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4.1 Introduction

Sliding mode techniques have been widely studied and developed for the
control problem and observation in the occidental countries1 since the works
of Utkin [43]. As discussed by many authors [22, 40, 21, 37, 49, 50, 20, 4,
31, 24, 33], this methodology has several drawbacks in control design, adap-
tive control and observation. More particularly, several authors have used
sliding observer for linear and nonlinear systems, and in many applications
such as robotics [41, 12, 13, 28], mobile robots [5], AC motors [16, 17, 18]
and converters [36].

This kind of observer is very useful and was developed for many reasons:
- to work with reduced observation error dynamics
- for the possibility of obtaining a step-by-step design
- for a finite time convergence for all the observables states
- to design, under some conditions, an observer for nonsmooth systems,
and
- robustness under parameter variations is possible, if the condition (dual
of the well-known matching condition) is verified.

1It is important to highlight the paternity and the major contribution of the Russian
school in the sliding mode domain.
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Here, we highlight a few advantages of the sliding observer. One ad-
vantage is the possibility to design an observer for a system with an unde-
termined but bounded specific variable structure, however, throughout this
chapter we choose to focus our attention on widening the class of considered
systems in the design of the observer.

Historically, in nonlinear control theories, the problem of a nonlinear ob-
server design with linearization of the observation error dynamics for a class
of nonlinear systems, called the input injection form, has been investigated
([29, 45, 46]...). Some necessary and sufficient conditions to obtain such a
form are given in [46]. From this form, it is "easy" to design an observer.
Unfortunately, the geometric conditions to obtain this form are very often
too restrictive with respect to the system considered. Thus, in [11] we have
given an extension of the results obtained in [29, 30, 35, 45, 46], for systems
that can be written in an output injection form to systems which can be
written in the form of the output and the output's derivative injection. We
first recall this result and then we deal with a more general case, which is the
triangular observer form [1]. Here, aiming for simplicity, we only present
the case of single output system. The multi-output case may be found in [6],
where the implicit triangular observer form is introduced in order to take
into account the fa'ct that the information quantity given by one output
and its derivatives may change along the state space. Roughly speaking,
in the nonlinear case, in the neighborhood of XQ, information about the
state can be given by the output y\ (one component of the output) and its
derivative, and in another neighborhood of xi, information can be given
by 2/2 (another component of the output) and its derivative. In both forms
considered in this presentation, input derivatives are prohibited. Indeed,
if they are allowed it is possible to use the observer form proposed in [25]
and in that case a sliding observer is also widely used (see for example [34]).

As in other chapters, some recall on high order sliding mode are given
[31], then for the sake of clarity we do not present the high order sliding
observer [7, 3, 7]. Moreover, we deferred some technical proofs to the ap-
pendix.

We find that it is important to end this introduction with the following
warning: in this chapter we omit many interesting aspects, for example, the
observer design without coordinate change [14], high gain [10], and noise
sensibility [47]. The subject is too large and open, to be able to squeeze
it in an introductory presentation. The main purpose of this chapter is
to highlight the utilities and difficulties of sliding mode technique for the
observer design.
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4.2 Preliminary example

In this section, the sliding observer is introduced based on a simple aca-
demic example. Let E be the system:

xi = x-2 (4.1)
X2 = f(xi,X2)

where x £ R2 and y 6 M is the output and the function /(zi, £2) is bounded
( \ f ( x i , X 2 } \ < B] but not necessary smooth, thus (4.1) is a particular case
of variable structure dynamics.

One wants to observe the state x with the additional constraint to obtain
the real value of #2 in finite time. To do this, one uses a classical sliding
mode observer, but completed with a new component 52.

xi = x-2 + \\sgn(x\ — xi) (4.2)
x-2 = /(xi,x2) + Ei\-2sgn(x-2 — x2)

y = xi
x-2 =• x-2 + Ei\isgn(x\ — x\)

where x represents the estimated value of x and E\ = \ \i x\ — x\ else
£"1=0 and sign denote the usual sign function.

