Vehicle Propulsion Systems Lecture 7

Non Electric Hybrid Propulsion Systems

Lars Eriksson Professor

Vehicular Systems Linköping University

May 6, 2018

2/50

Hybrid Electrical Vehicles - Parallel

- Two parallel energy paths
- One state in QSS framework, state of charge

4/50

6/50

Optimization, Optimal Control, Dynamic Programming What gear ratios give the lowest fuel consumption for a given

drivingcycle? -Problem presented in appendix 8.1

Problem characteristics

- ► Countable number of free variables, $i_{g,j}, j \in [1, 5]$
- A "computable" cost, $m_f(\cdots)$
- A "computable" set of constraints, model and cycle
- The formulated problem

 $\min_{i_{g,j}, j \in [1,5]} \quad m_f(i_{g,1}, i_{g,2}, i_{g,3}, i_{g,4}, i_{g,5})$

s.t. model and cycle is fulfilled

General problem formulation

Performance index

$$J(u) = \phi(x(t_b), t_b) + \int_{t_a}^{t_b} L(x(t), u(t), t) dt$$

System model (constraints)

$$\frac{d}{dt}x = f(x(t), u(t), t), x(t_a) = x_a$$

State and control constraints

$$u(t) \in U(t)$$

 $x(t) \in X(t)$

Outline

Repetition

Short Term Storage

- Hybrid-Inertial Propulsion System
 - Dosign princip
 - Modelina
 - Continuously Variable Transmission
- Hybrid-Hydraulic Propulsion Systems
- Basics
- riyuradile r drips and motors
- Pheumatic Hybrid Engine Systems
- Case studies

Hybrid Electrical Vehicles - Serial

- Two paths working in parallel
- Decoupled through the battery
- Two states in QSS framework, state of charge & Engine speed

5/50

3/50

Optimal Control – Problem Motivation

Car with gas pedal u(t) as control input:

How to drive from A to B on a given time with minimum fuel consumption?

- Infinite dimensional decision variable u(t).
- Cost function $\int_0^{t_f} \dot{m}_f(t) dt$
- Constraints:

Model of the car (the vehicle motion equation)

$$\begin{array}{lll} m_v \frac{d}{dt} v(t) &= F_t(v(t), u(t)) & -(F_a(v(t)) + F_r(v(t)) + F_g(x(t))) \\ \frac{d}{dt} x(t) &= v(t) \\ \dot{m}_t &= f(v(t), u(t)) \end{array}$$

- ► Starting point x(0) = A
- End point $x(t_f) = B$
- Speed limits $v(t) \le g(x(t))$
- Limited control action $0 \le u(t) \le 1$

7/50

Dynamic programming – Problem Formulation

Optimal control problem

$$\min J(u) = \phi(x(t_b), t_b) + \int_{t_a}^{t_b} L(x(t), u(t), t) dt$$
s.t.
$$\frac{d}{dt} x = f(x(t), u(t), t)$$

$$x(t_a) = x_a$$

$$u(t) \in U(t)$$

$$x(t) \in X(t)$$

- ► x(t), u(t) functions on $t \in [t_a, t_b]$
- Search an approximation to the solution by discretizing
 the state space x(t)
 - ► and maybe the control signal *u*(*t*) in both amplitude and time.
- The result is a combinatorial (network) problem

9/50

Deterministic Dynamic Programming - Basic algorithm

$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
$$x_{k+1} = f_k(x_k, u_k)$$

Algorithm idea:

Start at the end and proceed backwards in time to evaluate the optimal cost-to-go and the corresponding control signal.

Parallel Hybrid Example

- Fuel-optimal torque split factor $u(SOC, t) = \frac{T_{e-motor}}{T_{aeathor}}$
- ECE cycle

12/50

Analytical Solutions to Optimal Control Problems

Hamiltonian

 $H(t, q(t), u(t), \mu(t)) = L(t, u(t)) + \mu(t) f(t, q(t), u(t))$

Solution (theory from Appendix B)

 $u(t) = \operatorname{arg\,min}_{u} H(t, q(t), u(t), \mu(t))$

with

$$\dot{\mu}(t) = -\frac{\partial}{\partial q} f(t, q(t), u(t))$$
$$\dot{q}(t) = f(t, q(t), u(t))$$

▶ If $\frac{\partial}{\partial q} f(t, q(t), u(t)) = 0$ the problem becomes simpler μ becomes a constant μ_0 , search for it when solving

14/50

Outline

Repetition

Short Term Storage

Hybrid-Inertial Propulsion Systems Basic principles Design principles Modeling Continuously Variable Transmission

