
Direct prediction-error identification of

unstable nonlinear systems applied to flight

test data

Roger Larsson ∗,∗∗ Zoran Sjanic ∗,∗∗ Martin Enqvist ∗

Lennart Ljung ∗
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Abstract: Control system design for advanced, highly agile fighter aircraft, with unstable
nonlinear aerodynamic characteristics, rely heavily on flight mechanical simulations. This makes
the accuracy of the aerodynamic model in the simulators very important. Here, two methods
for estimating parameters of nonlinear unstable systems where the control system is unknown
are presented. Both approaches are direct prediction-error methods, either with a directly
parametrized observer or with an Extended Kalman Filter as a predictor. These methods have
been validated on simulated data, as well as on real flight test data and all approaches show
promising results.
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1. INTRODUCTION

In the early year of motorized flight, the Wright brothers
flew their Flyer I manually. Later, analysis [Culick, 2001]
shows that this aircraft had both unstable and nonlinear
aerodynamic pitch characteristics. Fortunately, the time
constants were small enough for the brothers to handle.
As design of aircraft led to higher speeds it was necessary
to turn to inherently pitch stable solutions. Today’s highly
maneuverable fighter aircraft are designed to be unstable
in the pitch plane in order to gain performance. The speed
has increased so much that supersonic flight is not uncom-
mon. Near transonic speed, i.e. close to the speed of sound,
nonlinearities can occur due to aerodynamic shocks mov-
ing over the aircraft. The instability and nonlinearity have
made the modern fighter aircraft dependent on control
systems that aid the pilot in flying the aircraft. In order to
design the control laws, high quality simulation models are
needed. A modern fighter aircraft such as JAS 39 Gripen
has a very complex flight control system which is gain
scheduled and handles many different flight modes. It is
therefore desirable to be able to use a direct identification
method [Ljung, 1999] on flight test data, i.e. to be able to
identify the system without any knowledge of the control
system.

Several books on the subject of aircraft identification have
been published recently [Jategaonkar, 2006, Klein and
Morelli, 2006, Tischler and Remple, 2006]. However, most
work in this field has focused either on unstable and linear
[Ghaffari et al., 2007] or stable and nonlinear systems
[Bruce and Kellett, 1998, Paris and Alaverdi, 2005]. There
are some papers that mention both nonlinear and unstable
system, like Horton [1997] and Jategaonkar and Thielecke

[2000], but where the methods are different from the ones
presented in this paper.

In this paper, methods for estimating parameters for
a nonlinear unstable system are presented. The theory
is based on the direct prediction-error method. Here,
two different predictors have been used, a parametrized
observer and an Extended Kalman Filter. These methods
have been applied to both simulated data and real flight
test data.

The methods are described in Section 2. In Section 3,
results based on simulated data are presented. An esti-
mation on real flight test data is given in Section 4 and
then conclusions are made in Section 5.

2. METHOD

In this paper, the following discrete-time state-space rep-
resentation of a nonlinear output-error model is used:

x(t+ 1) = f(x(t), u(t); θ),

y(t) = h(x(t), u(t); θ) + e(t),
(1)

where θ is the unknown parameters to be identified, e(t) is
white noise with zero mean and covariance matrix R, x(t)
is a n×1 state vector, u(t) is am×1 input vector and y(t) is
a p×1 output vector. This is a nonlinear generalization of
the methods in [Forssell and Ljung, 2000] which showed
that for a linear unstable system with an output-error
structure, the parameters could be estimated consistently.

A predictor of the output for the nonlinear model (1) can
be written as

x̂(t+ 1, θ) = f(x̂(t, θ), u(t); θ) +K(t, θ)ε(t, θ),

ŷ(t, θ) = h(x̂(t, θ), u(t); θ),

ε(t, θ) = y(t) − h(x̂(t, θ), u(t); θ).

(2)
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The prediction error ε(t, θ) should ideallly represent the
part of y(t) that cannot be predicted from past measure-
ments. The prediction error can be used to define a scalar
loss function

VN (θ, ZN ) =
1

N

N
∑

t=1

1

2
ε(t, θ)T ε(t, θ), (3)

where ZN represents the N input-output measurements.
This loss function can be minimized to obtain an estimate

θ̂ = arg min
θ

VN (θ, ZN ) (4)

of θ.