From (4.1) and (4.2), the error observation (e = x — x} dynamics are:

ei = e2-\isgn(ei) (4.3)

Considering the nonempty manifold S = {e/e\ = 0} and the Lyapunov
function V — \e\, one proves the attractivity of S as follows. One gets:
V = e\e-2 — \\eisgn(e\), which verifies the inequality V < 0 when AI is
chosen such that AI > |e2|max (where |e|max denotes the maximal value of
e, V t e [0, oo]). As one uses a sgn function and as the Lyapunov function
V is decreasing, one obtains the convergence to the sliding surface S = 0
in finite time to (and moreover, we have |e|max = |e|^ax and |e|^aa, is the
maximal value of e, V i e [0,to])- Thus, for AI > |e2|max? ^i converges to
:TI in finite time and remains equal to x\ for t > to.

Moreover, one also has that e\ = 0 V t > to, so that from (4.3),

e2 = Xisgn(ei) (4.4)

Therefore, the observer output, #2 = X2 + Xisgn(ei) is equal to x% V t > to-
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Remark 31 This is obviously only true without any noise measurement,
but this difficulty may be partially overcome by a sgn function modification
(see [47] for analysis and design of observer with respect to noise) or by
high order sliding mode [31].

Up to now, we proved for the system (4.1) that the observer (4.2) is
suitable to give all the values of the state in finite time.

The condition AI > 1 62] max can only be verified if e2 has stable dynam-
ics, which is fulfilled after to for A2 > 0, where we have

£2 = f(xi,x2) - f(xi,x2) - Ei\2sgn(x2 - x2)

with x2 = x2 and EI = 1 then

e2 = -X2sgn(e2)

Therefore, one gets |e2|max, which is bounded by the way that t0 and
f(xi,x2) are bounded. The observer (4.2) with assumptions AI > |e2|^ax

and A2 > 0 ensures a finite time convergence of (e\, e2) to (0, 0).

Remark 32 The time to can be very short because it is natural to initialize
x\ — x\.

4.3 Output and output derivative injection
form

Following, we recall some classical results on nonlinear observer theory.

4.3.1 Nonlinear observer
First of all, we recall the definition of observability indices.

Definition 33 [29] Let the system

which is observable at XQ if there exists a neighborhood U. of XQ and p-tuple
of integers (/zi, ...,/zp) such that

1 i > 2 > ••• > > 0 and = n-
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2) After suitable reordering of the hi at each x 6 U, the n row vectors

\ L?r (dhi) : i = 1, ...,p; j = 1,..., /^ > are linearly independent.

3) ///i, ...,/p satisfies (i) and after suitable reordering the n row vectors
{L^~l(dhi) : i = l,...,p; j = 1, ...,/*} are linearly independent at
some x 6 U

then (/i,..., lp) > (/^i,..., fj,p) in the lexicographic ordering [(/i > ^i) or (/i =
Hi and 1-2 > 1^2) or... or (/i = /zi, ...,/p = /zp)]. The integers (/zi, ...,/zp) are
ca//ed i/ie observability indices at XQ.

Remark 34 In the nonlinear case, the previous notion of observability
index is local. In the linear case, this notion is global.

As it is shown in [29, 30, 45], an interesting nonlinear systems is the
output injection form without forced terms:

where:

x = Ax +
y = Cx

A =
A!

0
0

0

0

0

0
Ap

(4.6)

s a matrix =

0 0 0

(4.7)

and

Ci

0
0

0

0

0

0
cp

Ci is a line vector € EMi, such that : Ci = (1,0, ...,0).

This is interesting because for such a class, one can design an observer
that allows us to obtain an observation error with stable linear dynamics.

In fact, for the nonlinear observable system:

=
y = MO

(4.8)
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where / and h are smooth functions, necessary and sufficient conditions for
the existence of a diffeomorphism x = $>(£) to transform the system (4.8)
into (4.6) are given in [46].

