Vehicle Propulsion Systems Lecture 8

Fuel Cell Vehicles

Lars Eriksson Professor

Vehicular Systems Linköping University

May 17, 2020

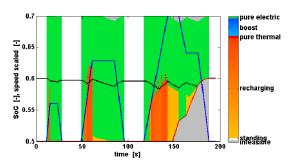
1/41

Outline

Repetition

Fuel Cell Electric Vehicles

Fuel Cell Basics
Fuel Cell Types
Reformers
Applications


Fuel Cell Modeling

Practical aspects

Examples of Components in a Technology Demonstrator

Deterministic Dynamic Programming – Parallel Hybrid Example

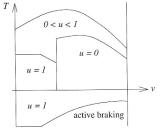
- Fuel-optimal torque split factor $u(SOC, t) = \frac{T_{e-motor}}{T_{gearbox}}$
- ► ECE cycle
- ▶ Constraints $SOC(t = t_f) \ge 0.6$, $SOC \in [0.5, 0.7]$

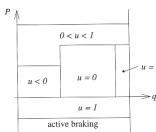
Global optimum guaranteed within discretization.

Non-causal.

Full knowledge about the mission.

Curse of dimensionality $N_t N^{2d}$.


 $d \in [1, 3]$


The reference tool used for development and comparisons.

3/41

Heuristic Control Approaches

Parallel hybrid vehicle (electric assist)

2/41

4/41

 Determine control output as function of some selected state variables:

vehicle speed, engine speed, state of charge, power demand, motor speed, temperature, vehicle acceleration, torque demand

On-Line Control - ECMS

- ▶ Given the optimal λ^* (cycle dependent exchange rate between fuel and electricity) .
- ► Hamiltonian

$$H(t, q(t), u(t), \lambda^*) = P_f(t, u(t)) + \lambda^* P_{ech}(t, u(t))$$

Optimal control action

$$u^*(t) = \underset{u}{\operatorname{arg\,min}} H(t, q(t), u, \lambda^*)$$

▶ Guess λ^* , run one cycle see end SOC, update λ^* , and iterate until $SOC(t_f) \approx SOC(0)$.

5/41

ECMS – Equivalent Consumption Minimization Strategy

 \blacktriangleright μ_0 depends on the (soft) constraint

$$\mu_0 = rac{\partial}{q(t_{\it f})}\phi(q(t_{\it f})) = /{
m special\ case}/ = -w$$

Different efficiencies

$$\mu_0 = rac{\partial}{\partial oldsymbol{q}(t_f)} \phi(oldsymbol{q}(t_f)) = egin{cases} -oldsymbol{w}_{ extit{dis}}, & oldsymbol{q}(t_f) > oldsymbol{q}(0) \ -oldsymbol{w}_{ extit{chg}}, & oldsymbol{q}(t_f) < oldsymbol{q}(0) \end{cases}$$

 Introduce equivalence factor (scaling) by studying battery and fuel power

$$s(t) = -\mu(t) rac{H_{LHV}}{V_b \, Q_{max}}$$

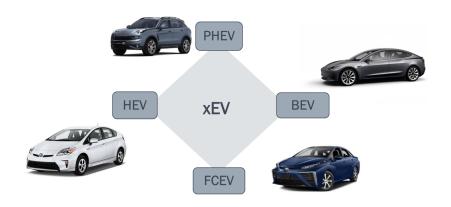
ECMS – Equivalent Consumption Minimization Strategy

Outline

Repetition

Fuel Cell Electric Vehicles

Fuel Cell Basics Fuel Cell Types Reformers

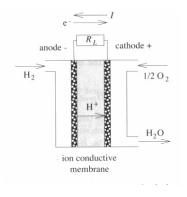

Applications

Fuel Cell Modeling

Practical aspects

Examples of Components in a Technology Demonstrator

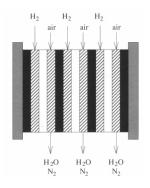
Introducing xEVs - From Victor Judez @ CEVT, Lecture Day 1