This is called the prediction-error method (PEM) [Ljung,
1999]. In order to use PEM, a stable predictor is re-
quired. The choice of the predictor is not obvious if the
system is unstable and nonlinear. Here, two approaches
for calculating the observer gain K(t, θ) in (2) that gives
a stable predictor have been studied. The first is based
on a parametrized observer (PO) approach with direct
estimation of K and the second are based on an Extended
Kalman Filter (EKF) approach where the observer gain
is time-varying. In this case the 25 first prediction errors
have been excluded from the loss function (3) in order to
reduce the effects of the transient from the EKF.

2.1 Parametrized Observer (PO) Approach

A simple approach is to let the PEM estimate the observer
gain, i.e. to include K as a free time-invariant parameter
in the θ vector as shown in (5).

x̂(t+ 1, θ) = f(x(t, θ), u(t); θ) +K(θ)ε(t, θ)

vec(K) = θK

θ = [θT
f θ

T
K ]T .

(5)

Here, θf are the parameters that appear in f . This ap-
proach is common in the linear case, i.e. when
f(x̂(t, θ), u(t); θ) = A(t, θ)x̂(t, θ) + B(t, θ)u(t) [Ljung,
1999].

2.2 Extended Kalman Filter (EKF) Approach

The EKF is an extension of the Kalman filter [Kalman,
1960] to nonlinear systems. The main idea is to compute
K(t, θ) at each time step using a linearized model. This
linearization is performed by computing the partial deriva-
tives of f with respect to x and u evaluated in x̂(t) and
u(t), giving the matrices A(t, θ) and B(t, θ), respectively

A(t, θ) =
∂

∂x
f(x, u; θ)

∣

∣

∣

∣

x=x̂(t), u=u(t)

B(t, θ) =
∂

∂u
f(x, u; θ)

∣

∣

∣

∣

x=x̂(t), u=u(t)

(6)

Similarly, matrices C(t, θ) and D(t, θ) can be obtained by
linearizing h. This gives the linearized model

xlin(t+ 1) = A(t, θ)xlin(t) +B(t, θ)u(t)

ylin(t) = C(t, θ)xlin(t) +D(t, θ)u(t) + e(t)
(7)

Using (7) and (1), which both have no system noise, i.e.
Q = 0, gives the following EKF recursion [Kailath et al.,
2000]:

x̂(t+ 1, θ) =f(x̂(t, θ), u(t); θ) +K(t, θ)ε(t, θ)

K(t, θ) =[A(t, θ)P (t, θ)CT (t, θ)]

[C(t, θ)P (t, θ)CT (t, θ) +R]−1

P (t+ 1, θ) =A(t, θ)P (t, θ)AT (t, θ)−

K(t, θ)[C(t, θ)P (t, θ)CT (t, θ) +R]KT (t, θ)

ŷ(t, θ) =h(x̂(t, θ), u(t); θ)
(8)

with the initial conditions x̂(0, θ) = x0 and P (0, θ) = P0.
This method is called the EKF output-error approach
(EKF OE).

2.3 Iterative search method

A general iterative search method, for the parameter
vector θ to be estimated, is given by [Ljung, 1999] for the
i:th iteration

θ̂
(i+1)
N = θ̂

(i)
N − µ

(i)
N [R

(i)
N ]−1V ′

N (θ̂
(i)
N , ZN ) (9)

Here µ
(i)
N is the step size, V ′

N (θ̂
(i)
N , ZN ) is the gradient of

the loss function (3) with respect to θ,

V ′

N (θ, ZN ) = −
1

N

N
∑

t=1

ψ(t, θ)ε(t, θ), (10)

and R
(i)
N is an approximation of the Hessian of VN , that

modifies the search direction. In this case, R
(i)
N is chosen

as in the Levenberg-Marquardt procedure (Gauss-Newton
if λ = 0):

R
(i)
N =

1

N

N
∑

t=1

ψ(t, θ̂
(i)
N )ψT (t, θ̂

(i)
N ) + λI (11)

Here, ψ(t, θ) is the gradient of the prediction ŷ(t, θ), i.e.

