ELSEVIER

Systems & Control Letters 34 (1998) 241-247

SYSTEMS
& CONTROL
LETTERS

Nonlinear observer design using Lyapunov’s auxiliary theorem

Nikolaos Kazantzis, Costas Kravaris *

Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA

Received 11 June 1997; received in revised form 21 November 1997

Abstract

The present work proposes a new approach to the nonlinear observer design problem. Based on the early ideas that
influenced the development of the linear Luenberger observer theory, the proposed approach develops a nonlinear analogue.
The formulation of the observer design problem is realized via a system of singular first-order linear PDEs, and a rather
general set of necessary and sufficient conditions for solvability is derived by using Lyapunov’s auxiliary theorem. The
solution to the above system of PDEs is locally analytic and this enables the development of a series solution method, that
is easily programmable with the aid of a symbolic software package. (© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The availability of all the state variables for direct
measurement is a rare occasion in practice. In most
cases there is a true need for a reliable estimation of
the unmeasurable state variables, especially when they
are used for the synthesis of model-based controllers
or for process monitoring purposes. For this particu-
lar task, a state observer is usually employed, in or-
der to accurately reconstruct the state variables of the
process. In the case of linear systems, the observer
design theory developed by Luenberger [12], offers a
complete and comprehensive answer to the problem.
In the field of nonlinear systems, the nonlinear ob-
server design problem is much more challenging and
has received a considerable amount of attention in the
literature. Numerous attempts have been made for the
development of nonlinear observer design methods.
One could mention the industrially popular extended
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Kalman filter, whose design is based on a local lin-
earization of the system around a reference trajectory,
restricting the validity of the approach within a small
region in state space [7]. More recent attempts include
Zeitz’s extended Luenberger observer [17], which is
in the same spirit as the extended Kalman filter, based
upon a local linearization technique around the re-
constructed state. In [1] a nonlinear observer design
method is proposed, that places the eigenvalues of the
linearized error equation at certain values, that are lo-
cally invariant with respect to the operating point of
the system. The first systematic approach for the de-
velopment of a theory of nonlinear observers was pro-
posed by Krener and Isidori [11]. In their pioneering
work, the authors made use of a nonlinear state trans-
formation to linearize the original system up to an ad-
ditional output injection term. Linear methods were
then employed to complete the observer design pro-
cedure. However, this linearization approach is based
upon a set of extremely restrictive conditions, that can
hardly be met by any physical system. Nonlinear co-
ordinate transformations have also been employed to
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transform the nonlinear system to a suitable “observer
canonical form”, where the observer design problem
may be easily solved [2, 6, 14]. All these approaches
however, impinge on the problem of the existence of
certain sets of rather restrictive conditions in their the-
oretical body. Major comprehensive contributions to
the nonlinear observer design problem can be found
in recent pieces of research work, where a different
type of approach is adopted, enabling the derivation
of theoretically sound results [4, 8, 15, 16]. In par-
ticular, one should mention the high gain nonlinear
observers proposed by Gauthier et al. [8], as well as
the Luenberger-like nonlinear observers developed by
Ciccarella et al. [4]. Both approaches however, rely on
restrictive Lipshitz or Holder continuity conditions. In
addition, Tsinias [15, 16] proposed a novel approach
to the above problem by establishing a Lyapunov-like
sufficient condition for the existence of a nonlinear
observer. However, the construction of an appropriate
Lyapunov function-candidate remains still a difficult
and challenging task.

Motivated by some preliminary results in the de-
sign of nonlinear observers that have been succesfully
applied to the problem of catalyst activity estimation
[9], the present work aims at the development of a sys-
tematic nonlinear observer design method. The pro-
posed nonlinear observer design method generalizes
Luenberger’s early ideas on the problem [12], while
at the same time it enjoys the advantage of being
based on a fairly general set of conditions. In order to
meet the main design objectives, the problem under
consideration translates into the problem of solving a
system of singular first-order linear partial differential
equations (PDEs). The specific system of PDEs ad-
mits a unique and locally analytic solution, according
to the so-called Lyapunov’s auxiliary theorem [13].
Moreover, the analyticity of the solution of the above
system of PDEs enables the development of a series
solution method. Then, a nonlinear observer may be
designed, possessing a nonlinear gain that is computed
from the solution of the above system of PDEs.