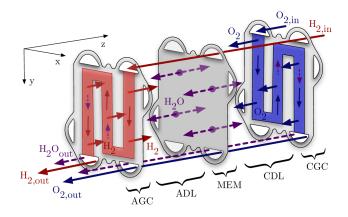
7/41 8/41

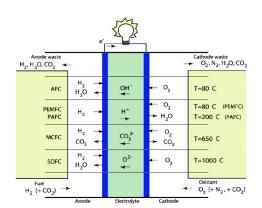
6/41

Fuel Cell Basic Principles


- Convert fuel directly to electrical energy
- Let an ion pass from an anode to a cathode
- ► Take out electrical work from the electrons

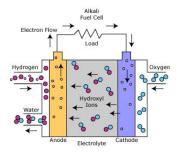
Fuel Cell Stack


- ► The voltage out from one cell is just below 1 V.
- ► Fuel cells are stacked, in series.



9/41 10/41

Components in a Fuel Cell Stack

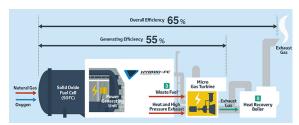


Overview of Different Fuel Cell Technologies

11/41 12/41

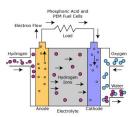
AFC - Alkaline Fuel cell

- Among the most efficient fuel cells 70%
- ► Low temperature 65-220°C
 - Quick start, fast dynamics
 - ▶ No co-generation
- Sensitive to poisoning


13/41

The Other Types of H₂ Fuel Cells

Other fuel cell types are


PAFC – Phosphoric Acid Fuel Cell	175°C
► MCFC – Molten Carbonate Fuel Cell	650°C
SOFC – Solid Oxide Fuel Cells	1000°C

- ► Hotter cells, slower, more difficult to control
- Power generation through co-generation

PEMFC – Proton Exchange Membrane Fuel Cell Advantages:

- Relatively high power-density characteristic
- Operating temperature, less than 100°C
 Allows rapid start-up
- Good transient response, i.e. change power
 - Top candidate for automotive applications
- Other advantages relate to the electrolyte being a solid material, compared to a liquid

Disadvantages:

- Require expensive catalyst material (Platinum)
- For some applications operating temperature is low
- The electrolyte is required to be saturated with water to operate optimally.
- Careful control of the moisture of the anode and cathode streams is important

14/41

Hydrogen Fuel Storage

- Hydrogen storage is a challenging task.
- Some examples of different options.
 - ► Compressed Hydrogen storage
 - ► Liquid phase Cryogenic storage, -253°C
 - Metal hydride
 - ► Sodium borohydride NaBH₄

15/41 16/41

Comparison of H₂ Fuel Cells – US DOE

Fuel Cell Type	Common Electrolyte	Operating Temperature	Typical Stack Size	Efficiency	Applications	Advantages	Disadvantages
Polymer Electrolyte Membrane (PEM)	Perfluoro sulfonic acid	50-100°C 122-212° typically 80°C	<1kW-100kW	60% transpor- tation 35% stationary	Backup power Portable power Distributed generation Transporation Specialty vehicles	Solid electrolyte reduces corrosion & electrolyte management problems Low temperature Quick start-up	Expensive catalysts Sensitive to fuel impurities Low temperature waste heat
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90-100°C 194-212°F	10-100 kW	60%	Military Space	Cathode reaction faster in alkaline electrolyte, leads to high performance Low cost components	Sensitive to CO ₂ in fuel and air Electrolyte management
Phosphoric Acid (PAFC)	Phosphoric acid soaked in a matrix	150-200°C 302-392°F	400 kW 100 kW module	40%	Distributed generation	Higher temperature enables CHP Increased tolerance to fuel impurities	Pt catalyst Long start up time Low current and power
Molten Carbonate (MCFC)	Solution of lithium, sodium, and/ or potassium carbonates, soaked in a matrix	600-700°C 1112-1292°F	300 kW-3 MW 300 kW module	45-50%	Electric utility Distributed generation	High efficiency Fuel flexibility Can use a variety of catalysts Suitable for CHP	High temperature cor- rosion and breakdown of cell components Long start up time Low power density
Solid Oxide (SOFC)	Yttria stabi- lized zirconia	700-1000°C 1202-1832°F	1kW-2 MW	60%	Auxiliary power Electric utility Distributed generation	High efficiency Fuel flexibility Can use a variety of catalysts Solid electrolyte Suitable for CHP & CHHP Hybrid/GT cycle	High temperature cor- rosion and breakdown of cell components High temperature opera- tion requires long start up time and limits