ψ(t, θ) =
d

dθ
ŷ(t, θ) = −

d

dθ
ε(t, θ) (12)

The gradient has been calculated numerically.

3. ESTIMATION ON SIMULATED DATA

In order to validate the parameter estimators, simu-
lated data has been generated from the following two-
dimensional, nonlinear, unstable system on state-space
form:

x(t+ 1) =

[

2.3 1.2
0.0 1.7

] [

arctan(x1(t))
arctan(x2(t))

]

+ I2u(t)

y(t) = I2x(t) + e(t)

(13)

In the simulations, the system has been stabilized with the
following feedback law:

u(t) = −

[

2.3 1.2
0.0 1.7

] [

arctan(x1(t))
arctan(x2(t))

]

− kI2y(t) + I2r(t),

(14)

where In is an unit matrix of dimension n, k is a propor-
tional feedback factor here chosen as 0.1, r(t) is reference
signal here chosen as white random binary signal with
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amplitude 1 and e(t) is white Gaussian noise with zero
mean and variance chosen in a way so that different signal-
to-noise ratios (SNRs) are obtained.

The model structure

x(t+ 1) =

[

θ1 θ2
θ3 θ4

] [

arctan(x1(t))
arctan(x2(t))

]

+ I2u(t)

y(t) = I2x(t) + e(t)

(15)

has been used in the identification experiment. Using
this model, the true system is in the model set, i.e.
with θ = [θ1, θ2, θ3, θ4]

T the true system is obtained
for θ0 = [2.3, 1.2, 0.0, 1.7]T . Both methods have been
tested on data sets with 750 samples with 5 different
SNRs (100, 133, 200, 388 and 10000) and 50 different
noise realizations for each SNR. The initial setting was
θ = [2.0, 1.5, 0.2, 1.5]T for the EKF OE method and θ =
[2.0, 1.5, 0.2, 1.5, 0.1, 0.1, 0.1, 0.1]T for the PO method.

The obtained results for θ̂i, i = 1, . . . , 4 are shown in
Tables 1 - 4 below.

Table 1. |E[θ̂1]−θ
0
1| and standard deviation (σ)

of θ̂1 for each method and each SNR (values
should be multiplied with 10−2).

PO EKF OE

100 0.15, 0.45 15, 6.6

133 0.17, 0.41 13, 7.2

200 0.0016, 0.26 14, 9.0

388 0.048, 0.16 15, 8.8

10000 0.0054, 0.04 14, 7.8

Table 2. |E[θ̂2]−θ
0
2| and standard deviation (σ)

of θ̂2 for each method and each SNR (values
should be multiplied with 10−2).

PO EKF OE

100 0.024, 0.38 0.60, 7.4

133 0.031, 0.31 0.80, 6.3

200 0.057, 0.29 1.05, 5.8

388 0.021, 0.23 1.05, 5.9

10000 0.0045, 0.037 0.84, 6.0

Table 3. |E[θ̂3]−θ
0
3| and standard deviation (σ)

of θ̂3 for each method and each SNR (values
should be multiplied with 10−2).

PO EKF OE

100 0.056, 0.15 2.7, 2.2

133 0.036, 0.10 2.4, 2.0

200 0.0055, 0.11 2.3, 3.2

388 0.0098, 0.065 2.9, 2.1

10000 0.0009, 0.013 2.8, 1.9

As an illustration, the absolute value of E[θ̂1]−θ
0
1 and the

variance of θ̂1, as function of SNR are depicted in Fig. 1
and Fig. 2, respectively.

The conclusion that can be drawn from these simulations
is that the PO approach gives a parameter estimator for
which the bias and variance depend on the SNR for the
signals in general, i.e. the higher SNR the lower bias
and variance. The EKF OE approach gives a parameter

Table 4. |E[θ̂4]−θ
0
4| and standard deviation (σ)

of θ̂4 for each method and each SNR (values
should be multiplied with 10−2).