Theorem 35 [46] There exists a change of coordinates transforming
(4-8) into (4-6) only if there exists a p— tuple of integers (//i, ...,//p), p,\ >
M2 > ••• > Up such that we have the following:

1) If one denotes (with a possible reordering of the hi)

then dim span Q = n in a neighborhood of £° .

2) If one denotes for j = 1, ...,p,

f i • . _ -,J K — i , . . . , [I j

then span Q3 = span Q fl Qj for j — I,..., p.

Theorem 36 [46] There exists a change of coordinates transforming
(4-8) to (4-6) if and only if 1. and 2. in the previous Theorem hold and,
moreover, if there exists vector fields gl, ...,gp satisfying:

L g l L l
f ~ l ( h j ) = Sijdi^, i,j = l,...,p, / = l , . . . , / / j

such that: (ad^_r-,gl,adl,r-,g^\ = 0/or i,j = l,...,p; k = 0, ...,/^i — 1; / =
0, ...,//j - 1.

Thus, it immediately follows:

Corollary 37 The conditions of Theorem 36 are sufficient to construct an
observer that is asymptotically locally stable.

4.3.2 Sliding observer for output and output
derivative nonlinear injection form

In this section, one first constructs an asymptotically stable observer for
the following class of systems called output and output derivative nonlinear
injection form:

±i = AiX + <l>i(y,y)
Vi = Xi,i fo r i = l,...,p (4.9)
Vi = Xi,2
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with

and all AI matrix are of appropriated dimensions. Secondly, one exhibits
the necessary and sufficient conditions under which the system (4.8) may be
rewritten as (4.9). For the sake of simplicity, one introduces the following
notations:

/ \ T
*Li V^z,!} ̂ i^i •"; ^i^Hi )

~ / ~ ~ ~ \ T
JL — I »-6 J , ^2 5 • • •} *~p )

A / / v / s A \ T f 1

where Xi — Xi^ + Ei\i,\sgn(yi — Xi^) and E\ — 1 if (x\,\ — £^1)=
•••=(XI,P — XI,P)=O, else Ei=Q.

Let us construct for the system (4.9) the sliding observer:

-&)
= £i,3 + 02(y, y) + Ei\i^sgn(yi - fa]

(4.10)

for i — 1 T) whprp* ?"/• — IT- o -I-iwi t — JL ^ * • • ^ /-^ w iivyJi \-f* yi — "-"i 2t 1 ^ -yO
From this, one deduces a part of the error's observation dynamic
(yi -Xi,i) and e;,2 = fa - xii2):

Therefore, using the same method as in the previous section one obtains:

Theorem 38 Under the conditions:

1) Ai,i > \e2,i\max for i = 1, ...,p.

AlltheXij i = l,...,p, j = 2,...,Hi aresuchthatsl — (Ai + -^u

is a Hurwitz polynomial. Where u\ = (1,0, ...,0)T and Ai is the
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(Hi — 1) x (fa — 1) matrix defined by

/ 0 1 0

A, is a elR^-1)*^-1) matrix = Q ' - . l

\ 0 0 0

The observer (4-10) gives, infinite time to, the convergence ofy (respec-
tively y) to y (respectively to y), and an asymptotic linear stable observation
error dynamics on the sliding surface fe^i = 0).

Proof The dynamics of the observation error are

6i = AiCi + (f>(y, y) — (j)(y, y) — Aj

for i = l,...,p. It is clear that, after a finite time to, one has y — y, so
0(?/> y) — 4>(y, y) — 0- So that, for V t > to the error dynamics will be on
the reduced manifold (e^i = 0), V i £ {1, ...,p}, and given by

ii = Aiei-Al^j f o r i = l,...,p (4.11)

with &i — (e Z ) 2, 6^3, ..., Ci i M i ) which is linear. If \sl — (A{ + j^-ui)\ is Hur-

witz, this dynamic is asymptotically stable.
One has shown that using a sliding mode observer (4.10), the system

(4.9) may be, under an appropriate choice of Xi;j, observed with a linear
asymptotic stable observation error dynamics (4.11).