2. Formulation of the nonlinear observer design
problem

We consider single-output autonomous systems
with the following state-space representation:

x=f(x),  y=hx) (M

where x € R” is the vector of state variables and y € R
the output variable. It is assumed that f(x) is a real
analytic vector field on R" and that A(x) is a real an-
alytic scalar field on R". Let the origin x =0 be an
equilibrium point of (1): f(0) =0 with £(0) =0. The
following assumptions are made:

Assumption 1. The Jacobian matrix F of the f(x)
vector field evaluated at x=0: F=0f(0)/0x has
eigenvalues k;, (i=1,...,n) with

0¢ CH{ki,ka,... kn}, 2)
where CH stands for the convex hull of a set.

This assumption essentially implies that system (1)
can be either locally asymptotically stable or totally
unstable at the origin. Therefore, it poses a restriction
to the proposed nonlinear observer design method.

Assumption 2. Denoting by H the 1 xn matrix:
H = 0h(0)/0x, it is assumed that the following n X n
matrix O:

H
HF
0= (3)
HF"71
has rank n.

This assumption states that the linearization of (1)
around the origin x =0 is observable.

Motivated by Luenberger’s original ideas on the
linear observer design problem [12], the proposed ap-
proach will try to build a dynamic system which,
driven by the output measurement y, is capable of re-
constructing a nonlinear invertible function 7'(x) of
the state vector x. In particular, the following defini-
tion is proposed, which might be viewed as a gener-
alization of Luenberger’s early notion of observers to
nonlinear systems [12]:

Definition 1. A dynamic system:
z=¢P(z ) 4)

with z€R", y€R, ¢:R" X R— R", is called an ob-
server for (1), if there exists a locally invertible
(around the origin) map 7'(x) with 7:R" —R" and
T(0)=0, such that if z(0) = T(x(0)) with x(0) near
zero, then z(¢)=T(x(¢)) for all #>0. In particular,
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when T is the identity map, (4) is called the identity
observer for (1).

An immediate consequence of the above definition
is that, if ¢ and T are related via:

0
T r@=6r@he), 6rO.0=0 )

then the system (4) is an observer for the system (1),
whenever 7T'(x) is invertible. In the special case of an
identity observer, condition (5) collapses to

J(x)=d(x,h(x)),  $(0,0)=0. (6)

Condition (6) is the well-known mathematical re-
quirement that the standard definition of the nonlinear
observer entails:

Definition 2 (Tsinias [16]). Consider the dynamic
system:

z=(z ) )
with z € R” and the region:
M={(x,z)ER"xR" : x==z}. (8)

Assume that for any neighborhood U of M there is a
neighborhood V', such that the solutions of the com-
posite system (1) and (7) starting in ¥, remain in U
for all times ¢ > 0. Furthermore, assume that there is
a neighborhood W of M such that for all solutions of
the composite system (1) and (7) starting in W, their
distance from M goes asymptotically to zero. Then,
the dynamic system (7) is called an observer for sys-
tem (1). Notice, that in such a case, M is a positively
invariant set, and therefore Eq. (6) holds true [16].

Remark 1. Contrary to Definition 2, which imposes a
stability requirement on the observer (7), Definition 1
does not impose such a requirement, in the same spirit
as the original definition of the linear observer pro-
vided by Luenberger [12]. The stability requirement
will be imposed at the observer design stage, where ¢
will be a priori selected to ensure asymptotic stability
of the observer (4).

2.1. An associated system of first-order PDEs

Let us now return to the nonlinear observer of
Definition 1. Notice that the vector field ¢(z, y) in the
observer dynamic equations (4) may be arbitrarily
selected, as long as the system of PDEs (5) admits

an invertible solution 7'(x). For simplicity reasons,
it would be more practical to request linear observer
dynamics in the transformed states z by choosing

¢(z,y)=Az + by, 9)

where 4, b are constant matrices with appropriate di-
mensions. In this way stability of the observer (4) can
be enforced, with arbitrarily selected eigenvalues for
the matrix 4. Under the above selection, condition (5)
will be satisfied for 7(x) = w(x), where w :R" — R" is
the solution of the system of PDEs

aa—:f(x):Aw—kbh(x), w(0)=0. (10)