PO EKF OE

100 0.0087, 0.10 0.28, 2.4

133 0.0016, 0.13 0.64, 2.2

200 0.019, 0.095 0.10, 2.7

388 0.0081, 0.06 0.88, 2.6

10000 0.0001, 0.01 0.93, 2.0
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Fig. 1. Absolute value of E[θ̂1] − θ01 as a function of SNR
(log-scale on both axis).
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Fig. 2. Variance of θ̂1 as a function of SNR (log-scale on
both axis).

estimator for which the bias and variance do not depend
on the SNR, but are fairly constant, and in some cases even
decrease when the SNR is decreased which is not intuitive.
One explanation can be that linearization effects and an
absence of system noise to take care of these contribute to
a large bias and variance.

In order to investigate the bias properties, simulations with
increasing number of data points have been performed
for SNR 200. The results in Fig. 3 show that, for both

methods, θ̂1 converges to values different from θ01 i.e. the
bias remains as the number of data points is increased.
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Fig. 3. Absolute value of θ̂1 − θ01 as a function of N (log-
scale on y-axis).

In any case, the PO approach gives promising results while
the EKF OE approach gives a non-intuitive result which
seems to be worse than the PO approach.

4. ESTIMATION ON REAL DATA

In this section, an example of estimation on real data is
given. The data comes from a flight test with JAS 39
Gripen, which is a highly agile fighter aircraft.

4.1 Physical model

The physical model used for flight simulations is based
on rigid body mechanics, originating from Newton’s sec-
ond law, treating all forces and moments acting on the
aircraft. The main contribution in this model comes from
aerodynamics, propulsion and inertia. Focusing on a pure
pitch motion the simplified 2-DOF equations of motion are
given as:

mV α̇ = NAero +NThrust

Jyy q̇ = MAero +MThrust
(16)

The left hand side of (16) is the total force and moment
of inertia in the pitch plane, m, Jyy and V being the
aircraft mass, moment of inertia and velocity, respectively.
These are considered constant in the test case since their
variations are limited during the performed maneuver.
NAero and MAero are the aerodynamic force and moment
to be estimated, NThrust and MThrust come from the
engine thrust and are, in most cases, small in the pitch
plane and can therefore be neglected. The aerodynamic
components depend on variables such as the states, angle
of attack (α) and pitch angle velocity (q), and the input
in form of control surface deflections of the elevator (δe),
canard (δc) and leading edge flaps (δLE). The definitions
and signs are shown in Fig. 4.

For a highly maneuverable aircraft, such as the JAS 39
Gripen, the forces and moments can become nonlinear if
the parameters get large. Typically, flight in the transonic
region, i.e. near the speed of sound, leads to nonlinear
effects that come from movements of aerodynamic shocks
that appear near the speed of sound.

Fig. 4. Definition of the variables.

4.2 Estimation model

To get an estimation model, the equations of motion (16)
are rewritten as
α̇(t) = (1/mV ) ·NAero(α(t), q(t), δe(t), δc(t), δLE(t)),

q̇(t) = (1/Jyy) ·MAero(α(t), q(t), δe(t), δc(t), δLE(t)),

y(t) = [α(t) q(t)]
T

(17)

and then, turning into discrete time, the Euler’s method
for the derivatives are used

α̇(t) =
α(t+ T ) − α(t)

T
,

q̇(t) =
q(t+ T ) − q(t)

T
.

(18)

This results in the following nonlinear state-space descrip-
tion

x(t+ T ) = f(x(t), u(t)),

y(t) = Cx(t) + e(t)
(19)

It is assumed that only the pitch stability, i.e pitching
moment as a function of the angle of attack, is nonlinear
and that all other relations are linear. This gives the
following simplified state-space equation

x(t+ T ) = a(x(t)) +Bu(t),

y(t) = Cx(t) + e(t)
(20)

where the state and input vectors are x(t) = [α(t) q(t)]
T
,

u(t) = [δe(t) δc(t) δLE(t)]
T

and the system matrices are
given as

a =

[

Nαα(t) Nqq(t)
f(α(t)) Mqq(t)

]

,

B =

[

Nδe
Nδc

NδLE

Mδe
Mδc

MδLE

]

,

C =

[

1 0
0 1

]

.

