
Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 1INLINE INTEGRATION: A NEW MIXED SYMBOLIC/NUMERIC APPROACH FORSOLVING DIFFERENTIAL{ALGEBRAIC EQUATION SYSTEMSHilding Elmqvist Martin Otter Fran�cois E. CellierDynasim AB Inst. f�ur Robotik & Systemdynamik Dept. of Electr. & Comp. Engr.Research Park Ideon DLR Oberpfa�enhofen University of ArizonaS{223 70 Lund D{82230 Wessling Tucson, AZ 85721Sweden Germany U.S.A.Elmqvist@Dynasim.SE Martin.Otter@DLR.DE Cellier@ECE.Arizona.EduAbstractThis paper presents a new method for solvingdi�erential{algebraic equation systems using a mixedsymbolic and numeric approach. Discretization formu-lae representing the numerical integration algorithmare symbolically inserted into the di�erential{algebraicequation model. The symbolic formulae manipulationalgorithm of the model translator treats these additio-nal equations in the same way as it treats the physicalequations of the model itself, i.e., it looks at the aug-mented set of algebraically coupled equations and ge-nerates optimized code to be used with the underlyingsimulation run{time system. For implicit integrationmethods, a large nonlinear system of equations needsto be solved at every time step. It is shown that thepresented uniform treatment of model equations anddiscretization formulae often leads to a signi�cant re-duction of the number of iteration variables and the-refore to a substantial increase in execution speed.In a large mechatronics system consisting of a sixdegree{of{freedom robot together with its motors,drive trains, and control systems, this approach ledto a speedup factor of more than ten.Keywords: Inline integration; tearing structure;symbolic formulae manipulation; di�erential{algebraicequation solving; simulation e�ciency.INTRODUCTIONThere is a conviction of large segments of the simula-tion community that it is important to separate theknowledge about the numerical integration algorithmsto be used during the execution of a continuous{timesimulation program from knowledge relating to eitherthe physical system to be studied or the experimentto be performed on that system. The major reasonfor this perceived need is that, in this way, the detailsof the underlying numerical algorithms can be hiddenfrom the simulation user. The average simulationistshould not be bothered to have to think about the nu-

merics of the solution approach.The simulation software designers do their best tomake the simulation users forget that discrete mathe-matics are involved at all in the numerical solutionof their continuous{time simulation problems. Di�e-rentiation or integration operators are o�ered in themodeling language that make the user believe thatthe simulation program knows how to solve di�eren-tial equations. In reality, it is the task of eitherthe modeling or the simulation software to convertthe continuous{time problem to an {in some wayequivalent{ discrete{time problem, usually with varia-ble time increments, that can then be solved throughiteration. In traditional approaches, this responsibi-lity is assigned to the simulation software. In the herepresented new approach, it rests with the modelingsoftware. In either case, it is important to protect theaverage simulation user from having to be aware of thisconversion.As the demand for models of systems of ever increa-sing complexity grew, so did the need for organizingand encapsulating knowledge about these systems. Itwas no longer su�cient to separate the knowledge ab-out the model from the integration method and the ex-periment description. The knowledge about the modelitself needed to be organized. This led to the designof object{oriented modeling software, such as Dymola(Elmqvist, 1978; Cellier and Elmqvist, 1993; Elmqvist,1995) and Omola/Omsim (Andersson, 1994). Theselanguages allow the user to specify the physical lawsthat govern the behavior of a physical entity in terms ofdeclarative equations. An interface description decla-res, which properties (variables) of the system are sha-red with other systems (but without de�ning the direc-tion of information ow), and which others are hiddenfrom the outside. Models of such entities can be plug-ged together in a fashion resembling the assembly ofphysical plants from their component systems.It is, however, important to understand whatdrove the design of object{oriented modeling software.

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 2Object{orientation here supports the human user ofthe software in organizing his or her knowledge aboutthe system under study. It is not the simulation run{time software that is supported by this segmentationof knowledge. On the contrary, if the segmentationof knowledge into parts related to physical subsystemswere preserved down to the level of the run{time execu-tion of the simulationprogram, the execution e�ciencywould be terrible. Thus, the �rst step in the compila-tion of an object{oriented model consists in collectingall the equations from the individual submodels andfrom the additional equations that describe the cou-plings between submodels into an amorphous heap ofequations, throwing all structuring information away.This accumulated heap of equations is analyzed to �ndan execution sequence that will compute one value foreach of the variables involved, ensuring that the sizesof the remaining systems of tightly coupled algebraicequation systems are minimized. This process is calledthe partitioning of equations or BLT-transformation.It turns out that any arti�cial constraint imposedwhen seeking the optimal solution to the partitioningproblem is potentially harmful to the optimization ofthe run{time code. In this paper, it will be shown thateven the last of the barriers, the separation betweenthe model and the numerical algorithms must comedown in order to enable a symbolic translator, suchas Dymola, to generate more e�cient simulation run{time code. In the case of a large mechatronics systemconsisting of a six degree{of{freedom robot togetherwith its motors, drive trains, and control system, thisled to a speedup factor of more than ten.Designers of domain{speci�c simulation softwarehave recognized long ago that they could improve theexecution e�ciency of their simulation programs byproviding the numerical solver with structural infor-mation about the model to be simulated. In SPICE(Nagel, 1975), the most successful among the analog el-ectrical and electronic circuit programs, the so{calledtransient analysis (simulation) is performed by trea-ting the node voltages as iteration variables in an im-plicit numerical solution scheme. With the node vol-tages assumed known, the charges stored in the capa-citors can be computed by nonlinear static functions.From there, the branch currents through the capaci-tors are computed by replacing the di�erentiation ope-rator by a discrete approximation formula. This isdone for each capacitor separately. Parasitic capaci-tances inside the transistor models are approximateddi�erently, since they are known to be small. Severalproposals have recently been formulated to exploit thespecial structure of multibody systems within the nu-merical solver (Andrzejewski et al., 1993; Cardona andG�erardin, 1993; Lubich et al., 1993) in order to im-prove the execution e�ciency of special{purpose mul-

