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Solvability,  Controllability, and Observability of 
Continuous  Descriptor Systems 

ELIZABETH L. YIP AND RICHARD F. SINCOVEC 

A hrract- In this paper, we investigate the properties of the continuous 
descriptor system 

Ex(r)=Ax(t)+Bu(r). O<t<h 

where E,  A. and B are complex  and  possibly singular matrices and u( r )  is a 
complex function differentiable sufficiently many times. The traditional 
approach to such systems is to separate the state equations from the 
algebraic equations. However,  such algorithms usually destroy the natural, 
physically-based sparsity and structure of the original system. Therefore, 
we consider descriptor systems in their original form. Such systems possess 
numerous properties not shared by the well-known state variable  systems. 
First, we relate classical theories of matrix pencils to the solvability of 
descriptor systems. Then we extend  the concepts of reachabilily, controlla- 
bility,  and observability of state variable systems to descriptor systems, and 
describe the set of reachable states  for descriptor systems. 

I. INTRODUCTION 

I i t h i s  paper. we consider the conrinuous descriptor system 

Ei(1)=Ax(t)+Bu(t) .  x ( O ) = x ,  (1) 

where E.  A are n X n complex matrices, B is an n X k complex matrix, x( r )  
is an unknown complex vector. and u ( r )  is a function differentiable 
sufficiently many times (we shall say u( r )  is sufficiently differentiable). 

Solvability of the system ( I )  has been discussed in Gantmacher [ I ]  and 
Wilkinson \2] for B equal to the identity matrix. In the next section we 
shall show how their results can be generalized to a r b i t r q  B.  Luenberger 
[4] has considered solvability of discrete descriptor systems. We sum- 
marize these discussions in Section I1 and establish our notation for the 
remainder of this paper. We include the proofs of these  well-known 
results in the Appendix for completeness. In Section 111 we define 
reachability for the system ( I ) .  and describe precisely the reachable set. 
The results in Section 111 are what is expected: however.  the proofs of 
these results are far from trit5al. In Section I11  wse also extend Wonham’s 
[SI geometrical treatment of state variable systems to descriptor systems. 
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We find Wonham’s approach an invaluable tool for rigorous formal 
proofs of mathematical theories. even though the methodology seems to 
be f a r  removed from the  physical problem. In Section IV  we define 
observability and two types of controllabilities and derive results corre- 
sponding to those obtained in Section 111. The results in Section IV are 
again what is expected since they are intuitive extensions of the results for 
state variable systems. The proofs of these results are directly derivable 
from the results concerning reachable sets in Section 111. Finally. in the 
last section we summarize our results. 

11. SOLVABILITY 

It is reasonable to define solvability of the system ( I )  as the existence of 
a unique solution for any given sufficiently differentiable u ( r )  and any 
given admissible initial condition corresponding to  the  given u(r ) .  Gant- 
macher’s [ I ]  analysis shows that the  system ( I )  with B =  I is solvable if and 
only if the matrix pencil €+X A (or equivalently, A - h E )  is regular. Note 
that. since the set { f( 1 ) :  f sufficiently differentiable) contains the set 
(Bu(1): u sufficiently differentiable). the following  is true. 

Fucr 1: If the system represented by ( I )  with B equal to the identity 
matrix is solvable for any sufficiently differentiable u( f), then ( I ) ,  with 
arbitrary B .  is solvable for any sufficiently differentiable u( 1 ) .  

For convenience. we make the following definition. 
Definirron I :  (A. E )  is solcable if the matrix pencil E+X A is regular, 

i.e.,  det( E-XA)#O for all except a finite number of XEC where C is the 
field of complex numbers. 

The follo*ing characterization of solvability is  based on Gantmacher’s 
(11 analysis of matrix pencils and Luenberger’s [4] analysis of discrete 
descriptor systems. 

Theorem 1: The follouing statements are equivalent. 
a) (A. E )  is solvable. 
b)  If X,, is the null space of A (denoted by KerA) and 

X ,=( .~ :A .YEEX, - , )  thenKerEnX,=Ofori=O.1 .2 .3 . - .~ .  

c)  If  x,=KerATand x = { . x :  AT.x€ETI’-,) then KerETnY,=O for 

d) The matrix 
i=O.  1.2.3.. . . . 