DMFC - Direct Methanol Fuel Cell

▶ Basic operation

▶ Anode Reaction: $CH_3OH + H_2O \Rightarrow CO_2 + 6H^+ + 6e^-$

► Cathode Reaction: $3/2O_2 + 6H^+ + 6e^- => 3H_2O$

• Overall Cell Reaction: $CH_3OH + 3/2O_2 => CO_2 + 2H_2O$

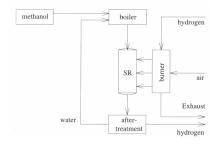
► Main advantage, does not need pure Hydrogen.

Applications outside automotive

-battery replacements

-small light weight

▶ Low temperature


Methanol toxicity is a problem

17/41 18/41

Reformers

► Fuel cells need hydrogen — Generate it on-board —Steam reforming of methanol.

$$2 \, \text{CH}_3 \text{OH} + \text{O}_2 \Rightarrow 2 \, \text{CO}_2 + \, 4 \, \text{H}_2$$

Fuel Cell Applications in USA – US DOE

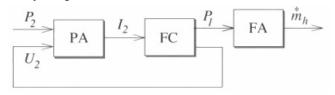
19/41 20/41

Outline

Repetition

Fuel Cell Electric Vehicles

Fuel Cell Basics
Fuel Cell Types
Reformers
Applications


Fuel Cell Modeling

Practical aspects

Examples of Components in a Technology Demonstrator

Quasistatic Modeling of a Fuel Cell

► Causality diagram

- Power amplifier (Current controller)
- ► Fuel amplifier (Fuel controller)
- Standard modeling approach
- Keys for understanding:
 - ► Cell The polarization curve
 - ► Operation The Surrounding System

21/41 22/41

Fuel Cell Thermodynamics

Starting point reaction equation

$$H_2 + \frac{1}{2} O_2 \Rightarrow 2 H_2 0$$

Open system energy – Enthalpy H

$$H = U + pV$$

Available (reversible) energy – Gibbs free energy G

$$G = H - TS$$

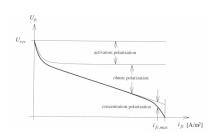
Open circuit cell voltages

$$U_{rev} = -rac{\Delta G}{n_e \, F}, \qquad \qquad U_{id} = -rac{\Delta H}{n_e \, F}, \qquad \qquad U_{rev} = \eta_{id} \, U_{id}$$

F – Faradays constant ($F = q N_0$)

► Heat losses under load $P_l = I_{fc}(t) (U_{id} - U_{fc}(t)) \Rightarrow$ Cooling system

Fuel Cell Performance – Polarization curve


Polarization curve of a fuel cell
Relating current density $i_{fc}(t) = I_{fc}(t)/A_{fc}$, and cell

 $i_{fc}(t) = I_{fc}(t)/A_{fc}$, and cell voltage $U_{fc}(t)$ Curve for one operating condition

- Fundamentally different compared to combustion engine/electrical motor
- Excellent part load behavior

–When considering only the cell

 $-\eta_{cell}$ follows the Voltage

23/41 24/41

Single Cell Modeling

► Fuel cell voltage

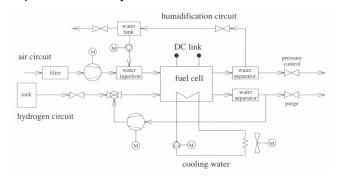
$$U_{fc}(t) = U_{rev}(t) - U_{act}(t) - U_{ohm}(t) - U_{conc}(t)$$

