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Abstract

Designing and developing new aircraft engine is time-consuming and expensive. Computational simulation is a promising means for

alleviating this cost, but constructing flexible simulation software capable of evaluation of integrated aircraft engine system architectures is hard

work. This paper addresses the design of a tool—a generic modular-modeled library of air gas turbine, this library is based on object-oriented

technology and hierarchical decomposition and provides a flexible component-based representation for defining, modifying, and simulating the

aircraft gas turbine system, subsystem and components. It enables users to customize and extend the framework to add new functionality or

adapt the simulation behavior as required, and it allows new models to be composed programmatically or graphically to form more complex

models. The model library can be used in steady-state and transient analysis of the aero-engine. It is also a user-friendly, accurate, fast PCbased

and easily reusable simulating tool. The advanced object-oriented simulation language Modelica is used to construct this library. Modelica

provides a powerful tool to design the library. All of the work described in this paper is developed based upon Dymola/Modelica.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

As the aircraft industry enters 21st century, there is

increasing pressure to reduce the time, cost and risk of

aircraft engine development and maintenance. To compete

effectively in global marketplace, innovative approaches to

reducing aircraft gas turbine engine design-circle span,

manufacture and maintenance cost are needed. An oppor-

tunity emerged to realize this point with computational

simulation. As modeling techniques have improved, and

computers have progressed, simulation has assumed an

essential role in planning, executing, and evaluating

operations. So too, in the design, manufacturing, and

operating of aircraft turbine engines, accurate performance

simulations have become essential. Therefore, throughout

the years, many computer-based models for the simulation

of the operational characteristics of the aircraft gas turbine

engine have been structured and evolved into a very wide

range of applications [1–4].

To make sure the requirement of commercial users

of engine models, a detailed survey was prepared,
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and distributed to users and creators of engine models by

Applied Vehicle Technology Pane (AVT) in Research

Technology Organization (RTO) of NATO. The responses

varied in details, forms and sources, but were adequate to

lead to the following conclusions: ‘There is a trend towards

object-oriented and graphical approaches; the general trend

is to move towards workstations and PC systems which offer

graphical user interfaces; flexible and modular systems are

required. Also, there is a requirement to model components

and systems at varying levels of detail’ [3].

Based upon these, the objective of our work is to develop

a set of extensible generic model libraries of components

and subsystem of the aero engine system that may be used to

rapidly assemble a system level dynamic model and to

evaluate the dynamic performance of integrated power

system architectures during conceptual and preliminary

design. As such, the intended use is not for particular

component design but rather to understand the interaction of

components.

Due to the wide range of interactions between different

engineering fields, especially in aero-engine, systems are

getting more complex and heterogeneous. For example, the

gas turbine engine system includes several engineering

fields, mechanics, hydraulics, electrics, thermodynamics
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and so on. When trying to create models of these systems,

problems arise with the interaction of the different parts.

Fortunately, among the recent research in modeling and

simulation, there are two concepts that are closely related to

these problems: object-oriented modeling language and

non-causal modeling. During the last few years, a new

advanced multidisciplinary object-oriented modeling

language Modelica has been developed. It is designed to

allow convenient, component-oriented modeling of com-

plex physical systems, e.g. systems containing mechanical,

electrical, electronic, hydraulic, thermal, control, electric

power or process-oriented subcomponents [5]. So in this

paper the model libraries will be developed based no the

Modelica language.
2. Basic design IDEA

2.1. Library design

Following the top–down design philosophy and con-

sidering the different engineering fields related to aero-

engine system structuring, the whole system can be divided

into several sub-systems; each sub-system consists of

various components. They are shown in Fig. 1.

Based on the above decomposition, each subsystem has

its respective library of component models. Although the

scope of this work is the development of the libraries of

several subsystems that can be assembled to capture the

physical characteristics of the whole aero-engine system,

our emphasis in this paper is to construct the aircraft gas

turbine system model library. So the library of gas turbine

system will be particularly illustrated in details in the next

section.