E 0 . . .  0 

G ( t l ) =  [ A” j j j  n+l  

has full column rank  for n =  1.2.. . . . 
e) The matrix 

E A 0 . . .  0 

F(n)=  [: E A ‘ . .  01 
. . .  E A  

n+ I 

has full row rank for n= 1.2, . . . . 
f) There exist nonsingular matrices P and Q such that ( I )  is decom- 

posed into possibly two subsystems: a subsystem with only state variables, 
and an algebraic-like subsystem, i.e., PEQQ - ‘x( t )  = PAQQ - ’X( I) + 
PBu( I)  has one of the following forms. 

i) { ~I=E,YI  + B I ~  
E,y2=yz+B2u ,  E y = O ,  E y - ’ # O .  

(In th s  case. both E and A are singular. or A is nonsingular and E is 
singular but notmilpotent, i.e.. € “ ’ P O  for all positive integer m . )  

ii) ?‘I = E l y l + B , u .  

0018-9286/81/0600-0702%00.75 0 1981 IEEE 
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(In this case, E is nonsingular.) 

iii) E , . V ~ = = ) ' Z + B ~ U ,   E F = O ,   E Y - I f . 0 .  

(In this case, A is nonsingular and E is nilpotent.) 
In all cases 

and the exact solution is 

nl- I 

y,(t>= - 2 E;B,u" ' ( f )  
t = o  

where ylo is the transformed initial condition, i.e.. 

Note that the zero vector 0 is in I because there exists U E  U such that 
u'(O)=O for i= 1.2:. ., and  the set I is a subspace. 

111. REACHAEIILIN 

For (3). we say a state x ,  is reachable from a state x. if and only if 
there exists u E U such that the solution 

The proof of this theorem is given in the Appendix. 
Note that statements  b) and  d) are equivalent to the absence of the row 

minimum indices (see Gantmacher [ l ]  for the definition of minimum 
indices) and  that  statements c) and e) are equivalent to the absence of the 
column minimum indices. Since the matrices E and A are square. the 
absence of the row minimum indices is equivalent to the absence of the 
c o l u m n  minimum indices. Also, in the special case that B= I .  Gantmacher 
[ I ]  has shown that the presence of the column minimum indices implies 
constraints on u ( r ) ,  and so the system is not solvable for all sufficiently 
differentiable u(t ) ,  while the presence of row minimum indices yields 
infinitely many solutions for any sufficiently differentiable u( r ) .  Thus, 
when E and A are square matrices and B is the identity (or more 
generally, B is nonsingular). existence of a solution for any sufficiently 
differentiable u ( t )  for the system (1) implies uniqueness of the solution 
for  any sufficiently differentiable u(f). Concerning statements  d)  and e), 
we note  that Luenberger [4] defined the system (1) as "conditionable" if 
G( n )  is of full column rank for all n= I ,2; . ., and the system ( I )  as 
"solvable" if F( n )  is of full row rank for all n = 1.2 . . . . 

In the remainder of this paper, we shall m u m e  ( A ,  E )  to be solvable 
and that the system ( I )  is of the form 

i , ( r ) = E , x , ( r ) + B , u ( r )  

has x(0)=xo and x ( r , ) = x ,  for some t ,>O. Let R ( x )  be the  set of 
reachable states from x E  I. In this section we precisely describe R ( x ) .  

(2) First, we restrict our attention to x. =O and describe R(0). To accomplish 
this,wedefmethenotation (-1-)foranarbitrarymatrixpair(E,B),where 
E is a square matrix and the product EB is well defined: 

( E I B )   = / 3 + E / ? + E 2 b +   - . . + E " - @  

where 
E ,  is an n I X n I complex matrix, 
E, is an n 2  X n z  complex matrix, and E,"'=O, E,"'-' #O, 
B I is an n I X k complex matrix, 
B, is an n , X k complex matrix, 
x,( r )  is an unknown vector in C"I, complex vectors of length n , ,  
x,( t )  is an unknown vector in C "?, complex vectors of length n ,, 
u ( r )  is a function differentiable at least m -  1 times. 

We call (3) the srandard  canonical form of the descriptor system and m the 
degree of nilpotenq of (3). Note that if E,  = O  then (3) has its degree of 
nilpotency m= 1. If the second equation of (3) is  missing, we say the 
degree of nilpotency of (3) is zero. Sometimes we refer to the first and 
second equations of (3) as the state variable equation and the algebraic 
equation, respectively. 