tibody system simulators.Unfortunately, these approaches are of limited useoutside their intended application area, because onlyspeci�c types of systems can be handled by them, andbecause the user interface becomes quickly rather com-plicated in order to provide the numerical integratorwith the necessary information about the speci�c mo-del structure. What has been lacking so far is a po-werful symbolic formulae manipulation tool that cananalyze the resulting equation structure and automati-cally generate the appropriate structuring informationfor the underlying numerical system solver.The methodology presented in this paper discussesprecisely such an approach. It is very general in scope,and can be implemented with reasonable e�ort as partof an object{oriented modeling tool. However, the nu-merical solver must be modi�ed for this approach towork. It is not feasible to translate a general modeldescription into a form suitable for an o�{the{shelfnumerical system solver without sacri�cing executione�ciency. Instead, it is important that the equati-ons describing the numerical discretization of the inte-gral or di�erential operators be merged with the modelequations symbolically prior to analyzing the structureof the resulting equation system.THE BASIC IDEA OFINLINE INTEGRATIONWhen SCS, in 1967, launched a commendable e�ort tostandardize the Continuous System Simulation Lan-guages (CSSLs) (Augustin et al., 1967), they adoptedthe world view that continuous{time systems can es-sentially be expressed as state{space models, represen-ted through a set of Ordinary Di�erential Equations(ODEs): _x = f (x; t) ; x(t0) = x0 (1)where x is the vector of state variables, t denotes time,and f is a set of assignment statements specifying howthe derivatives are computed assuming that the statevariables are known. The computational causality thusneeds to be speci�ed in the model. The CSSL user in-terface provided for a more convenient way of specify-ing state{space models, but it was clearly designed as afrontend to numerical subroutines for solving non{sti�ODE's.Solving (1) by any explicit integration method isstraightforward. In the most simple case, using theforward Euler method, the derivative of the state vec-tor is approximated by a forward di�erence formula:_x(tn) = _xn � xn+1 � xnh (2)where xn+1 = x(tn+1) is the unknown value of x atthe new time instant tn+1 = tn + h, xn = x(tn) is the

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 3known value of x at the previous time instant tn, andh is the chosen step size. Inserting (2) into (1) leadsto the following recursion formula:xn+1 = xn + h � f (xn; tn) ; x0 is known (3)which is used to \solve" the ODE.Unfortunately, explicit integration methods are nolonger well suited if systems are sti� or contain al-gebraic loops. In such cases, implicit integration me-thods are much more appropriate. In the simplest case,using the backward Euler method, the derivative of thestate vector is approximated by a backward di�erenceformula, leading to:xn+1 = xn + h � f (xn+1; tn+1) (4)which must be solved for xn+1, given xn and tn+1. (4)is a nonlinear equation for xn+1, which has to be sol-ved in every time step. It can be shown that Newtoniteration has to be used to solve this equation in or-der to maintain proper convergence properties, cf. e.g.(Cellier, 1995); �xed{point iteration is not useful if thesystem is sti�.For a large class of implicit integration algorithmsthe structure of the discretization equations are thesame, in particular:x = h � _x+ old(x) (5)For notational convenience, the unknown values xn+1and _xn+1 have been abbreviated by x and _x, respec-tively. The known scalar h depends on the step sizeand on method{speci�c constants, whereas old(x) isa function of known values of x at previous time in-stants. Especially, the Backward Di�erence Formulae(BDF) (Gear, 1971) of any order, which are the mostwidely used formulae for numerically solving sti� sy-stems, fall into this category. For example, the thirdorder BDF can be written as (�h is the step size):xn+1 = 611�h � _xn+1 + �1811xn � 911xn�1 + 211xn�2�which has clearly an equation structure according to(5). Inserting the general discretization scheme (5)into (1) again leads to the same nonlinear equation asin the backward Euler case, with the only exceptionthat the known variables now have a di�erent inter-pretation: x = old(x) + h � f (x; t) (6)For a general function f (x; t), there is no way toavoid the (expensive) Newton iteration scheme to solve(6) for x in any time step. However for speci�c models,the situation is di�erent. If, for example, two linear�lters are connected in series, as shown in �gure 1, the

u x1 x2

1 + T s1

1

1 + T s2

1Figure 1: Two Filters in Seriesoverall system is described by the following equations:T1 _x1 + x1 = u(t)T2 _x2 + x2 = x1Utilizing the discretization formula (5) leads to an ex-plicitly solvable sequence of equations to compute thefour unknown variables at the new time instant:_x1 := (u� old(x1))=(T1 + h)x1 := h _x1 + old(x1)_x2 := (x1 � old(x2))=(T2 + h)x2 := h _x2 + old(x2)As can be seen, no Newton iteration is needed for thisspecial type of system, because the linear equationscan be solved symbolically. Let us analyze yet anothertype of system where higher derivatives appear thatare transformed to state{space form in the standardway: _x1 = x2 (7)_x2 = f (x1;x2; t) (8)Without knowing the structure of this system, a Ne-wton iteration about 2n equations is necessary, wheren is the dimension of function f . However, insertingthe discretization formula (5) leads to:x2 = h � f (hx2 + old(x1);x2; t) + old(x2) (9)x1 := hx2 + old(x1) (10)i.e., to a nonlinear system of n equations to determinex2, and an explicitly solvable set of n equations tocompute x1.To summarize, for the solution of non{sti� ODEswith explicit integration methods, the traditional fun-ction interface (1) is well suited. It is not necessary toknow the structure of the right hand side equations,f , inside the integrator, because this information willnot help in speeding up the simulation. The situationis completely di�erent for ODEs that are sti� or con-tain algebraic loops. Implicit integration methods leadto nonlinear systems of equations. If the structure ofthe model equations and the discretization formula areknown, the e�ciency of the simulation can often be en-hanced, as shown by examples. The function interface(1) is not helpful in such a situation, since the struc-ture of the equations, such as �lters in series or higher