In the next proposition, one characterizes the observability indices of

the output y — (y, y) — (h, L/h).

Proposition 39 Considering the system (4-8) with the extended output:
y = (y,y) = (h,Lfh):

y =

the indices of observability become:

one has yi — yj with j — i

one has yi = ijj with j' = i — p

where /ij is the observability indices of the output yi in the system (4-8).
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For the proof see the appendix, page 123.

Remark 40 The necessary and sufficient conditions to obtain output and
output derivative form are the same as those in Theorem 35 for the extended
output y = (y,y).

From the last remark, necessary and sufficient conditions for the ex-
istence of a diffeomorphism transforming (4.8) into (4.12) are given by
applying Theorem 36 to system (4.12) rewritten only in terms of the real
output y.

Theorem 41 There exists a change of coordinates transforming (4-12)
into (4-9) if and only if

1) If one denotes (with a possible reordering of the hi )

Q — < L^~l(dhi) with i = 1, ...,p and j = 1, ...,/^i \

then dim span Q = n in a neighborhood of £°.

2) If one denotes for j = 1, ...,p

Qj =

then for j = 1, ...,p span Qj = span Q fl Qj

3) There exists vector fields gl,g2,...,g2p satisfying:

LaiLlrl(hj) = Si j6i u., with < , , > • • • » / ' »
J MA*!' I / = 1 ... ![•

LSi(hj) = <5i,j+p, with < Z '"•'
^ J — •Li ••••>y

and Lgi(Lf(hj)) = 0, iw£/i < . _^ ''"'
^ J 1 ••••! f

4) Setting :
( k _i i=l,..,P \ r _ i

1 /v — U) • • ) fJ^i ~"~ ^ I

V w , v € A, w 7^ v => [w,?;] = 0

For the proof see the appendix, page 124.

Remark 42 From the proof of Theorem 41, one can see that the Definition
of g1 for i = 1, ...,p is the same as the definition of gl. However, condition
3. is less restrictive than the one given in Theorem 35.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Example 43 Let us consider the following system:

±1 = x-2 (4.13)

y = xi

which is in output and output derivative nonlinear injection form and can
not be transformed into output injection form. In fact, as defined in Theo-
rem 35, the vector g1 is such that:

0 (4.14)
Lgl(X3 + X?)} = 1

So, gl = (0,0,1)T, ad\_f)g
l = (0,1, -1)T andaa9(_f]g

l = (I,2x2 -

The Lie brackets of these vectors are equal to

a . 1 =0

Consequently, this system does not verify the conditions of Theorem 35.
Looking now at the conditions of Theorem 38, one has for the vectors gl

and g2 :

Lgl (Xl) = Lgl (X2) = 0, Lgl ( X 3 + X\) = 1

= 1, Lg2(X2) = 0

So, g1 = (0,0,1)T, adl
(_f)g

l = (0,1,-1)T, and g2 = (1,0, *)T. Then if
one chooses * = 0 for example, one obtains:

F-l jl -ll f-2 -11 [-2 jl -ll ng , aa/_ r x ( ? = ^ , p J = g , a d f ^ g =0

Thus, this system verifies all the conditions of Theorem 38. Choosing z\ =
x\; z2 = x2] Z3 = x2 + X3, one obtains in the new coordinates the
following system:

Zl = 23 + 02(21,22

Z3 = 03 (21,22)

y = zl
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Remark 44 Every system in the form of (4-6) is obviously on the form
(4-9). One important consequence of the previous remark and the example
is that the conditions of Theorem 35 imply conditions of Theorem 38, but
the converse is false.

In the next section we consider an actuated system but for the sake of
simplicity only in a single input single output (SISO) form.