Note that in the case of the  state variable equation, every vector in the 
vector space is an admissible initial condition. This is not the case with 
the descriptor system. 

From (2). yl(0)=yolEC"', and y2(0)= - 2 ~ 5 ' E $ B 2 u ( ' ) ( 0 ) .  Thus, the 
following statement is true. 

Let U be the set of functions u ( t )  E C k ,  complex vectors of length k .  
such that ~ ( t )  is differentiable at least m- 1 times. The set of admissible 
initial conditions for the system (3) is 

where n is the  order of E and b=ImageB=ImB=(y: y=Bx ,  all 
possible x). 

Theorem 2: R ( O ) = ( E , I B , )  @ ( E 2 J B 2 ) .  E, ,  4 ,  B , ,  B2 are as defined 

The proof of Theorem 2 is constructive and requires the following two 

Lemma I :  For any polynomial f ( s )  E C  not identically zero and  for 

in (3). 

lemmas. 

any ZEC"~,  define W( f ,  1): C"I +C"I by 

W(f, t ) z = j f (  f (s)eSEIBIBTerE:f(s))zdF.  

If Im W( f, f )  is the range (or image space) of W( f, t ) ,  then Im W( f, t)= 

Lemma 2: For arbitrary vectors, xi, y, ECk,  i=O,1 ,2 , . . . ,m- l ,  and 
r > O ,  there exists a vector polynomial u ( t ) E C  of degree 2m- 1 such 
that ~("(0) =x, and d i ) (  I) =y, . 

Proof of Theorem 2: We shall first prove that R(O)c ( E ,  I B ,  ) @ 

0 

( E I I B I ) .  

( EZ I B2 ). Suppose 

then, by definition of R(O), there exists u E  U such that 

n l - l  

x I ( r ) = l ' e ( ~ - ~ ) E ~ ~ , u ( s )  ds= 2 j f + i ( t - s ) ~ ; ~ l u ( s )  ~ l r  
0 j = o  0 

for some polynomial function + i (s ) ,  i=O, 1,2,. . . , n ,  over C because 

I =  { [ ::] : xI EC"1, x, = - 2 EiB,u"'(O), 
m -  I 

issuchthatxlE(El~B,),~,E(E,~B2),andx,#O,x,#O.Wehaveto 
i = O  find uE Ll such that Xis a solution of (3) at some r>O. We choose u(f) to 
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be of the form u ( r ) = u l ( t ) + u 2 ( r ) .  Thus If xEKer W( f. t )  and x#O. then 

We choose i > O  arbitrarily and choose u l ( t )  to be of the form Since f(s)  can have only finitely many zeros in the interval O c s G r .  it 
follows that 

u l ( t ) = t n l ( r - i ) " ' y ( t )  forsomey(r)eCh.  (4) 

Thus. u \ " ( t ) ~ u ~ " ( O ) = O  if i<m and u l ( t )  contributes nothing to x ? ( [ )  at 
t = O  and t = t. We choosey to satisfy the following equation. 

O=B~e"':x forOGs<r. (7)  

Repeated differentiation of (7) gives the result 

j o i e ' i - , ) 6 1 B , ~ " J ( ~ - ~ ) " ' ~ , ( ~ ) d ~ = ~ ~  -/0ie(i-slfIiB l u a ( s ) d s = i l .  (5) O=BT(E:)'e\E:x fo r i=0 ,1 ,2 . - . - , n , -1  
(8) 

How we choose a y that satisfies ( 5 )  will be described later. We call the 
expression on the right-hand side of (5 ) .  T I .  For now. let us consider the 
choice of u Z ( t ) .  Note that x2 E ( E , I B , )  implies 

n t -  I 

x2=-  2 X2.I 
J = o  

where x2. €E$ ,  and B2 is defined as the image (or range space) of B2. 
Note that x2. €E:& implies that there exists y, € C  such that x2./ = 
EiB2y,. Now, by Lemma 2, there exists a polynomial h ( s )  € C *  of degree 
2 m -  lsuchthathO(O)=OandhO(r)=y.forj=O,1,2;.-,m- 1.Let 
u, ( r )=h( t ) .  nus, x2( t )=  - ~ ; s l ~ ; ~ ~ u $ ( t ) = x ~ ,  x2(0)=0. 