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 4derivatives, is not reported to the nonlinear equationsolver inside the integrator.It is now easy to explain how some domain{speci�cpackages, as mentioned in the introduction, enhancethe e�ciency of the simulation. Information is ad-ded to the function interface in order to report somesupported equation structure, such as the presence ofhigher{order derivative equations, to the integrator.Usually these packages use this information to solvethe nonlinear system of the discretized equations moree�ciently.This concept can be generalized (Elmqvist, 1993).The generalization shall be denoted as inline integra-tion in the sequel. Inline integration requires a mo-di�ed integrator interface. The integrator maintainsinformation about the discretization of the state va-riables, such as the known quantities h and old(x),and provides initial estimates for the values of x and_x at the current time instant. The modeling softwaresets up the nonlinear system of discretized equations,and solves it, utilizing the known structure of the equa-tions, by calling upon a run{time library function forNewton iteration on a minimal set of algebraically cou-pled nonlinear equations. The function returns theactual values of x and _x at the new time instant, orcomplains that the Newton iteration did not convergewithin a speci�c number of iterations de�ned by theintegrator. It should be noted that error estimation,step{size and order control, details of the discretiza-tion formula used (i.e., the computation of h from thestep size, and the evalutaion of old(x) from the knownprevious values of x) are still in the domain of thenumerical solver. Only the discretization of the stateequations and the solution of the (usually nonlinear)system of discretized equations have been moved intothe domain of the model. This modi�ed interface in-cludes all domain{speci�c approaches that were pre-viously in use as special cases.The generation of the new model interface should bemade automatic, i.e., by a program. It will be shown,how this can be done starting from an object{oriented,high{level description of a model. There are severalsubtle issues to be considered in order that such atranslation process leads to robust code. Especially, itmust be guaranteed that, in the worst case, i.e., whenno structural information can be utilized, the genera-ted code has exactly the same numerical properties asif the traditional standard interface would have beenused. In all other cases, it should perform better.In order to be able to explain the details of the au-tomatic generation of inline discretized model code,several prerequisites are necessary that shall be dis-cussed in the following sections: the discretization ofgeneral continuous{time dynamical models, the block

lower{triangular (BLT) transformation of sets of alge-braic equations, and the tearing method to formalizethe translation process of algebraically coupled equa-tion systems exploiting structural properties of thesesystems to enhance the execution e�ciency in theirsolution.THE DISCRETIZATION OF DAESPhysical systems, such as electrical circuits, mechani-cal systems, or chemical plants, often lead naturally tomodels described by sets of di�erential{algebraic equa-tions (DAEs) of the following general form:0 = f (_y;y; t) ; y(t0) = y0; _y(t0) = _y0 (11)where y(t) is a vector of unknown variables that mayalso appear in the equations in di�erentiated form.The most widely used general{purpose DAE code,DASSL (Petzold, 1983), solves (11) by using a BDF{discretization, cf. (Brenan et al., 1989) for implemen-tational details. In particular, _y is approximated by abackward di�erentation formula, leading to the follo-wing discretized equations:0 = f �y � old(y)h ;y; t� (12)that must be solved for y. The standard Newton ite-ration scheme used in DASSL to solve (12) is given bythe following equations:�1hJ _y + Jy� � �l = �f l (_yl;yl; t) (13)yl+1 = yl + �l (14)_yl+1 = _yl + 1h�l (15)where index l denotes the previous (known) iterate andindex l + 1 denotes the unknown current iterate. TheJacobians are evaluated at one of the previous timesteps, and are held constant for as long as it is possible.They are de�ned by:J _y = @f@ _y ; Jy = @f@y (16)On a �rst glance, one may think that this type of di-scretization scheme should also be used in inline in-tegration. However, such an approach would lead tounnecessary di�culties:1. Both when calculating the Newton iteration ma-trix as well as when updating _yl+1, division by h takesplace. The scalar h depends linearly on the step size,thus h ! 0 as the step size approaches zero. It musttherefore be expected that di�culties will occur whenthe step size becomes very small, since, in the limit, adivision by zero takes place.

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 52. The problem is even more serious than initiallyexpected, as can be seen when multiplying (13) by h:(J _y + h � Jy) � �l = �h � f l (_yl;yl; t)For h = 0, the iteration matrix reduces to J _y. Un-fortunately, this matrix is singular whenever algebraicequations are present in the equation set, i.e., whensome elements of y do not appear in di�erentiated formin the equation set. In this case, the Newton iterationwill no longer work. Consequently, the Newton itera-tion matrix in (13) becomes ill{conditioned for smallstep sizes, provided purely algebraic equations appearin (11).3. In order to use DASSL, consistent initial condi-tions y0, _y0 must be provided, such that the DAE issatis�ed at initial time. In general, it is di�cult toprovide such initial conditions. A simulation programshould support the user in this respect. If the DAE isgiven in the form of (11), this is not easy.All the aforementioned di�culties disappear, provi-ded some small changes are made. First, it should beexplicitly noted whether a variable does or does notappear in di�erentiated form in the model. Due tothis requirement, the DAE is speci�ed in the followingform: 0 = f (_x;x;w; t) ; x(t0) = x0 (17)where x is the vector of unknown variables that appearin the model in di�erentiated form, whereas w is thevector of unknown purely algebraic variables. Note,that dim(f) = dim(x) + dim(w), and that y = [x;w].Second, the discretization procedure should replace xas a function of _x and not the other way around, asdone in DASSL. If x is replaced in (17), using thegeneral discretization formula (5), one obtains:0 = f (_x; h _x+ old(x);w; t) (18)Applying standard Newton iteration to (18) leads tothe following iteration procedure:[J _x + hJx;Jw] � �l_x�lw � = �f l (_xl;xl;wl; t)(19)_xl+1 = _xl + �l_x (20)wl+1 = wl + �lw (21)xl+1 = xl + h � �l_x (22)Obviously, a vanishing step size will not lead to a di-vision by zero. If h = 0, the Newton iteration matrixreduces to: [J _x ; Jw]It can be easily proven that this matrix is non{singular,provided the DAE (17) has perturbation index 1 (a ne-cessary and su�cient condition), cf. e.g. (Otter, 1995).In other words, if the purely algebraic equations in