Hybrid-Hydraulic Propulsion Systems Basics Modeling

Hydraulic Pumps and Motors

Pneumatic Hybrid Engine Systems

Case studies

Deterministic Dynamic Programming – Basic Algorithm

Graphical illustration of the solution procedure

11/50

Analytical Solutions to Optimal Control Problems

Core of the problem

$$\min J(u) = \phi(q(t_f), t_f) + \int_0^{t_f} L(t, u(t)) dt$$

s.t. $\dot{q}(t) = f(t, q(t), u(t))$

Hamiltonian from optimal control theory

 $H(t, q(t), u(t), \mu(t)) = L(t, u(t)) + \mu(t) f(t, q(t), u(t))$

13/50

ECMS

- \blacktriangleright Given the optimal λ^* (cycle dependent exchange rate between fuel and electricity) .
- Hamiltonian

 $H(t, q(t), u(t), \lambda^*) = P_f(t, u(t)) + \lambda^* P_{ech}(t, u(t))$

Optimal control action

$$u^*(t) = \arg \min H(t, q(t), u, \lambda^*)$$

Guess λ^{*}, run one cycle see end SOC, update λ^{*}, and iterate until SOC(t_l) ≈ SOC(0).

15/50

Examples of Short Term Storage Systems

Short Term Storage - F1

2009 FIA allowed the usage of 60 kW, KERS (Kinetic Energy Recovery System) in F1.

- Technologies:
 - ► Flywheel
 - Super-Caps, Ultra-Caps
 - Batteries

2014, will allow KERS units with 120 kilowatts (160 bhp). -To balance the sport's move from 2.4 I V8 engines to 1.6 I V6 engines.

Basic Principles for Hybrid Systems

- Kinetic energy recovery
- Use "best" points Duty cycle.
 - Run engine (fuel converter) at its optimal point.
 - Shut-off the engine.

19/50

Power and Energy Densities

Asymptotic power and energy density - The Principle

20/50

18/50

Causality for a hybrid-inertial propulsion system

22/50

Flywheel accumulator - Design principle

Energy stored (SOC):

$$E_f = \frac{1}{2} \Theta_f \omega_f^2$$

Wheel inertia

$$\Theta_f = \rho \, b \, \int_{Area} r^2 \, 2 \, \pi \, r \, dr = \ldots = \frac{\pi}{2} \, \rho \, b \, \frac{d^4}{16} \, (1 - q^4)$$

Wheel Mass

$$m_{f} = \pi \,
ho \, b \, d^{2} \, (1 - q^{2})$$

Energy to mass ratio

$$\frac{E_f}{m_f} = \frac{d^2}{16}(1+q^2)\omega_f^2 = \frac{u^2}{4}(1+q^2)$$

Outline

Short Term Storage Hybrid-Inertial Propulsion Systems Basic principles Design principles Modeling Continuously Variable Transmission Hybrid-Hydraulic Propulsion Systems Basics Modeling Hydraulic Pumps and Motors

- Pheumatic Hybrid Engine Syster
- Case studies

23/50

Flywheel accumulator

Energy stored (Θ_f = J_f):

$$E_f = \frac{1}{2} \Theta_f \omega_f^2$$

Wheel inertia

$$\Theta_f = \rho \, b \, \int_{Area} r^2 \, 2 \, \pi \, r \, dr = \ldots = \frac{\pi}{2} \, \rho \, b \, \frac{d^4}{16} \, (1 - q^4)$$

Quasistatic Modeling of FW Accumulators

Flywheel speed (SOC) $P_2(t)$ – power out, $P_l(t)$ – power loss

$$\Theta_f \omega_2(t) \frac{d}{dt} \omega_2(t) = -P_2(t) - P_l(t)$$

Power losses as a function of speed

Air resistance and bearing losses

26/50

CVT Principle

28/50

CVT Modeling

 Transmission (gear) ratio v, speeds and transmitted torques

$$\omega_1(t) = \nu(t) \,\omega_2(t)$$

$$T_{t1}(t) = \nu \left(T_{t2}(t) - T_{t}(t)\right)$$

 An alternative to model the losses, is to use an efficiency definition.