Notice that the above set of first-order PDEs has a
common principal part [5], that consists of the com-
ponents f;(x) (i=1,...,n) of the f(x) vector field.
Moreover, the origin is a characteristic point for the
above system of PDEs, since the principal part van-
ishes at x =0. In order to solve the above system of
PDE:s (10), we have to distinguish two cases, depend-
ing on the region of validity of the analysis relative to
the characteristic point x =0.

e Case 1: If a solution of (10) is sought in a region
of state-space that does not contain the characteris-
tic point x = 0, the existeness and uniqueness con-
ditions of the Cauchy—Kovalevskaya theorem are
satisfied and therefore, the solution can be found
by applying the well-known method of character-
istics [5]. For example, if the inherently transient
behavior of a batch chemical reactor is considered,
then it will inevitably prevent the trajectories of the
corresponding dynamic model to reach the x=0
characteristic point, in any finite time interval [9].
Letting 4;,b; (i=1,..., p) be the rows of the 4,5
matrices respectively, and since the above system
of PDEs has a common principal part, the charac-
teristic system of ordinary differential equations of
(10) is of the following form [5]:

dxi - de -
a—ﬁ(x), K—Ajw—i—bjh(x) (11)

with i=1,...,n and j=1,...,n. Once arbi-
trary initial Cauchy-data on a non-characteristic
surface have been specified, the integration of
Eq. (11) provides the family of integral curves of
Eq. (10), that generates the appropriate integral
surface, in accordance to the general method of
characteristics [5].

e Case 2: If a solution of Eq. (10) is sought in a
neighborhood of the characteristic point x =0, the
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conditions of the Cauchy—Kovalevskaya theorem

are not satisfied [5]. However, for the specific struc-

ture of the system (10), Lyapunov’s auxiliary the-
orem can be employed to guarantee the existeness
and uniqueness of the solution.

The theoretical results in the next section focus
on Case 2. However, with minor modifications, they
would be applicable to Case 1 as well.

We now proceed with the presentation of
Lyapunov’s auxiliary theorem, that forms the basis for
the development of the proposed nonlinear observer
design method.

Lyapunov’s Auxiliary Theorem [13]. Consider the
following first-order system of quasi-linear partial
differential equations:

%WMLW):!//()C,W), w(0)=0 (12)
X
with
¢
$(0,0)=0, (0,0)=0, —(0,0)=0, (13)
ow

where w:R"— R? is the unknown vector field of
Eq. (12), and ¢p(x,w): R" x R? = R" (x,w): R" X R?
— R? are analytic vector fields. It is assumed, that
the eigenvalues k; (i=1,...,n) of the n X n matrix
0¢(0,0)/0x satisfy the following condition:

0¢ CH{k\,ka,... . ky} (14)
and are not related to the eigenvalues 2; (i=1,..., p)

of the p x p matrix oy(0,0)/0w through any equa-
tion of the type:

Zmik,':)»j (15)
i=1

(j=1,..., p), where all the m; are non-negative in-
tegers that satisfy the condition:

im»o. (16)
i=1

Then, the above first-order system of PDEs (12), with
initial condition w(0)=0, admits a unique analytic
solution w in a neighborhood of x = 0.

Let us now consider the linear case, where
¢(x,w)=Fx and Y(x,w)=Aw + bHx, with F,4,b, H
being constant matrices with dimensions: n X n, n X n,

1 x n and n x 1, respectively. Then, the unique solu-
tion of Eq. (12) is: w= Wx, where W is the solution
of

WF — AW = bH. (17)

As proven in [3, 12], the above matrix equation (17)
admits a unique solution /¥, as long as the F, 4 ma-
trices do not have common eigenvalues, and this is
guaranteed by the assumptions of Lyapunov’s auxil-
iary theorem.

3. Main results

We are now in a position to present the main the-
oretical results of the present paper on the nonlinear
observer design problem.

Theorem 1. Suppose that for the dynamic system
(1), Assumptions 1 and 2 hold. Consider the nth order
dynamic system:

z=Az + by, (18)

where the n x n matrix A is Hurwitz, its eigenvalues
are not related to the eigenvalues of F through any
equations of the type (15),(16), and that the pair
{4, b} is chosen to be controllable. Then, there exists
a locally invertible analytic nonlinear map z = T(x),
that makes the dynamic system (18) an observer for
system (1) in the sense of Definition 1.