the DAE are not \nasty," the iteration matrix is non{singular in the limit h = 0.Finally, (18) has the practical advantage that the di-scretized DAE reduces to the original DAE (17) whenh is set to zero. This property can be exploited forthe calculation of consistent initial conditions. Theuser has to provide initial conditions x0 and �rst gues-ses for _x0, and w0. Before the integration starts, the(Chord{) Newton iteration is replaced by a more ro-bust (yet more expensive) Newton{Raphson iteration,and h = 0, old(x) = x0 is set as indicated. As a result,the discretized DAE (18) reduces to a nonlinear equa-tion in _x0 andw0, which is solved by Newton{Raphsoniteration.To summarize, in a fully{implicit DAE, the discre-tization procedure has to replace x by a function of_x in accordance with (5). Only in the ODE case, thealternative of replacing _x by a function of x, is mea-ningful (cf. (6)).BLT{TRANSFORMATIONIn order to be able to discuss the technique to trans-form a general object{oriented model automaticallydown to a suitably discretized system, the basic trans-formation algorithm of object{oriented modeling lan-guages has to be reviewed. In general, a high{level,object{oriented model description leads directly to alarge, sparse, nonlinear system of equations that hasto be solved for the unknown variables z:0 = h(z) (23)By permutation of equations and variables, it is pos-sible to transform this system of equations to a blocklower{triangular (BLT) form that can be solved in anearly explicit forward sequence. The basic idea isexplained by means of the following simple exampleconsisting of three nonlinear equations:h1 (z1; z3) = 0h2 (z2) = 0h3 (z1; z2) = 0 z1 z2 z3S1 = 24 1 0 10 1 01 1 0 35The structure of the system of equations is describedby the structure incidence matrix S, displayed to theright of the equations. This matrix signals whetherthe kth variable (kth column) occurs in the ith equa-tion (ith row), or not. By permuting equations andvariables, this set of equations can be brought to BLT{form: h2 (z2) = 0h3 (z1; z2) = 0h1 (z1; z3) = 0 z2 z1 z3S2 = 24 1 0 01 1 00 1 1 35

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 6This process is also called the partitioning of the setof equations. The strictly lower triangular form of thepermuted structure incidence matrix characterices thefact that the nonlinear equations can be solved one ata time in a given sequence. We start by solving h2for z2, then we can solve h3 for z1, and �nally, we candetermine z3 from h1. If the variable to be solved forappears linearly in an equation, that equation can beput into explicit form by simple formula manipulation.Otherwise, a local Newton iteration is needed.In general, it is not possible to transform the struc-ture incidence matrix to a strictly lower{triangularform. However, e�cient algorithms exist to transformto block lower{triangular form, i.e., a quasi lower{triangular form in which blocks of dimension � 1 arepresent along the diagonal. The algorithm guaranteesthat the dimensions of the diagonal blocks are keptas small as possible, i.e., it is not possible to trans-form to blocks of yet smaller dimensions just by per-muting variables and equations. Non{trivial blocks onthe diagonal correspond to systems of equations thathave to be solved simultaneously. In other words, thepartitioning algorithm �nds algebraic loops of mini-mal dimensions. Algorithmic details and a proof ofthe mentioned property can e.g. be found in (Du� etal., 1986).TEARINGTearing, introduced by (Kron, 1962), is a simple tech-nique to reduce large systems of linear or nonlinearalgebraic equations to smaller systems of equations.This technique has, for example, been applied succes-sfully for static calculations in chemical engineering(Boston, 1980; Simandl and Svrcek, 1991). Tearingis used in the sequel to formalize the automatic gene-ration of discretized model equations and to enhancethe run{time e�ciency of BLT transformed equationseven further.Consider a set of nonlinear algebraically coupledequations h to be solved for the unknown vector z:0 = h(z) (24)Tearing means breaking algebraic loops in the depen-dency structure of equations and variables. A subsetof the vector z, called z1, is chosen as tearing varia-bles. A subset of h, called h1, are chosen as residualequations. The choices are made in such a way thatthe remainder of z, called z2, can be calculated in se-quence utilizing the remaining equations, h2, underthe assumption that the z1 variables are known, i.e.:z2 = h2(z1) (25)0 = h1(z1; z2) (26)