4.4 Triangular input observer form

Let us consider the following SISO analytic system £

x = f ( x ) + g ( x , u )

y = h(x)

(4.15)

where x € W1 is the state, u 6 R is the input, y € R is the output and /, g, h
are analytical function vectors of appropriate dimensions. Moreover for any
x 6 SlRn the function g(x, 0) is equal to zero and the system (4.15) is assumed
bounded input bounded state in finite time. In order to transform (4.15)
in a triangular input observer form, we modified the classical observation
rank condition:

Condition 45

rank

dh \
dLfh

= n

dLnflh
\ dLfh )

where Lf denotes the classical Lie derivative in / and dh is the classical
one form.

Remark 46 Condition 45 is the classical one for an autonomous system.
In the nonlinear context, we can't refer to the Cayley-Hamilton theorem.

But in the next we assume

Condition 47

rank

/ dh \
dLfh

dLn
f~

lh

= n
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From condition 47 it is known that the codistribution

fT = span{dh, ...,dLlfh} 0 < i < n - 1

is involutive. We also need the following condition

Condition 48 The vector field g verifies for any u 6 R

dL9L}heW Vie {0,...,n-l}

Now we can set the following Theorem :

Theorem 49 System (4-15) may be transformed, by diffeomorphism, in
the neighborhood of x in a triangular input observer form

\ \

Cn

(4.16)

(., w = 0) = 0 for any i 6 {1,..., n}, if and only if conditions 47 ana

48 hold in the neighborhood of x.

For the proof see the appendix, page 125.

4.4.1 Sliding mode observer design for triangular
input observer form

From the work of Drakunov and Utkin [14, 15] and our previous work
[28, 16, 6], we propose the sliding observer for triangular input observer
form

6 + + \isgn(£i -
^

- £2)

(4.17)
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where

6 = & + Ais0ni(fi-£i)

-6)

and the sgni(£) function denotes the usual sgn function but with a low
pass filter of the £ variable [15] and an anti-peaking structure [6]. This
anti-peaking structure follows the idea that we do not inject the observa-
tion error information before reaching the sliding manifold linked with this
information (i.e., signi = Eisign, with Ei = 1 if EI = ... = Ei-\ = 1 and
£1 — £1 =0 else EI = 0). Moreover we reach the manifold one by one. Doing
this we obtain a "high gain" dynamic (i.e., see the equivalence between the
sliding mode and the high gain [32]) of dimension one and consequently
we do not have a peaking phenomena [42]. More precisely sgni(.} is equal
to zero if their exists 0 < j < i — 1 such that £j — £j•, ^ 0 (by definition
£1 = £1), else sgni(.) is equal to the usual sgn(.) function. In the observer
structure, this particular sgn function allows that £$ — & converges to zero
if all the £j — £j with j < i have converged to zero before.

Theorem 50 Considering a bounded input bounded state (BIBS) in finite
time system (4-16) and observer (4-17), for any initial state £(0), £(0) and
any bounded input u, there exists a choice of \i such that the observer state
£ converges in finite time to £.

Proof From (4.16) and (4.17) and considering the initial state condition
such that £i(0) 7^ £i(0) (if this is not the case, we directly move on to the
next step of the proof). Thus we are in the
• first step of our proof and we obtain the following observation error
dynamics e = £ — £.

e\ \
e2

\ \ (/n(0 -

Thus as the input u is bounded the state £ does not go to infinity in finite
time. Moreover if £1 is bounded all the states of the observer are also
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bounded during step 1. Consequently the observation error state is also
2

bounded. Now, setting V\ = -£, we have

Vi = ei(e2 - Ais0n(ei))

Thus choosing AI >| e2 max the observation error e\ goes to zero in finite
time t\. Moreover, if after t\ the observation error stays equal to zero (i.e.,
AI >| e2 | max) we have e2 — \\sgn(^i — £1) and consequently £2 = £2- Now
we pass to the:
• second step. Here, we ensure that the observation error 62 is bounded
in order to remain on the manifold e,\ = 0. Moreover, we want to reach
the submanifold e\ = 62 = 0. Using the same argument as in [14, 15]
the equivalent vector is obtained in finite time via a low past filtering of
\isgn(£i — £1) which is equal to e2. Thus, as at ii, we have e\ — 0, and
the observation error is now equal to