Now we describe how we choose y in (4) to satisfy (5) .  Note that T I ,  
which is the expression on the right-hand side of (5) .  is in ( E l ( B l ) ,  
which, by Lemma 1, is the image (or range space) of W( f. t )  for any 
polynomial f ~ ? .  In other words, Lemma_ 1 implies there exists zEC"1 
such  that W( f , t ) z = i l .  Letf(s)=s"'(s-t)"' and 

and O < s < t .  

I t  follows from (8) that 

o=B:(E:) ' .~ forr=~.~,~.-..,n~-~ 

and, therefore. 

for some polynomial J.,: therefore, x€ Ker W (  f ,  t ) .  Thus. (6) is true and 
the proof is complete. 

Proof of Lemma 2: Let x ,  = ( x , I ,  x , ~ ,  . . . , x , h  1' and y, = 
( ~ , l I ~ , 2 . ~ ~ ~ . ~ , ~ ) T f o r i = O . I ~ ~ ~ ~ , m - 1 . F o r e a c h j = 1 , 2 , ~ ~ ~ . k .  theclassi- 
cal Hermite interpolation [3] gives a polynomial h,(t) of degree 2 m -  1 
such that 

= w( f.92 
- - X , .  

Thus. the equations in Lemma 2 are satisfied by u ( r )  defined as follows: 

Thus, ( 5 )  is satisfied and we have accomplished our purpose. We have u ( t ) = ( h l ( t ) , h ~ ( t ) , ~ ~ ~ . h ~ ( r ) ) T .  
shown how to choose u E U  such that u ( r ) = u , ( t ) + u , ( t )  with The following theorem, which  we use  in a  later section, generalizes 

Theorem 3; Let I ,  be the  set of admissible initial conditions for (3) 
In(e'""lB,u(s) ds=x,  Theorem 2. 

and 
such that the components corresponding to the state  equations  are zero. 
1.e.. 

I ,  = {[:;I : X I  =o, x 2  = - 2 E;B,u"'(O). u E U  
nl- I 1 
I = o  I' 

To complete the proof of Theorem 2 ,  we need to prove Lemmas 1 and 2. Then, for 1o E I , ,  R( x,) = ( E ,  I B ,  ) e ( E, I B~ ). 

(4) on p. 36 of Wonham [SI.) 
Proof of Lemmo 1: (Lemma 1 is actually a generalization of equation ne complete set of admissible initial conditions for (3) is 

To show  Im( W( /, I))= (E, I B ,  ) is equivalent to showing that I = C " I @ ( E 2 1 B 2 ) .  

n,- I 

Ker W( f .  t )  = n Ker B:( ET) ' .  
r=O 

We first show Ker W( f. t ) C n YLG I Ker B T( ET)' 

(6) 
If . ? € I  then R ( i ) = ( E , I B , )  $(E,IB,) + H ( x )  where 
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Thus, the complete set of reachable states is 

R =  u R(x)=Cn1@(E21B,) 
YEl 

and, hence, I = R . 
Proof of Theorem 3: As defined in the definition of I,, x2 is in 

( E , I B , )  andx,=0.Thus,byTheorem2,R(x,~=(E,~B,)@(E2~B2). 
Since any vector in C"I is an admissible initial condition for the state 
equations, all the admissible initial  conditions for the algebraic equation 
have to ofthe form .x2. Hence, the complete set of admissible initial 
conditions is I = C " I @ ( E ~ I B , ) .  Thus. if x € [ ,  Le., x(O)=Z-,,then 

xl(r) = e%-l - e(t-S)E1B1u(s) ds 

x,(t) = z: Ep,ui( t ) .  

I' 
m-1 

i-0 

Therefore, R(x )=(EI IBI )  @(E21B,) + H ( x ) .  

reachable set is 
Since H(x)EC"~@(O),  where 0 indicates the vector 0 in C"', the 

R= u R(x)=C"1@(E,IB2).  
.x E 1 

We have described precisely the complete set of reachable states for 
descriptor systems in terms of their standard canonical forms. 

We do not have corresponding statements regarding sets of reachable 
states and admissible initial conditions for descriptor systems in their 
original forms. However, Theorem 3 has significant impact in our subse- 
quent work on  the numerical solution of descriptor systems [lo]  and on 
the controllability and observability of descriptor systems. In each case, 
we are  able to anive  at significant results without referring to the 
standard canonical forms. We shall discuss this further in Section IV. 