 Activation energy – Get the reactions going Semi-empirical Tafel equation

$$U_{act}(t) = c_0 + c_1 \ln(i_{fc}(t)), \text{ or } U_{act}(t) = \dots$$

 Ohmic – Resistance to flow of ions in the cell

$$U_{ohm}(t) = i_{fc}(t) \, \tilde{R}_{fc}$$

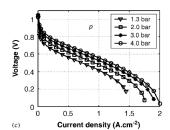

 Concentration, change in concentration of the reactants at the electrodes

$$U_{conc}(t) = c_2 \cdot i_{fc}(t)^{c_3}$$
, or $U_{conc}(t) = \dots$

25/41

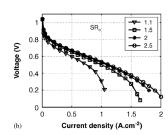
Fuel Cell System Modeling

► A complete fuel cell system


Power at the stack with N cells

$$P_{st}(t) = I_{fc}(t) U_{fc}(t) N$$

26/41

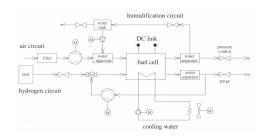

Important effects for the cell and system

Cell Pressure

Boosting the performance

Cell excess air λ

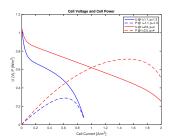
 $2H_2+\lambda O_2 \rightarrow 2H_2O+(\lambda-1)O_2, \lambda \geq 1$

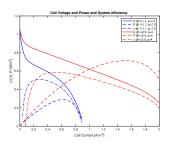

Fuel Cell System Modeling

► Describe all subsystems with models

$$P_2(t) = P_{st}(t) - P_{aux}(t)$$

$$P_{aux} = P_0 + P_{em}(t) + P_{ahp}(t) + p_{hp}(t) + P_{cl}(t) + p_{cf}(t)$$


em-electric motor, ahp – humidifier pump, hp – hydrogen recirculation pump, cl – coolant pump, cf – cooling fan.

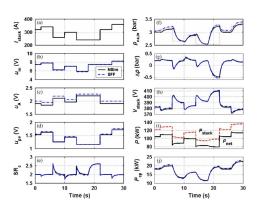

Submodels for:
 Hydrogen circuit, air circuit, water circuit, and coolant circuit

Fuel Cell System Performance at Low and High P_c

Individual Cell

Fuel Cell System

29/41


- -Efficiency is highest at part loads towards low load.
- -The system is stealing current to keep the cell operating.

Fuel Cell System Dynamics

Open Loop Steps on Inputs

Note

- \triangleright λ , bottom left
- ► Pressure, top right
- Gap in Cell & Output Power
- Due to compressor power

The system has non-negligible dynamics.

30/41

Outline

Repetition

Fuel Cell Electric Vehicles

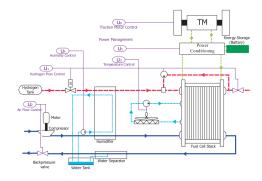
Fuel Cell Basics
Fuel Cell Types
Reformers
Applications

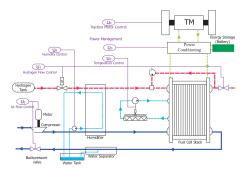
Fuel Cell Modeling

Practical aspects

Examples of Components in a Technology Demonstrator

Fuel Cell Vehicles




Illustration provided by Prof. Anna Stefanopoulou, University of Michigan.

31/41 32/41

Fuel Cell HEV – Short Term Storage

Short term storage

- Recuperation, regenerative breaking
- 2. FC system has non-negligible time constants
- 3. Super capacitors
- 4. Batteries
- 5. Hybridization

Fuel Cell Vehicle

The Hy.Power vehicle, going over a mountain pass in Switzerland in 2002.

- ► Technology demonstrator
- ► Lower oxygen contents, 2005 m
- Cold weather

Let us look at the real components in the powertrain under the shell.

33/41 34/41

Components – Electric Motor

Components – Fuel Supply and Fuel Cell Stack

35/41 36/41

Components – Fuel Cell Stack, Heat Exchanger & Controller

Components – Fuel Cell Stack, Controller and Heat exchanger

37/41 38/41

Components – Power Electronics and Super Caps

Lecture is a preparation for the future

Non trivial system that is about to boom in China...

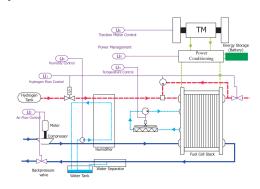


Illustration provided by Prof. Anna Stefanopoulou, University of Michigan.

39/41 40/41