Proof. In view of Definition 1, if the nonlinear map
T'(x) satisfies the following set of PDEs:

a—Tf(x):AT+bh(x) (19)
Ox

then z =T'(x) follows the dynamics (18). The above
condition is exactly the system of first-order PDEs
(10), associated with the original system (1). Under
the assumptions stated, the system of PDEs (10) ad-
mits a unique analytic solution w = T'(x), according to
Lyapunov’s auxiliary theorem. Furthermore, if one ap-
plies the linear differential operator d/0x to both sides
of Eq. (19) and evaluates all the resulting quantities
at the equilibrium point x = 0, one obtains:

a—T(O)F:Aa—T(O) + bH. (20)
Ox ox

The above is a matrix equation of the type (17), with
unknown the Jacobian: ¢7(0)/0x evaluated at x =0.
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According to a well-known result, the stated assump-
tions: observability of the pair {H, F} and controlla-
bility of the pair {4, b}, represent a set of necessary
and sufficient conditions for the solution of Eq. (20)
to be nonsingular [3, 12], and therefore the solution
T(x) of Eq. (19) to be locally invertible around x = 0.

U

Remark 2. The above result may be extended for the
case of multiple-output systems as well [10].

Remark 3. The above result generalizes to the case
where the requested z-dynamics is of the form:

t=dz + G(y), 21)

where G(y) is locally analytic around the origin and
G(0)=0. The result remains unaffected, as long as
0G(0)/0y #0. In this case, the matrix dG(0)/0y re-
places b in the proof. Also, all the results that will
follow remain valid under this generalization.

Remark 4. It should be emphasized that the above
linearization approach is fundamentally different from
the one adopted by Krener and Isidori [11]. As a first
step, the authors in [11] consider a nonlinear coordi-
nate transformation, to transform the original system
(1) into a linear one (with the addition of an output
injection term), which has a linear output map as well:

z=Az +Y(y),

The design of the observer is then completed in a sec-
ond step, where a standard linear Luenberger observer
is built for the transformed system (22) [11]:

E=A2 — L(y — c2) + ¥(»), (23)

y=cz. (22)

where L is the constant observer gain and Z the es-
timate of the transformed vector z. Finally, the es-
timate X of the original state vector x is recovered,
through the inverse transformation employed in the
first step of the design procedure. In the above fwo-
step approach, the requirement of a linear output map
in the transformed system (22), represents the main
mathematical reason for the appearance of a very re-
strictive set of conditions (involutivity conditions) in
their proposed solution [11]. In the present work, the
state observer is viewed as a dynamic system that is
driven by the measured output variable, and that can be
designed through an appropriate coordinate transfor-
mation directly and in only one step, without the re-
dundant requirement of linearity of the output map

of the transformed linear system (18). Indeed, after
solving the linear system of first-order PDEs (10), the
transformed output map becomes: y =Ah(7T~!(z)) and
is, in general, nonlinear.

Theorem 2. Let w=T(x) be an invertible solution
of Eq. (10). The dynamic system

0 -1
aT(ff)] b(y — h(x)) (24)
X

fc:f(fc)—i—{

is an identity observer for the original system (1),
such that

d
3/ T®) = T(x) =AT(X) - T(x)). (25)

Proof. One obtains:

d . LT, T,
(T = TE0)= 5k = s

or .. or or [or]™ .
S ORI

= AT (%) — AT(x) + bh(%) + b(y — h(Z)) — bh(x)

=A(T(X) — T(x)). (26)

In summary, the proposed nonlinear observer is of the
form

X=f()+LENy = h(R)) (27)

with a nonlinear gain

p .
L= Gw)| o (28)

where w = T'(x) is the solution of Eq. (10). Because
A is Hurwitz and T'(x) is a continuous invertible map,
condition (25) guarantees that X asymptotically ap-
proaches x. Notice the state-dependent nonlinear gain
L(x) of the proposed observer (24), as opposed to the
constant gain of the linear case. Indeed, in the linear
case, where: f(x)=Fx and /(x) = Hx, the problem of
solving the system of PDEs (10) reduces to the prob-
lem of solving the matrix equation:

TF — AT = bH. (29)

Under the stated assumptions, the corresponding
system of PDEs (10) admits a unique solution:
w = Tx, with T being the unique invertible solution of
Eq. (29). Therefore, the constant gain L=T""b is
obtained, and the proposed observer simply becomes
the well-known linear Luenberger observer [12]. [J
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Example. Consider the following nonlinear system:
Xp = —Xx2,