IV. CONTROLLABILITY AND OBSERVABILITY 

The theory developed in Section 111 is essential for the extension of the 
concept of controllability and observability from state variable systems to 
descriptor systems. We note that Paige [7] and Cline 191 have defined 
controllability for discrete descriptor system: 

Ex,~=Ax,,-,+Bu,,-,. 

The conventional definition of controllability for state variable system 
is as follows. 

Definition  CI: A system is completely controllable (C-controllable) if 
one can reach any  state from any initial state. 

An obvious extension of the concept of controllability to continuous 
descriptor systems is as follows. 

Definition C2: The system (1) is controllable within the set of reacha- 
ble states  (R-controllable) if one  can reach any state in the set of 
reachable states from any admissible initial state. 

Note  that, in the case of the state variabie systems, C-controllable and 
R-controllable are equivalent. This is not so with descriptor systems, as 
indicated by Theorems 4 and 5 below. 

Theorem  4-Regarding  C-Controllability: The descriptor system in 
standard canonical form (3) is C-controllable if and only if 

( E , I B , )  @ ( E , I B , )  =C'll+'lZ, 

Proof of Theorem 4: If ( E ,  I B ,  ) @ ( E ,  I Bz ) is the entire vector space 
then any admissible initial condition is in ( E ,  I B,  ) @ ( E, 1 B, ) . Thus, by 
definition, (3) is controllable. 

Theorem  5-Regarding  R-Controlluhilitv: 
a) The descriptor system (3) is R-controllable if and only if 

(E,IB,)=C"l  

b) The descriptor system (3) is R-controllable if and only if the 

subsystem described by the first equation of (3) (Le., the subsystem that is 
described by the state variable equation) is controllable. 

P roo!  of Theorem 5: Let x = ( x:, x;) be an admissible initial condi- 
tion. Let x i = ( O .  x:). Then x ,  is in I,, where Io  is defined in Theorem 3. 
By Theorem 3, the set of reachable states from x. is 

R(x,)=(E,IB,)$(E,lBz).  

Any state in R(x,) is reachable from x if and only if e'ElxI is in 
( E ,  1 B ,  ) . Thus, the system in (3) is R-controllable if and only if ( E ,  1 B ,  ) 
=C"'. and we have proved statement a).  From classical control theories, 
( E ,  I B ,  ) =C"I is equivalent to the first equation of (3) being controllable. 
Therefore,  statement b) is true. 

Corollarr. I :  
a) The system in (3) is C-controllable if and only if the augmented 

matrices 

and 

have ranks n , and n ?, respectively. 
b)  The system in (3) is R-controllable if and only if the augmented 

matrix SI defined above has rank n ,. 
Proof of Corolluql 1: The subspace ( E , ( B , )  is spanned by the 

columns of SI and the subspace ( E2 I B, ) is spanned by the columns of 
Sz.Thus,(E,JB,)=C"~ifandonlyifS,isofrankn,,and(E2~B~)=C"~ 
if and only if S,  is of rank n,. Thus,  the corollary is proved. 

Note that, if B2 of (3) is a vector (a matrix with one column) with no 
zero entries, then the subsystem described by the second equation of (3) 
1i.e.. the algebraic part of the system (3)] is C-controllable if and only if 
the nilpotency of the  system  is n2  - I .  For many practical models, the 
matrix E in ( I )  is rank deficient by more than 1, and so the nilpotency of 
the system is less than n 2  - 1. Thus, many practical models with simple 
input will not be C-controllable. This property indicates the "restrictive- 
ness"  of the property of C-controllability. In the case of the state variable 
system. controllability is a ''dual''  of observability. However. C- 
controllability ad1 not be a "dual" of the obvious extension of observabil- 
ity to descriptor systems. 

Observability deals with the  following system: 

Ei(t)=Ax(t)+Bu(t)  

y(t)=Cx(r) ( 10) 

where E, A ,  x(  t ) ,  u ( r ) ,  and B are as defined for ( I ) ,  C is an n Xr complex 
matrix, and y (  r )  is a complex vector in C '. 

Definition:  We say the system (IO) is observable if e d  only if, for 230, 
x ( r )  can be computed from E .  A.  8, C. y ( f )  and u ( r )  for any i ~ [ 0 ,  h].  