30/50

Outline

Repetition

Short Term Storage

Hybrid-Inertial Propulsion Systems Basic principles Design principles Modeling Continuously Variable Transmission

Hybrid-Hydraulic Propulsion Systems Basics Modeling

Hydraulic Pumps and Motors

Pneumatic Hybrid Engine System

Case studies

Continuously Variable Transmission (CVT)

27/50

CVT Modeling

 Transmission (gear) ratio v, speeds and transmitted torques

$$\omega_1(t) = \nu(t) \,\omega_2(t)$$

$$T_{t1}(t) = \nu \left(T_{t2}(t) - T_l(t)\right)$$

Newtons second law for the two pulleys

$$\Theta_1 \frac{d}{dt} \omega_1(t) = T_1(t) - T_{t1}(t)$$
$$\Theta_2 \frac{d}{dt} \omega_2(t) = T_2(t) - T_{t2}(t)$$

System of equations give

$$T_{1}(t) = T_{l}(t) + \frac{T_{2}(t)}{\nu(t)} + \frac{\Theta_{CVT}(t)}{\nu(t)} \frac{d}{dt} \omega_{2}(t) + \Theta_{1} \frac{d}{dt} \nu(t) \omega_{2}(t)$$
^{29/50}

Efficiencies for a Push-Belt CVT

31/50

Examples of Short Term Storage Systems

Causality for a hybrid-hydraulic propulsion system

34/50

Model Simplification

Simplifications made in thermodynamic equations to get a simple state equation.

Assuming steady state conditions.
 –Eliminating θ_g and the volume change gives

$$p_2(t) = \frac{h A_w \theta_w m_g R_g}{V_g(t) h A_w + m_g R_g Q_2(t)}$$

Combining this with the power output gives

$$Q_2(t) = \frac{V_g(t)}{m_g} \frac{h A_w P_2(t)}{R_g \theta_w h A_w - R_g P_2(t)}$$

- Integrating $Q_2(t)$ gives V_g as the state in the model.
- Modeling of the hydraulic systems efficiency, see the book.
 A detail for the assignment
- -This simplification can give problems in the simulation if parameter values are off. (Division by zero.)

Hydraulic Pumps

38/50

36/50

Modeling of a Hydraulic Accumulator

Modeling principle -Energy balance

$$m_{g}c_{v}\frac{d}{dt}\theta_{g}(t) = -p\frac{d}{dt}V_{g}(t) - hA_{w}(\theta_{g}(t) - \ell$$
-Mass balance
(=volume for incompressible fluid)

$$\frac{d}{dt}V_{g}(t) = Q_{2}(t)$$
Power generation
-Ideal gas law

$$P_{2}(t) = p_{2}(t)Q_{2}(t)$$

$$p_g(t) = rac{m_g\,R_g\, heta_g(t)}{V_g(t)}$$

35/50

Outline

Repetition

Short Term Storage

- Hybrid-Inertial Propulsion Systems Basic principles Design principles Modeling
 - Continuously Variable Transmission

Hybrid-Hydraulic Propulsion Systems Basics Modeling

Hydraulic Pumps and Motors

Pneumatic Hybrid Engine Systems

37/50

Modeling of Hydraulic Motors

Efficiency modeling

$$\begin{split} P_{1}(t) = & \frac{P_{2}(t)}{\eta_{hm}(\omega_{2}(t), T_{2}(t))}, \qquad P_{2}(t) > 0\\ P_{1}(t) = & P_{2}(t) \eta_{hm}(\omega_{2}(t), -|T_{2}|(t)), \qquad P_{2}(t) < 0 \end{split}$$

Willans line modeling, describing the loss

$$P_1(t) = \frac{P_2(t) + P_0}{e}$$

 Physical modeling Wilson's approach provided in the book.

39/50

Pneumatic Hybrid Engine System

Outline

Repetition

Short Term Storage

Hybrid-Inertial Propulsion Systems Basic principles Design principles Modeling Continuously Variable Transmission

Hybrid-Hydraulic Propulsion Systems Basics Modeling

Hydraulic Pumps and Motors

Pneumatic Hybrid Engine Systems

Case studies

Conventional SI Engine

Compression and expansion model

 $p(t) = c v(t)^{-\gamma} \qquad \Rightarrow \qquad \log(p(t)) = \log(c) - \gamma \log(v(t))$

gives lines in the log-log diagram version of the pV-diagram

42/50

Under Charged Mode

Outline

Repetition

Short Term Storage

lybrid-Inertial Propulsion Systems Basic principles Design principles Modeling Continuously Variable Transmission

Hybrid-Hydraulic Propulsion Systems

Modeling

Hydraulic Pumps and Motors

Pneumatic Hybrid Engine Systems

Case studies

46/50

44/50

Problem description

For each constant vehicle speed find the optimal limits for starting and stopping the engine –Minimize fuel consumption

–Solved through parameter optimization \Rightarrow Map used for control

Super Charged Mode

43/50

Pneumatic Brake System

45/50

Case Study 3: ICE and Flywheel Powertrain

47/50

Case Study 8: Hybrid Pneumatic Engine

- Local optimization of the engine thermodynamic cycle
- Different modes to select between
- Dynamic programming of the mode selection

49/50