(21)

The Ns and Ms are scaled partial derivatives of the
aerodynamic force and moment with respect to the states
and inputs, respectively. The scaling includes V,m, Jyy,
T and dynamic pressure, qa, reference wing area, S and
reference wing chord, c̄. f(α) is the nonlinear aerodynamic
pitch stability model function which is built up as a
piecewise affine function, similarly to the stucture for the
present aerodynamic model for JAS 39 Gripen, with break-
points positioned at α(i) = αmin, αmin + 1, ..., αmax (see
Fig. 5).

This gives the following for α(i) < α < α(i+ 1)

f(α) =
f(α(i+ 1)) − f(α(i))

α(i+ 1) − α(i)
· (α− α(i)) + f(α(i))

(22)
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f(  )α

α5 6 7 8 9 10 11

Fig. 5. Example of a piecewise affine function with αmin =
5 and αmax = 11.

All Ns, Ms and break-points f(α(i)) are put into the
parameter vector θ. Thus, the total parametrized model
is given by:

x(t+ T ) =

[

θ1α(t) θ2q(t)
f(α(t), θ10, . . . , θ21) θ3q(t)

]

+

[

θ4 θ5 θ6
θ7 θ8 θ9

]

[

δe(t)
δc(t)
δLE(t)

]

,

y(t) =

[

1 0
0 1

]

x(t) + e(t).

(23)

4.3 Identification

The two methods have been evaluated on data from a flight
test where a wind-up turn is performed. A wind-up turn
is a flight maneuver where an initial roll of 90 degrees
is performed followed by an almost pure, high angle of
attack, pitching manoevre at almost constant speed. The
identification is based on the data after the initial roll has
been performed. Data have been collected at 60 Hz and
the data set contained approximately 300 measurements.
The estimation result, based on this data set, is shown in
Fig. 6 and Table 5. All parameters were, in case of the
PO approach, initialized to 1, and in case of the EKF OE
approach, they were initialized to the result of the PO
approach. The values from the present model were not
used in the initialization.

As can be seen, both methods capture the nonlinearity
around α = 7 and the slopes of the curve. There is
a bias between the present aerodynamic model and the
estimation results. This can be due to the fact that there
are uncertainties in the present aerodynamic model. Also,
system excitation was low for angles of attack between
10 to 14 degrees. Comparing the different approaches it
is interesting to note that the EKF OE approach gives a
closer resemblance to the present model which has been
been built up from several numerical calculations, wind
tunnel test and flight test during a period of more than 25
years. Concerning the derivatives in Table 5, the pitching
moment, M , is resonably modelled by both methods. For
the normal force, N , there are some discrepancies both
in magnitude and sign. This can be due to the assumed
linear time inavriant model structure for these parameters,
because in reality there are some small variations during
the wind-up turn.

0 2 4 6 8 10 12 14 16
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

α[deg]

f
(α

)

 

 

Present

PO

EKF OE

Fig. 6. Pitching moment as a function of α

Table 5. Aerodynamic derivatives.

Present PO EKF OE

Nα 1.6574 0.9926 1.0035

Nq 0.0056 0.0139 0.0104

Mq 1.0038 0.8997 0.9449

Nδe
0.1985 -0.0059 -0.0021

Nδc
0.0053 -0.0014 0.0092

NδLE
-0.0022 -0.0058 -0.0094

Mδe
-0.4785 -0.4793 -0.4131

Mδc
0.1330 0.1935 0.1502

MδLE
-0.0015 -0.0501 -0.0297

5. CONCLUSIONS

Two approaches for direct prediction-error identification of
unstable nonlinear systems have been presented, a directly
parametrized observer approach and an approach based on
the EKF. These methods have been validated on simulated
data from an unstable nonlinear system. The validation
shows that a good agreement is obtained for the PO
approach for the given case, at least when the SNR is
high, while the EKF OE approach gives less good and
non-intuitive results.

The approaches have also been tested on real data from
a flight test near the speed of sound. In general, both ap-
proaches show promising results since a good resemblance
to the present aerodynamic model was found, but there are
some biases in the results. These do not have to be entirely
due to the estimators, but could to some extent come from
the inaccuracies in the present aerodynamic model for the
JAS 39 Gripen.
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