\

e2

63

en-i

64 + £3(6,6,6,u) -&(£ 1

V tn / \ ( f (£} - f (£i £9 f 'v ' \ \Jn\<^,J J n v s l ) S.2, • • - , snx

e2 e2

Setting V? — -j- + -$-, we obtain

V2 = ei(e2 -

Moreover, if the condition AI >|
and 62 — Aisgn(ei) = 0, thus we find

e2(e3 -

max holds for t > , we have ei = 0

= e2(e3 - \2sgn(e2)}

Consequently 62 goes to zero in finite time t^ > t\ if A2 >| 63 |max. More-
over, from V"2 we obtain that the observation error is strictly decreasing
during the period of time [£i,£2] . This implies that the condition on AI is
verified after t\ if it is verified before t\. Moreover as the input is bounded,
the state £ stays bounded during the period [0, £2] and from the structure
of the observation error the dynamics e is also bounded and consequently
£ is too.

Now let us assume that we are at the step j < n. This step starts
at time tj-i and at i j_i , all the e^ = 0 and all the conditions on A^ are
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verified for k < j. Thus, we proceed to
• step j. The observation error dynamic is equal to

1 \

Cj-l

ij

en

V /

=

Setting Vj = Y!i,

e2 -

_ ej+2

(/n(0-/n(^l,..,^

we deduce from ek = 0 Vi < j that

Consequently e^ goes to zero in finite time
and all A& conditions are verified for k < j.
is bounded and from the observer structure

> tj_i if Xj >\ 6j+i \max

As the input is bounded £
is also bounded during the

period [0,£j]. It follows that ej is bounded and we can find Xj such that
AJ >| Gj+i \max is verified. Moreover, as 6j is decreasing during the period
[ t j - i , t j ] , Xj-i >\ 6j \max is verified during this period and therefore all the
&k remain equal to zero for any k < j.
Now we go to :
• step n. This step starts at the time tn-\ and at this time e^ = 0 for any
k < n. Thus we obtain the following observation error dynamics

\

en-i
\ en

\

Xnsgn(£n - ln

Setting Vn = Y^i=i ^ we deduce from e^ = 0 Vi < n that

Vn = en [-Xnsgn(en)]

So, en go to zero in finite time tn > tn-i for any Xn > 0 and if all the
conditions on the Afc for A; < n are verified after tn-\. Condition on An_i
is always verified because en is decreasing after tn-\ and by induction all
conditions follow.
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4.4.2 Observer matching condition

It is well known from the work [19] that roughly speaking, a condition in
order to reject a perturbation, is that the perturbation act in the same
direction of the control.

In the same manner of thinking, for observer design we obtain the con-
dition in order to observe the state under unknown perturbation. Consider
the linear observable bounded perturbed system:

x = Ax + Bu + Pw (4.18)

and the output equation is y = Cx with y G M, x G En, u G Mm and
w G [-Bw, Bw]

C

0(A,C)=\ : \=n
CAn-2

A condition in order to cancel the perturbation effect on the state obser-
vation is that

C

which is called the observer matching condition.

Remark 51 Necessity is obvious such that the perturbation derivative time
does not act on the state observations.

Sufficiency is clear: considering for example, an observer for triangular
input observer.

Generalizing the previous observer matching condition to the bounded
input bounded state single input single output (BIBS-SISO) local weakly
observable nonlinear perturbed system:

x = f(x)+g(x)u + p(x)w:=F(x,u)+p(x}w (4.19)

y = h(x)

where x G Mn, u G Rm, and the bounded perturbation w G [—Bw, Bw], and
/, g, p are functions vector fields of appropriate dimensions.