This system of equations can be solved by Newton ite-ration over the tearing variables z1. The solver provi-des a new guess for z1. With (25), the correspondingvariables z2 are calculated. Finally, the residual (26) iscomputed and returned to the solver. As can be seen,tearing reduces the dimension of the iterated system ofequations from dim(h1) + dim(h2) down to dim(h1).The optimal selection of tearing variables and resi-dual equations is not a trivial task. No e�cient algo-rithms are currently known to automate it. Exhau-stive search algorithms to determine an optimal tea-ring structure are unfortunately of exponential com-plexity. However, in (Elmqvist and Otter, 1994), itis shown that physical insight may suggest appro-priate tearing variables and residual equations. Oftenthis information can be stored in class libraries of anobject{oriented modeling language, such that the tea-ring structure is totally hidden from the user.In (Elmqvist and Otter, 1994), the selected tearingvariables and residual equations are uniquely speci�edby an operator \residue(zi)" that has to be added tothe desired model equation j, e.g. in an appropriateclass library. This operator indicates to the modelingsoftware that variable zi shall be used as tearing va-riable, and that equation j shall be used as the cor-responding residual equation. For example, tearing in(25,26) is uniquely characterized by:z2 = h2(z1) (27)residue(z1) = h1(z1; z2) (28)The tearing technique allows the automated trans-formation of model equations to their discretized formin a simple way. Let us assume for now that the equati-ons of a model are speci�ed in ODE form (1). In orderto arrive at a set of discretized equations (6), one couldproceed as shown earlier in the hand calculation, i.e., _xis replaced by (x�old(x))=h, and afterwards all equa-tions are symbolically multiplied by h. However, suchan approach cannot easily be generalized to modelsspeci�ed in DAE form. Tearing provides for a muchmore elegant formulation:_x = f (x; t) (29)x = old(x) + h � _x + residue(x) (30)Thereby, the model equations are kept unchanged andthe additional discretization equations (30) are simplyadded. The Newton solver will provide an estimate forx, then _x is determined from the state equation (29),and �nally, the residual of the nonlinear equation iscomputed via (30) and is returned to the solver. Asa result, the tearing technique ends up with exactlythe same equations that one would derive from handcalculation (6).

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 7The tearing technique is also well suited for enhan-cing the e�ciency of the solution of a nonlinear systemof discretized equations. Let us discuss, for example,a nonlinear control system with linear feedback, asshown in �gure 2. This rather typical control system
w e yu x = f (x ,u)

y = g (x)
pp
p

.x = Ax + Be
u = Cx + De

c c

c

.

controller plant

-Figure 2: Control System With Feedbackcan be described by the following equations:e = w � y_xc = Axc +Beu = Cxc +De_xp = f (xp;u)y = g (xp)Using the standard discretization technique describedabove leads to:y = g(xp)e = w � yu = Cxc +Dexc = old(xc) + h � (Axc +Be) + residue(xc)xp = old(xp) + h � f (xp;u) + residue(xp)That is, given the two sets of tearing variables, xc andxp, all other variables can be calculated, especially theset of dim(xc) + dim(xp) residual equations. As a re-sult, the same Newton iteration is obtained as if thediscretization would have been done in the integrator.As can be seen, the residue equations of the con-troller are linear in the unknown controller states. Itis therefore possible to solve these equations directly,and to remove the controller states from the iterationvariables:y = g(xp)e = w � yxc = (I � hA)�1 (old(xc) + hBe)u = Cxc +Dexp = old(xp) + h � f (xp;u) + residue(xp)That is, Newton iteration is applied to the much smal-ler set of equations of dimension dim(xp). This is ad-vantageous, if the explicit calculation of xc is cheap.There is a lot of freedom in the implementation of acontroller law. Usually, specially structured matricesare used, such as the controller{canonical form with

a sparse A matrix and a cheaply computable inverse.Such structures often occur in a natural way when sim-ple low order blocks are connected together to build upthe controller. If the Jordan{canonical form is used,the inversion becomes trivial.Evidently, the above example is quite generic. Ho-wever, it illustrates well how the set of Newton itera-tion variables in a model can be reduced by exploitingknowledge about the model structure, here the linea-rity of a submodel. It is important to keep the numberof Newton iteration variables as small as possible, sincethis reduces the sizes of the Jacobians, and since it willimprove the convergence speed of the iteration.INLINE INTEGRATION OF DAESWe have now all pieces together to discuss the gene-ral algorithm to transform a DAE down to a suitablediscretized form in an automated manner.Inline integration of a DAE:0 = f (_x;x;w; t) ; x(t0) = x0 (31)is done in the following �ve steps.(1) The system is transformed to BLT{form, assu-ming that x is known, and that w and _x are unknown.As a result, the systems of equations of minimaldimen-sions are determined that cannot be solved explicitly.(2) For every xi with the property that _xi can beexplicitly solved for in the partitioned equations (i.e.,the corresponding diagonal block of the structure inci-dence matrix is of dimension one), add the equation:xi = h � _xi + old(xi) + residue(xi) (32)For all other xj, add the same equation but withoutthe term residue(xj).(3) If the assigned equation of _xj or wk appearsin an algebraic loop (a diagonal block of dimen-sion larger than one), add the term \residue(_xj)" or\residue(wk)" to the corresponding model equation.(4) If a declaration not to tear xi; _xj; wk orterms of the form \residue(xi)", \residue(_xj)" or\residue(wk)" are already present in the model equati-ons, remove the corresponding residue operators whichhave been added in (2) or (3). This rule is needed inorder to be able to select speci�c tearing structuresin the model class libraries. This feature enables thedesigner of such libraries to override the default tea-ring mechanism and select tearing structures that arebetter suited for the application at hand.(5) Transform the augmented system of equationsto BLT{form, assuming that w, _x and x are unknown,