Consider observability for a descriptor system in standard canonical 
form: 

Note that x?(?) can always be computed since x,(r)= -E;;;lE;B2~('1(t) 
for a given B, and u ( r ) .  

The system ( I  1) is observable if and only if we can compute x,(  r )  from 
E,. B , .  Cl,y(f)-C2~2(t) ,  and ~ ( t ) .  Thus, we conclude the following. 

Theorem 6: The system ( 1  I )  is observable if and only if the system 
described by the  state variable equation is observable, Le., the system ( I  1)  
is observable if and only if the following system is observable: 

i , ( t ) = E , x ( t ) + B , u ( r )  

y ( r ) = C , x ( t > .  
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Corolluv 2; The system ( I  I )  is observable if and only if  the  the 
augmented matrix 

T= [ C:l ErC:I . . . I (  E;)'"- IC:] 

is  of rank n,. 

systems. 
Coro l lq  2 is the classical result of observability for state variable 

Theorem 6 indicates that observability is a "dual" of R-controllability. 
Results in Rosenbrock [ I  I] can be applied to Theorems 4. 5, and 6 to 

express controllability and observability of  the descriptor system ( I O ) .  We 
apply the following result from Rosenbrock to obtain Theorem 7. 

Let A and B be n X n  and n X r  matrices. respectively-. The following are 
equivalent. 

a) ( s f - A J B )  is of full row rank for all finite 5 .  ( I  is  the identity 
matrix.) 

b) The augmented matrix [BIABIA2BI.-IA"B] is of  full  row rank. 
Consider E= 163E2. A = € , @ I  (where 63 denotes direct sums). and 

B T = ( B : .   B T ) ,  Then ( s E - A I B )  is of full row rank for all finites if and 
onlyiftheaugmentedmatrix(sI-E,~Bl)isofrankn,.since(sE2-I~B) 
is of rank 11 for  all finite s. To see that ( s E ,  - I :  B )  is of rank n, for all 
finite 5 ,  note that E,  is nilpotent and, therefore, it is similar to an upper 
triangular matrix with zeros on the diagonal. Thus. ( sE2 - I )  is similar to 
an upper triangular matrix with - 1's on the diagonal and. therefore, it is 
of full rank. Also, ( € 1  B )  is of full rank if and only if the augmented 
matrix (E , IB , )  is of rank n2. since ( I I B , )  is  always of rank n,. Thus, 
applying Rosenbrock's result above, we conclude the following. 

1) ( s E - A  I B )  is of full rou' rank if and only if the augmented matrix SI 
defined in Corollary 1 has full  row rank. 

2) ( E (  B )  is of  full  row rank if and only if the augmented matrix S, in 
Corollary 1 has full  row rank. 

Applying the above two statements and Corollap 1. we can conclude 
that system (3) is R-controllable if and only if ( s E - A I  B )  is of full row 
rank and that system (3) is C-controllable if and only if (sE-A I  B )  and 
( E l  B )  are of full  row rank. Also, it is observable if and only if ((x€- 
A)TICT) is of  full  row rank. Since controllability and observability are 
invariant under a transformation of basis or variables, we have proved the 
following. 

Theorem 7: 
a) The descriptor system ( I )  is R-controllable if and only if the 

augmented matrix (sE-AI B )  is of full rank. 
b) The descriptor system ( I )  is C-controllable if and only if  the 

augmented matrices (sE-AI 8) and ( € 1  B )  are of  full rank. 
c) The descriptor system ( I )  is observable if and only if the augmented 

matrix ( ( X E - A ) ' ~ C ~ )  is of full rank. 
We speculate that there could be other suitable extensions of controlla- 

bility to continuous descriptor systems. The definition should be made in 
the light of solutions of various optimal control problems involving 
continuous descriptor systems. Verghese and Kailath [ 121 and Verghese. 
Kailath. and Van Dooren [I31 defined strong controllability, which ap- 
pears to be intermediate between C- and R-controllability. By their 
definition, the descriptor system (IO)  is strongly controllable if ( E ,  B ,  ) 
=C"I and (E21B2)>rangeofEz. 

