filter)

28 / 35

Outline

Nonlinear filtering

Particle representation of distributions

Time update

Measurement update

Resampling

Summary of algorithm

Exercises

29 / 35

Particle representation

Exercise Le3b.1:
a) Generate N = 500 particles to represent the distribution

p(x) ∼ N (0, 1), assign the weight 1/N to all particles. Plot the
particles and a kernel density estimate of the distribution.

Hint: Matlab commands normrnd, stem, and ksdensity are useful.
b) Use the particles from the a-exercise to compute new particles

representing the distribution p(y) where

y = sin(2πx2)
√
|x |

Plot the particles and a corresponding kernel density estimate.

30 / 35

Measurement update

Exercise Le3b.2: To illustrate the measurement update step in the
particle filter, assume a measurement equation

y = x2 + e, e ∼ N (0, σ2)

with σ = 0.1 and where the a-priori knowledge of x is U [0, 1]-distributed,
i.e., uniformly distributed between 0 and 1. Generate N = 100 particles
representing p(x), assume the value y = 0.7 is measured.
a) Compute particles and weights after the measurement update step 2.

Plot particles and a kernel density estimate of the distribution.
b) Compute the number of effective particles Neff

c) Resample and again plot particles and a kernel density estimate of the
distribution.

d) Compute the particle filter estimate of x̂ = E(x |y).
Hint: Matlab commands rand and normpdf are useful.

31 / 35

Resample function
function ind = resample(w)

% Perform stochastic resampling.
% Algorithm from Ripley (1988)
% Implementation by G. Hendeby

N = numel(w);
qs = cumsum(w);
u = fliplr(cumprod(rand(1,N).^(1./(N:-1:1))));
i = 1;
ind = zeros(1, N);
for p = 1:N

while qs(i) < u(p)
i = i + 1;

end
ind(p) = i;

end
end

32 / 35

Implement SIS

Exercise Le3b.3:
Implement the particle filter as described in

Gordon, Neil J., David J. Salmond, and Adrian FM Smith. "Novel
approach to nonlinear/non-Gaussian Bayesian state estimation."
IEE Proceedings F-radar and signal processing. Vol. 140. No. 2.
IET, 1993.

and reproduce Example 4.1. Regenerate Figures 1, 2, and 3 (excluding the
confidence intervals).

33 / 35

Kernel Density Estimate (KDE)
A non-parametric way to estimate the probability density function from a
set of samples x1, . . . , xn. The density estimate is expressed as a sum of
kernels

f̂ (x) =
1
n

n∑
i=1

Kh(x − xi)

−4 −2 0 2 4 6
x

0.00

0.05

0.10

0.15

0.20

0.25

f(x
)

34 / 35

Nonlinear observers
design techniques, part 1b

Erik Frisk

Dept. of Electrical Engineering, Linköping University

December 20, 2018

35 / 35

	Nonlinear filtering
	Particle representation of distributions
	Time update
	Measurement update
	Resampling
	Summary of algorithm
	Exercises