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 8thereby utilizing the tearing information. As a result,the nonlinear systems of equations of the discretizedmodel equations are produced.Let us discuss some special cases of this algorithm.If a DAE consists of a single large algebraic loop,in which all state derivatives _x and algebraic variablesw are involved, the above algorithm will generate thefollowing equations due to steps (2) and (3):x = h � _x + old(x)0 = f (_x;x;w; t) + residue(� _xw �)i.e., the already discussed basic discretized form of ge-neral DAEs (18), where _x and w are used as Newtoniteration variables.If a DAE can be transformed to strictly lower{triangular form, i.e. ODE{form, then no algebraicloops are present, and the following equations will begenerated again due to steps (2) and (3):x = h � _x+ old(x) + residue(x)_x = f (x; t)i.e., the already discussed basic discretized form ofODEs (6), where the state variables, x, are used asiteration variables.To summarize, in the worst case, the inline inte-gration algorithm will produce the same discretizationform as if the discretization procedure would be donedirectly in the integrator using the standard interfa-ces. However, in most practical cases, the algorithmwill perform considerably better, i.e., either the dimen-sion of the algebraic nonlinear system to be iterated issmaller, or the overall system is broken down into se-veral smaller systems that can be iterated separately.Note that, as shown in the controller example presen-ted in the section entitled \Tearing", it often makessense to eliminate linear dynamic subsystems from thediscretized equations, such that the reduced Newtoniteration contains only variables from nonlinear equa-tions.A MORE DETAILED EXAMPLELet us consider the following nonlinear plant modeland controller with complex poles.It can be described by the following equations:_x = f(x; u; t)y = g(x)_x1 = x2

u

k w2

s + 2Dws + w2 2

x = f (x, u, t)
y = g (x)

y

-Figure 3: Nonlinear Plant With Feedback Loop_x2 = �2!Dx2 � w2x1 +w2yu = �kx1This model is completely harmless from an ODE per-spective. It presents itself already in state{space form,and any explicit integration algorithms can solve thisproblem easily, as long as the equations are not sti�.Use of a numerical DAE solver would require theuser to specify for the solver, which are the state va-riables, and to formulate the corresponding state equa-tions in residual form. In the above example, it wouldthen apply Newton iteration to the resulting three{variable system, in order to keep the residuals close tozero at all times.This model is a special case of the general controlloop discussed in the section entitled \Tearing." Con-sequently, it is easy to automatically discretize the mo-del using the earlier explained technique. Thereby, thelinear part of the discretized equations can be solvedexplicitly, so that only the nonlinear plant equationhas to be solved by Newton iteration.Using the object{oriented modeling language Dy-mola, the equations of the system can be directly pro-grammed. Optionally, Dymola transforms the equa-tions down to discretized equations, as explained inthe last section, and outputs the result in the form ofC{code:/* SORTED AND SOLVED EQUATIONS *//* SYSTEM OF 7 SIMULTANEOUS NONLINEAR EQUATIONS *//* EQUATIONS *//* derx + residuederx = f(x,u,Time); *//* x = h*derx + oldx; *//* y = g(x); *//* derx2 + linresderx2 + 2*w*D*x2 + w*w*x1 *//* = w*w*y *//* x2 = h*derx2 + oldx2; *//* x1 = h*x2 + oldx1; *//* u = k*x1; *//* SOLVING NONLINEAR SYSTEM OF EQUATIONS */QSol[0] = derx;QNLnr = 1;QNnl = 1;

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 9QiOpt = 2;QInfRev = -1;Iter1 :if (QInfRev > 0) {/* NONLINEAR TEARING VARIABLES AND RESIDUES *//* derx residuederx *//* TORN NONLINEAR EQUATIONS */x = h*derx + oldx;y = g(x);/* SYSTEM OF 3 SIMULTANEOUS LINEAR EQUATIONS *//* EQUATIONS *//* derx2 + linresderx2 + 2*w*D*x2 + w*w*x1 *//* = w*w*y *//* x2 = h*derx2 + oldx2; *//* x1 = h*x2 + oldx1; *//* SOLVING LINEAR SYSTEM OF EQUATIONS *//* LINEAR TEARING VARIABLES AND RESIDUES *//* derx2 linresderx2 *//* TORN LINEAR EQUATIONS */derx2 = (w*w*y - ((2*w*D + h*w*w)*oldx2+ w*w*oldx1)) / (1 + (2*w*D + h*w*w)*h));/* END OF TORN LINEAR EQUATIONS */x2 = h*derx2 + oldx2;x1 = h*x2 + oldx1;/* END OF SYSTEM OF LINEAR SIMULTANEOUS EQUATIONS */u = -k*x1;residuederx = f(x,u,Time) - derx;/* END OF TORN NONLINEAR EQUATIONS */QRes[0] = residuederx;}/* UPDATE SOLUTION */DymNon(QInfRev,QiOpt,QNnl,QSol,QRes,QJac,Qtol,Qinfo,QD,QI,PrintEvent,QNLnr,Time,QNLfunc,QNLjac,QNLmax,QiErr);derx = QSol[0];if (QInfRev > 0) goto Iter1;if (*QiErr != 0) goto leave;/* END OF SYSTEM OF NONLINEAR SIMULTANEOUS EQUATIONS *//* END OF SORTED AND SOLVED EQUATIONS */This code executes considerably faster than the DAEcode. The reason is that the number of nonlinear ite-ration variables has been reduced from three to one.Thereby, the Jacobians are reduced from being ma-trices of sizes 3 � 3 to mere scalars, and the numberof iterations needed to reach convergence will also besmaller.Note, that the Newton iteration in the C{code isdone using \reverse communication," that is, the re-siduum is calculated, and afterwards, the nonlinear(Chord{) Newton iteration function DymNon is called.When DymNon needs a new residuum calculation, the