V. COKCLUSION 

We  have characterized solvability of descriptor systems in standard 
canonical form (3). Transforming a descriptor system to standard canoni- 
cal form is computationally unacceptable and often not even feasible. The 
results stated in Section I1 have led to the development of numerical 
methods for descriptor systems that are stable and preserve sparsity. (See 
Sincovec.  Yip. and Epton [6].) 

We  have characterized reachability for descriptor systems in standard 
canonical forms. The theory developed in Section 111 is essential for the 
extension of the concept of controllability and observability from the state 
variable systems to descriptor systems, as described in Section IV. We 
have defined observability and two types of controllabilities and proved 
corresponding necessary and sufficient conditions. We note the restrictive- 
ness of some of our definitions, and speculate that there could be more 
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suitable definitions for controllability and observability with respect to 
the solutions of various optimal control problems. 

APPI-NDIX 

Proof of Theorem 1: We  show, a) ts equ:vaJent to b). 
We first show that the negation of a) implies the negation of b): ( A ,  E )  

not solvable is equivalent to the the existence of a nonzero vector x such 
that ( E + h A ) x = O  for all X E C .  We can express x as a minimum degree 
poly-nomial in X :  

X = Y ~  +X.X,  +h'.~2 + . . . + X h r h .  X,) + O s  .xA + O .  (A.l) 

Substituting the right-hand side of (A. I )  into ( E + X A ) r = O ,  we obtain  the 
following system of equations: 

Ex,, = 0 

€.x,- , = - A K ,  1 <;<k- 1 

As, =O.  ( A 4  

Kote that x A  E X ( ) .  .xA ~ I E X , .  .xA ~ E A'?: . .. E X,, and also x,, E Ker E 
and s,,+O. Thus, b) implies a). Now we show that the negation of b) 
implies the negation of a): Suppose x A  is the first such subspace with 
Ker En,%',, nonzero. Take .xo nonzero in th s  intersection and, with the 
definition of x, ,  A x ,  = - E.x, where x ,  E X, ~ I is uniquely defined. Simi- 
larly. .x: EXA_,. x A  EX,, are uniquely defined. so (A.2) holds. which 
negates a). Therefore. if .x is as defined in equation (A.1). then .x is 
nonzero. and (E-X . . l ) s=O for all XEC. Thus. a) implies b). 

Det( E r - X A T ) ~ O  is  the same as  det( E - X A ) s O .  so, by analogy nith 
b).  a) is equivalent to c). 

The  equivalence of e) and a) can be shown in a similar manner. 
To prove the equivalence a) and f), we say a matrix D is a direct sum of 

two matrices Dl and D, if D is of the form 

' = [  D:]  

and we write D=D,63Dz and call Dl.   D,  the direct summands of D. 
Gantmacher [I]  has shown that a) is equivalent to the existence of 
nonsingular matrices P and Q such that 

P E Q + P A Q = ( Z + X E , ) B ( E , + h I )  

Xvhere E,  is nilpotent and the first and second direct summands  are 
contributed by the finite and infinite elementaq divisors. respectively. 
Thus. a) is equivalent to 0. 

Thus. we complete the proof of Theorem 1. 
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On the Existence of a  Negative Semidefinite, 
Antistabilizing Solution to the  Discrete-Time 

Algebraic  Riccati  Equation 

EDMOND JONCKHEERE, MEMBER, IEEE 

Abstract-In the problem of infimizing a not  necessarily  positive 
semidefinite quadratic cost subject to a linear  dynamical  constraint, it 
is usually expected  that  the existence of a  lower  bound to the  cost is 
equivalent to the existence of a negative semidefinite, antistabilizing 
solution to the algebraic Riccati  equation. By a  counterexample, it is 
shown that this equivalence breaks down  in the  discrete-time case. 
This phenomenon, as well as the whole  question of the  existence of the 
appropriate solution to the algebraic Riccati  equation,  are  inves- 
tigated in detail. 

I. INTRODUCTION 

Consider  the discrete-time fiite-dimensional linear system 

x(k + 1) = Ax(k) + Eu(k); (1) 

k = i, -, t; X(Z) = 

where x(k )  E R” and u(k) E R r; A and E are time-invariant matrices of 
compatible sizes; the pair (A,  B )  is reachable; the  matrix A is asymptot- 
ically stable; by feedback invariance, this  last  condition is not restrictive 
171, [ 141, [ 151.  Together  with (l), define  the quadratic cost 

f-1 

J [ L U ( L ~ ) I  =z w [ x ( k ) , u ( w l ,  (2 1 
k=i 

W(x, u )  + 2 ~ ’ s ~  + U’RU (x E Bp”, u ER‘) 

where u(i, r )  = [u’(i) ... u’(t - I ) ]  ’. The overall weighting matrix W = 
(f$> is symmetric, but  not necessarily positive semidefinite. 