We immediately obtain the following sufficient conditions in order to
reject the perturbation effect on the observer.
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Proposition 52 // the system (4-19) without perturbation verifies condi-
tions (47) and Condition 48 of Theorem 49 and the observer matching
condition

dh \
dLph

dL^~2h

p(x) = 0 (4.20)

in the neighborhood o f x , and where the Lie derivative is done with respect to
x and u. Then it is possible to locally design an observer which estimates all
state components and does this in both cases: with and without perturbation.

Proof The proof is a direct consequence of Theorem 49 and sliding mode
triangular observer design.

4.5 Simulations and comments
Let us consider the following system £ which is in the triangular input
observer form

Xi = X-2 ~ X\U

X<2 = X3+X2XiU (4-21)

x3 = — 3a?3 — 8x2 — Xi — x| — u

y = xi

For this system, the observer 4.17 takes the form

x\ — x<2 — x\u + \\sgn(x\ — xi)

2 - £2) (4.22)

x3 = -3x3 - 3x2 - xi - x% - u + A3s#n2(;r3 - £3)

y = xi (4.23)

with x-2 = x2 + ̂ isgni(xi — x\) and £3 = £3 + X^sgn^x^ — £2), and where
functions are designed as noted in Section 4.3.

This approach has been tested by simulation with the following initial
conditions x — (1,0.5,0.5)T and x = (0, 0, 0)T. Moreover, we have chosen
a first-order low pass filter with a cut frequency equal to WQHz and obser-
vation gain AI , A2, and AS respectively equal to 4, 2, and 2. Moreover the
function "sgn" is approximated by a saturation function with a slow rate
equal to 104.
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In Figure 4.1, we see that x\ reaches x\ in finite time ~ 0.25s. In Figure
4.2, we see that x% also reaches x-2 in finite time ~ 0.75s. But x2 will only
reach £2 when x\ will be equal to x\. In Figure 4.3, we see that £3 reaches
£3 in finite time ~ Is.

Figure 4.1: xi(-) and x\ (-.]

Figure 4.2: x^-} and x2 (-.)
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Figure 4.3: £3(-) and £3 (-.)

Now, starting from the same initial conditions, we add an output noise
in order to show the behavior of the observer in this case. In [6], following
the work of Yaz and Azemi [47], the author proposed to use a saturation
function with dead zone for observer in the case of the extended injection
form. This reduces the observer sensitivity to the noise, but we were obliged
to change the observer gain as follows AI = A2 = \3 = 4 in order to recover
a time response quite similar to the previous simulation.

In Figures 4.4, 4.5, 4.6 and 4.7, we see that the observer state x reaches
the neighborhood of the system state x in finite time. But we also see that
the noise is not totally suppressed in the observer. We can reduce this
noise with some minor modifications by introducing an asymptotic gain or
a sgn function modified with respect to the noise output knowledge [47],
for example.

Figure 4.4: xi(-} and x\ (-.)
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Figure 4.5: Measured zi(-) and x\ (-.)

Figure 4.6: x% (-) and x-z (-.)

Figure 4.7: £3 (-) and x3 (-.)
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4.6 Conclusion

In this chapter, we introduced a sliding observer that does not depend on
the derivative of u. This is due to the fact that our main application do-
main is the AC motor where the derivative of the input does not exist or
is not easy to obtain. This appears, for example, when we consider the
converter in the observer and control scheme. But, if it exists, and if it
is technologically possible to obtain u, ii, ..., and so on. A very cleaver
observer form was given in [23]. For this form, many observer designs work
well, and in this case, advantages of the sliding mode observer were prin-
cipally the design simplicity and the finite time convergence. In practical
observer design, we always take into account the output noise, thus gen-
erally we replace the sgn function by a modified sgn function or higher
order sliding mode. In the latter, we think that it is important, when it is
possible, as it is proposed in [15], to design an observer without the use of
diffeomorphism, because the observer validity domain is restricted to the
diffeomorphism validity domain.

4.7 Appendix

4.7.1 Proof of Proposition 39

From Definition 33, the indices /^ verify:
* ]Cf=i A^ = ni so from the Definition of //i, one has: ^^ Mi = n.