Y=+ Dl+1)—-1,

y=—x3 +x1(x; +2)(x; + 1). (30)

The above system is locally observable at the equilib-
rium point (0,0) and the eigenvalues of the Jacobian
matrix:

0—1
(1)
are k) = % — %\/gi, ky=
witz matrix:

()

with eigenvalues 4, = — 1 + 1v/3i, L= — 1 — 1V/3i,
such that conditions of the type (15), (16) are avoided.
Moreover, we choose b=(0 1)T so that the pair
{4,b} is controllable. Since all the assumptions are
now valid, the first-order system of PDEs

1+ 1/3i. We select the Hur-

aTl(— 2)+—(<x1 Dot 1) = 1)=T,

)+ S D+ D= )

= T =T — x5 +x(x +2)(x2+ 1) (31)

admits an invertible analytic solution, in a neighbor-
hood of the equilibrium point (0, 0). Indeed, assuming
a certain polynomial form for 7} and 75, we inserted
their expressions into (31) and evaluated the corre-
sponding coefficients by equating terms of the same
order. We found:
T =x1 + x7, T, =x1x2 + x1. (32)

Considering the Jacobian:

or 1 1
5_(14—)62 xl) (33)

we may conclude that it is indeed invertible at (0,0).
The nonlinear gain L(x) of the proposed observer
is

or\ ™! 1 _
L(XI,XZ): <a) b:m ( }) . (34)

Hence, the dynamic equations for the proposed non-
linear identity observer become

1
xlf)C271

(v + 1 —21G1 +2)F2 + 1)),

)ACl = —)C2—

. 1
H=F +DE+1) -1+ — :
X1 — X — 1
(y+3 —21E +2)(E + 1)) (35)

4. Series solution of the system of PDEs

In order to be able to make practical use of the
proposed nonlinear observer design methodology, one
must provide a solution scheme for the associated
system of first-order linear PDEs (10). Note that the
method of characteristics is not applicable because
the aforementioned system of PDEs (10) is singu-
lar. However, since f(x), #(x) and the solution 7T'(x)
are locally analytic around the reference equilibrium
point, it is possible to calculate the solution 7'(x) in
the form of a multivariate Taylor series around the
reference equilibrium point. The method involves ex-
panding f(x), A(x) and the unknown 7'(x) in a Tay-
lor series and equating the Taylor coefficients of both
sides of the PDEs. This procedure leads to recursion
formulas, through which one can calculate the Nth or-
der Taylor coefficient of 7'(x), given the Taylor coef-
ficients of T'(x) up to the order N — 1.

In the derivation of the recursion formulas, it is
convenient to use the following tensorial notation:

(a) The entries of a constant matrix 4 are rep-
resented as a/, where the subscript i refers to the
corresponding row and the superscript j to the corre-
sponding column of the matrix.

(b) The partial derivatives of the u component f,(x)
of a vector field f(x) at x =0 are denoted as follows:

i afﬂ ij azfll
fp - axi (0)7 f,u ﬁx, ( )
>,
ijk . __ © JH
N = 0x;0xjOxyc T i ) (36)
etc.

(¢) The standard summation convention, where re-
peated upper and lower tensorial indices are summed

up.
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With this notation the /th component 7;(x) of the
unknown solution 7'(x) is expanded in a multivariate
Taylor series as follows:

1 1
T](X): FT,'X;‘I + ETl'lle‘lxiz

|

+...+ﬁTlmz l’xilxiz"'xi,»r+"" (37)
Substituting the Taylor series expansions of 7'(x),
f(x) and A(x) into Eq. (10) and matching the Taylor
coefficients, the following relation for the Nth order
terms may be obtained:

N—1
STS Ty i = g i 4 by, (38)
L=0(1)
where iy,...,iy=1,...,n and /=1,...,n. Note that
the second summation symbol in Eq. (38) should
be regarded as summing up the relevant quantities
over the ()') possible combinations of the indices
(i1,...,iy). Egs. (38) represent a set of linear alge-
braic equations in the unknown coefficients T’ ,ﬂ‘ el
The series solution of the PDEs (10) around an
equilibrium point of interest, may be accomplished in
an automatic fashion, by exploiting the computational
capabilities and commands of MAPLE. Specifically,
an efficient MAPLE code to automatically generate the
various coefficients of the multivariate Taylor series

expansion of the unknown solution of Eq. (10) has
been developed [10].
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