function is left signaling the desired action via variableQInfRef, and the code jumps again to the residuumcalculation.MECHATRONICS EXAMPLEIn (Franke and Otter, 1993), a realistically modeledmechatronics system consisting of a six{degree of fre-edom robot together with its drive trains, motors, ac-tuators, and the electronic control circuitry was de-scribed for use as a benchmark problem. In �gure 4,a screen dump of this system modeled with Dymola'sgraphical editor, Dymodraw, is shown.On the right side of the �gure, the six{degree offreedom robot is shown composed of basic mechanicalcomponents like joints and bars (Otter et al., 1993).At every joint, a drive train Di is present. Every suchobject contains a gearbox (not shown in the �gure), amotor, and an actuator, as well as a control system.The elasticity of the gears of the �rst three joints ismodelled by one spring for each gearbox. The elasti-city of the last three joints is neglected. Damping andCoulomb friction are considered in every joint. In theupper part of �gure 4, the model of the motor andactuator of one joint can be seen. This component isde�ned, most naturally, as an electrical circuit. Fi-nally, in the lower part of �gure 4, the tacho �ltersand the control system of one drive train are de�nedin block diagram format. In the left part of �gure 4,some component libraries are shown that are used tobuild up the model.The model consists of 12 states for the mechanicalpart of the robot, two states for every gearbox withmodeled elasticity, two states for every motor/actuatorcomponent, three states for every tacho �lter, andthree states for every controller. The overall systemshas therefore 12+3 �2+6 � (2+3+3) = 66 states. Themodel is build up by about 2000 equations.The system is sti� due to the sti� springs in thegearboxes and due to the \fast" controllers, i.e., dueto arti�cial sti�ness. Consequently, an implicit inte-gration algorithm is most appropriate. Available stan-dard sti� system solvers, like LSODAR or DASSLRT,have to perform a Newton iteration on a system of66 algebraically coupled nonlinear equations, a formi-dable task. The Jacobian and Hessian of the systemare matrices of 4356 elements. An LU{decompositionof the Hessian (O(n3) Operations, n = 66) needs tobe performed whenever the Newton iteration does notconverge fast enough. A back{substitution to solve thelinear equation (O(n2) Operations) is needed once perNewton iteration step.By using the (semi{automatic) inline integrationprocedure explained in the last sections, it is possi-

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 10

Figure 4: Object{Oriented View of Mechatronic Modelble to reduce the Newton iteration from 66 equationsdown to six equations. The main reason for this drasticreduction is that most of the components have lineardynamics (although several of these components arecoupled by nonlinear elements, such as limiters).Let us discuss the reduction process in more detail.The 12 state equations of the robot can be reducedto six nonlinear equations, since the original equationsare of second order, and higher{order derivatives areeliminated as explained in (9,10). Therefore, the sta-tes of the robot, i.e., the angle and angular velocityof every joint, can be considered known (the angu-lar velocity variables are the tearing variables used forNewton iteration, the angles are computed from thediscretization equations).These known variables enter into the six drive trainsthat are totally decoupled from each other (providedthe angle and angular velocity variables of the robotare known), and which to a great extent have lineardynamics. A similar reasoning as the one provided inthe section entitled Tearing shows that these systemscan be fully eliminated, resulting in the inversion of sixlinear systems of equations containing either 2+2+3+3 = 10 (a drive train of the �rst three joints) or 2+3+3 = 8 (a drive train of the last three joints) equations.

Since the drive trains are build up by loosely coupled�rst{ or second{order systems, the inversion of a 10�10 system actually breaks down into the inversion of aseries of 1� 1 and 2� 2 systems.This can easily be seen for the controller part (cf.lower part of �gure 4). The angle q and the angularvelocity q' are known and enter from the right intothe block diagram of the control system. The �rstblock of the tacho �lter is a �rst order block. Since theinput and the discretization are known, the unknownstate kann be determined by one division. Afterwardsthe output can be calculated. The next block is asecond{order system. Again, the two states can bedetermined by solving a system of two equations. Inthe same way, all other blocks of the control system canbe determined, �nally leading to the required value ofthe controller current, ir, leaving the control systemto the right of the controller.Note that the above description is just an analysisof what is going on in the translator. In Dymola, thewhole procedure is done in a semi{automaticway. Pre-sently, the user has to state in model libraries (fromknowledge about the system) which of the tearing va-riables are associated with linear dynamic systems.

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 11FUTURE RESEARCHIn this paper, we only discussed the inline implementa-tion of BDF algorithms. However, in (Cellier, 1995), itis shown that also implicit Runge{Kutta (IRK) codescan elegantly be inlined. Due to their better accu-racy properties (larger asymptotic regions) and betterstability properties (even higher{order IRKs can bemade L{stable), they represent very attractive alter-natives to BDF algorithms for DAE solution. Pro-fessional IRK codes implementing e.g. Radau IIa al-gorithms are available and are widely used (Hairer etal., 1989). Notice that a k{stage fully{implicit IRKalgorithm applied to an nth order system requires aNewton iteration on n � k variables, i.e., the systems ofequations to be solved are even larger than in the caseof the BDF algorithms. For example, the mechatronicsproblem solved using a 5th order (3{stage) Radau IIamethod would call for a Newton iteration on a 198variable system. For this reason, it is to be expectedthat inlining will lead to even more spectacular savingswhen applied to IRK methods.It should also be much easier, using the inlining tech-nique, to study the behavior of mixed sti�/non{sti�algorithms. It should be possible to separate sti� fromnon{sti� iteration variables and apply Newton itera-tion only to the sti� variables, whereas the non{sti�variables are iterated using the much cheaper �xed{point iteration method. However, this has not beenattempted yet.CONCLUSIONSInline integration was proposed as a new mixed symbo-lic/numeric approach for solving di�erential{algebraicequation systems. Inline integration means to add thestate discretization equations symbolically to the mo-del equations at the time of model compilation, the-reby symbolically converting the original continuous{time model (di�erential equation system) to a cor-responding discrete{time model (di�erence equationsystem). If an implicit integration formula is inli-ned, the resulting di�erence equations always containlarge blocks of simultaneous, i.e., algebraically coup-led, equations. These are then structured for enhancedsolution speed using BLT-transformation and tearing.The goal of tearing is to further reduce the sizes of theblocks of simultaneous equations to fairly small setsof equations that can be solved in an e�cient mannereither symbolically at compile time or numerically atrun time.It was shown that BLT-transformation and appro-priate tearing cut right across all types of equations.They do not distinguish between model equations, i.e.,the equations that are extracted from the physical de-