The lack of positive semidefiiiteness of W directly leads to the ques- 
tion of whether or not the cost is bounded  from below. I t  is well 
known [ 11 -[ 101 that  this question involves a rather‘intricate string of 
timedomain and frequencydomain conditions. More precisely, let 
1$r(-- ,  t)  be the Hilbert space of square summable control sequences 
{ u ( k ) ~ R ~ : k = . . . , t - 2 , r - l } . F o r a l l u ( - m , t ) € 1 ~ r ( - - , t ) , d e f t n e  
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X o , u ( - - , n ( f )  = Af-l-’Bu(k). This allows the precise defimi- 
tion of J[O, u(--m, i)] & ZLz-0. w[XOqu(-,k)(k),  u(k)].  From  the 
linearquadratic  nature of the problem,  ~t 1s clear that 

where R ( - - ,  t )  is a  symmetric, semi-infinite matrix representing a 
bounded, self-adjoint Hilbert space operator, whose structure has been 
investigated in detail in [ 201 and [21]. The problem of the existence of 
a lower bound  to the  cost, and  its connection with the related  time- 
domain and  frequencydomain conditions, can now be made precise. 

Theorem I: Consider the problem (l), (2) with ( A , B )  reachable and 
A asymptotically stable. The following statements are equivalent. 

a) For al l  t > i, there exists  a bounded symmetric  matrix N(t - i) E 
R n X n  such thatJ[& u(i ,  r ) ]  > €‘Ar(r - i)t for all .g and all u(i, t) .  

b)  The Riccati equation 

n(k - 1)  =A’rI(k)A + Q - [S +A’n(k)t?] 

* [ R  + B’n(k)B]+[S’ + B’n(k)A1, 

R + B’n(k)B 2 0. 

Ker [ R  -t B‘n(k)B] 5 Ker [S + A’n(k)B],  

n(r) = 0 

has a global solution {n(k) : k = .-, t - 1, t} .  
C) R ( - m ,   t )  > 0. 
d) J[O, u(-- ,  t ) ]  0 for all u(--, t )  E l i  r ( -m,  t) .  
e) The backwards  infimization  problem 

has  a  solution  of the  form JT(s) = -q’n-V with n- = < 0. 
f )  The linear matrix  inequality 

r - 
A(n) = 1 A ’ I U - n + Q  S + A ’ n B  

S‘ + B’nA 

has  a  solution n = n’ < 0. 
Moreover, should any of these statements hold,  then A(n3 2 0, 

and any solution n = n‘ of A(n) 2 0 is such that rI- < II. 
Proof: This result is proved for the single-input case in [20, 

Theorem 21. The generalization to the  multi-input case is straightfor- 
ward. 

The algebraic Riccati equation is now introduced. 
Theorem 2: Consider the problem (l), (2) with (A, E )  reachable and 

A asymptotically stable. If  the algebraic Riccati  equation 

K ( l l ) ~ I I - A ‘ l J A - Q + ( S + A ‘ n B )  

(R + B‘rn)+(S‘ + B ’ n A )  = 0 (7 a) 

R+B’ITB>O (7b) 

Ker (R -t B ’ m )  E. Ker (S + A’-) (7 c> 

has a  solution n = n’ < 0 satisfying the additional  conditions I &’[A - 
B(R + B ’ n ~ ) + ( s ’  + B ’ m ) ]  I > 1, k = 1, --, n ,  then any of the state- 
ments of Theorem 1 is verified. 

Proof: Let n be such a  solution. I t  is easily seen that J [ E ,  u(i, 
t) l  = g’nc + z;;;[x‘(k)u’(k)l A ( n ) [ x ‘ ( k ) u ’ ( k ) ] ’ - x ’ ( t ) ~ ( t ) .  Since n 
is a  solution of the algebraic Riccati equation, A (n) > 0. This and 
n s 0 yield statement a), and hence the  other  statements of Theorem 
1. 
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