• A = < LJjT (dhi) : i = 1, ...,p; j = 1, ..., Hi \ are linearly independ

As Lj
f(dhi) = Lj

f~
l(Lf(dhi}} = L3

f~
l(yi}. A will be rewritten as

• Thus, if fj,i verify 3. of Definition 33, it is easy to see that: If /i, ...,/2p

satisfies Y%=i k = n and < L^~l(dyi) : i = 1, ...,2p; j = 1, . . . , / j > are lin-

early independent at some £ € U, then (/i , . . . , /2p) ^ (Aii • • • )A^2p) in the
lexicographic reordering [(/i > /^i) or (li = p,\ and /2 > ^2) or... or (l\ =
/ /I , ...,lp = #2p)]-

Then, the 2p-tuple /ii,-..,/l2p satisfies the three conditions of Definition
33.
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4.7.2 Proof of Theorem 41

First, starting from Theorem 36, where y is substituted by y, one proves
hereafter that conditions 1. and 2. of Theorem 35 (which are required in
Theorem 36) are equivalent to conditions 1. and 2. of Theorem 41. For the

Theorem 36, let us define: Q = \L?rl(dyi) : i = l,...,2p; j = l,....,/^ >

and for =
//7

but

LJf(dhi), then:

So the equivalence of condition 1. is proved. Now, for condition 2., for
Theorem 36 one computes Qj.

• For j = 1, ...,p one has:

and yj — Lf(hj), so

^([Lj-XL/^/iO):

as Lkf(L}(dyi+p)} = Lk^~l \Lf(dyi)}, one immediately has Qj = Qj.

• For j = p + 1,..., 2p one has f/j = /ij, so
QJ = {dhi,dh,2,.., d/ip, L f ( d h i ) , . . , Lf(dhp}} — {dhj} then, as /^ > 2, one
obtains Qj nQ = Qj for j = 1, ...,p.
Thus, the condition 2. of Theorem 41 is equivalent to condition 2. of The-
orem 35.

Secondly, in the same way, one proves the equivalence between condi-
tions 3. and 4. of Theorem 41, and the last conditions of Theorem 36,
where y is substituted by y. Theorem 36 applied to y gives:
There exists a change of coordinates transforming (4.12) into (4.9) if and
only if the previous conditions hold and there exist vector fields y1, y2, •••,g2p

satisfying
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such that
(adk

(_ng\adl
(_f)g

j}=0

for i,j = l,...,2p; k = 0, ...,/z» - 1; / = 0,...,/ij - 1.

(4.24)

Now, one wants to rewrite this condition only as a function of y. There-
fore, the p first vector fields gl are defined such that

i — i,..., fj,i i,

with the Definition of T/J , this is equivalent to the real output y to

L r I — 1-9iLf
r ^ > P -'-) • • • i P iijdi^, . ,

I — 1 , . . . , /ij ,

Now, the p— last vector fields ^l are defined such that

T . . - ; . . i=P+l , - ,2p ,

(4.25)

which can be rewritten as:

(4.26)

Thus, from (4.25) and (4.26), one obtains condition 3. of Theorem 41.
Moreover, from this and (4.24) one immediately finds condition 4. of The-
orem 41 and reciprocally.

4.7.3 Proof of Theorem 49
Sufficiency
If condition 47 holds, then

h \

—1 ;

is a diffeomorphism and transforms system (4.15) in

\ / t i - it \ \\ i £2 + gi (to u) ]
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with gi(£,u = 0) = 0 for any i G {1, ...,n}. Moreover, in the x coordinate,
condition 48 is equal to

dgi e span{dxi,...,dxi] Vz 6 {1,^} (4.27)

this implies that the system is in form 4.16.

Necessity
If there exists a diffeomorphism £ = 0(x) which transforms (4.15) into
(4.16) condition 47 is directly verified by the existence of 0. Moreover as
(4.27) is a necessary condition, this implies that condition 48 is a necessary
condition too.
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