scription of the system to be simulated, and numericalequations, i.e., equations stemming from the numeri-cal solution technique, such as the state discretizationequations. Consequently, it is important to treat bothtypes of equations in the same manner. This makes itnecessary to augment the model equations by the statediscretization equations symbolically at compile timeprior to determining suitable tearing structures.The e�ectiveness of inline integration was demon-strated by means of a large mechatronics model consi-sting of 66 di�erential and about 2000 algebraic equa-tions. It was possible to reduce the nonlinear systemof discretized equations in a semi{automatic fashionfrom 66 down to six, i.e., by a factor of more than 10.Inlining has been implemented as a new feature inthe modeling language Dymola, an object{orientedmodeling tool for large continuous and discontinuousmodels of physical and engineering systems.REFERENCESAndersson, M. (1994), Object{Oriented Modeling and Simula-tion of Hybrid Systems, Ph.D. Dissertation, Report CODEN:LUTFD2/TFRT-1043-SE, Department of Automatic Control,Lund Institute of Technology, Lund, Sweden.Andrzejewski, T., H.G. Bock, E. Eich and R. von Schwerin(1993), \Recent Advances in the Numerical Integration of Mul-tibody Systems", Advanced Multibody System Dynamics, editedby W. Schiehlen, Kluwer Academic Publishers, pp. 127{151.Augustin, D.C., M.S. Fineberg, B.B. Johnson, R.N. Linebarger,F.J. Sansom, and J.C. Strauss (1967), \The SCi ContinuousSystem Simulation Language (CSSL)," Simulation, 9, pp. 281{303.Boston, J.F. (1980), \Inside{out Algorithms for Multicompo-nent Separation Process Calculations," Computer Applic. toChem. Engng, pp. 135{151.Brenan, K.E., S.L., Campbell, and L.R. Petzold (1989),Numeri-cal Solution of Initial{Value Problems in Di�erential AlgebraicEquations, North{Holland, New York.Cardona, A. and M. G�erardin (1993), \Numerical Integrationof Second Order Di�erential{Algebraic Systems in Flexible Me-chanism Dynamics",Proceedings NATO/ASI, Computer{AidedAnalysis of Rigid and Flexible Mechanical Systems, Vol. 1,Troia, Portugal, June 27 { July 9, pp. 165{193.Cellier, F.E. (1995), Continuous System Simulation, Springer{Verlag, New York, to appear.Cellier, F.E., and H. Elmqvist (1993), \AutomatedFormulaMa-nipulation Supports Object{Oriented Continuous{System Mo-deling," IEEE Control Systems, 13(2), pp. 28{38.Du�, I.S., A.M. Erismann, and J.K. Reid (1986),Direct Methodsfor Sparse Matrices, Oxford Science Publications.Elmqvist, H. (1978), A Structured Model Language for LargeContinuous Systems, Ph.D. Dissertation, Report CODEN:LUTFD2/(TFRT{1015), Dept. of Automatic Control, Lund In-stitute of Technology, Lund, Sweden.

Keynote Address, Proc. ESM'95, European Simulation Multiconference., Prague, June 5.-8., pp. xxiii-xxxiv, 1995. 12Elmqvist, H. (1993), \A Novel Approach to IntegratingDAE's,"Electronic mail message to F.E. Cellier and M. Otter, April 3.Elmqvist, H. (1995), Dymola: Dynamic Modeling Language |User's Guide, Dynasim AB, Lund, Sweden.Elmqvist, H., and M. Otter (1994), \Methods for TearingSystems of Equations in Object{Oriented Modeling," Procee-dings ESM'94, European Simulation Multiconference, Barce-lona, Spain, June 1{3, pp.326{332.Franke, J., and M. Otter (1993), The Manutec r3 BenchmarkModels for the Dynamic Simulation of Robots, Technical ReportTR R101-93, DLR, Institut f�ur Robotik und Systemdynamik,D{82234 Wessling.Gear, C.W. (1971), Numerical Initial Value Problems in Ordi-nary Di�erential Equations, Series in Automatic Computation,Prentice-Hall.Hairer, E., C. Lubich, and M. Roche (1989), The Numerical So-lution of Di�erential{Algebraic Systems by Runge{Kutta Me-thods, Springer{Verlag, Berlin, Germany.Lubich, C., U. Nowak, U. P�ohle, and C. Engstler (1993), \AnOverview of MEXX: Numerical Software for Integration of Mul-tibody Systems", Advanced Multibody System Dynamics, editedby W. Schiehlen, Kluwer Academic Publishers, pp. 421{426.Kron, G. (1962),Diakoptics | The piecewise Solution of Large-Scale Systems, MacDonald & Co., London.Nagel, L.W. (1975), SPICE2: A computer program to simu-late semiconductor circuits, Berkeley, University of California,Electronic Research Laboratory, ERL{M 520.Otter, M., H. Elmqvist, and F.E. Cellier (1993), \Modeling ofMultibody SystemsWith the Object{OrientedModeling Langu-age Dymola," Proceedings NATO/ASI, Computer{Aided Ana-lysis of Rigid and Flexible Mechanical Systems, Vol. 2, Troia,Portugal, June 27 { July 9, pp. 91{110.Otter, M. (1995), \Objektorientierte Modellierung mecha-tronischer Systeme am Beispiel geregelter Roboter", Ph.D.-Dissertation, Fortschritt-Berichte VDI, Reihe 20, Nr. 147, VDI-Verlag D�usseldorf.Petzold, L.R. (1983), \A description of DASSL: A di�eren-tial/algebraic system solver," Scienti�c Computing, edited byR.S. Stepleman et al., North{Holland, Amsterdam, pp. 65{68.Simandl, J., and W.Y. Svrcek (1991), \Extension of theSimultaneous{Solution and Inside{Outside Algorithms to Di-stillation with Chemical Reactions," Computer and ChemicalEngng, 15(5), pp. 337{348.