To build a complete aircraft gas turbine system-level

model, the strategy is determined and shown in Fig. 2. Both

the prospective model library and the system-level model

will be designed according to the strategy.
Fig. 1. Sub-systems and compon
2.2. Object-oriented modeling and hierarchical structure

Traditionally, simulation software development has

followed the top–down structured design approach, which

applies the method of functional decomposition to establish

program structure. Although this method has been success-

ful in some applications, it fails to reflect the real world. As

a result many attempts have been made to tackle this

problem by applying Object-oriented technology (OO

technology).

So the whole aircraft gas turbine system is designed as an

object-oriented framework, which is a set of classes that

embodies an abstract design for solution to a family of

related problems (Johnson and Foote, 1988) [6]. The set of

classes define ‘semi-complete’ applications that capture

domain-specific object structures and functionality. Specific

functionality in new applications is realized by inheriting

from, or composing with, framework components.

In this paper, new object-oriented simulation software

Dymola/Modelica is used to develop the gas turbine model.

It is also structured to enable the assembly of object-

oriented hierarchical libraries, which can be later used to

assemble system-level dynamic models. And several other

Modelica libraries, such as mechanical, electrical and

thermoflow library, can be obtained freely.

The layout configuration of the aircraft gas turbine is

shown in Fig. 3. From a structural view point, a gas turbine

can be essentially as assembly of engine component—inlet,

fan, compressors, combustor, duct turbine, shafts and

nozzle. These components can be represented in the

computational domain as objects [6].

During the simulation, the engine’s mathematical model

is mapped to collections of interacting objects, rather than

decomposed into segments of different functions that can

implement certain algorithms. Each object mimics the

behavioral and structural characteristic of a physical or

conceptual entity shown in Fig. 3. And it represents an

instance of a software class, while the classes are united into
ents of aero engine system.



Fig. 2. Flow chart of aero-engine model design.
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a hierarchy via inheritance relationships [6]. For example,

the class (or partial model) ‘BaseCompressor’ is used to

generate different kinds of compressors. However, it inherits

from a more generalized class ‘CompressorMap’. If a new

compressor object need to be modeled, it can easily be

instantiated from the existing class ‘BaseCompressor’. In

this manner, a well-planned class hierarchy provides the

‘slots’ into which the future codes are to be plugged.
2.3. Non-linear model

In the design of the mathematical model of the aircraft

gas turbine, the following factors are considered:
The inertia of rotor and mechanical efficiency;
Mass and energy storage and release (mass, energy, and

momentum balance);
Air of cooling system, or leaking;
Variation of specified heat capacity and adiabatic

exponent;
Pressure loss in combustor, and combustion efficiency

etc are considered by setting relevant variables on

customized windows of the models.

Non-linear mathematical model of the gas turbine has

been discussed in many books and papers. In this paper, the

model is divided into several modular models with the

object-oriented technology. Each modular model represents
Fig. 3. Aeroengine structure [7].
a component of the gas turbine, and can be used to model the

corresponding component’s function. For example, the

variations of specific heat capacity and adiabatic exponent

can be acquired in the work fluid modular (medium) model.

Based on the modular model the hierarchical structure is

easily structured, in addition, ‘Message-based modeling’ [1]

is used for the interaction among models.
3. Common engineering model

In an aircraft gas-turbine library, physical engine

component structures and substructures are represented by

the different combinations of the volume model, flow

model, medium model, and connector model objects. And

all these objects are designed based on the OO technology.

The object composition provides a powerful mechanism for

representing the physical topology of the gas turbine engine.

3.1. Volume model and flow model

The difficulty in modular is keeping the independence of

every modular model, at the same time, considering the

coupling among different models. So the concept of volume

and flow is developed. In recent years, control volume

models have been used to model the thermodynamics

systems that involve mass flow and energy in and out.

Besides the volume model, the flow model is also

indispensable in modeling the gas turbine components [8].

So another model named flow model is introduced for

calculating the mass flow and the convective energy

associated to the mass and energy flow. Flow models are

the result of modeling abstraction, where the volume is

neglected. The flow models contain either an algebraic

equation that relates pressure drop and mass flow, or a

mathematical expression for dynamic momentum balance.

The storage of mass and energy are modeled in the control

volume model. Volume models and flow models always

have to alternate each other [8] as Fig. 4 shows.

Volume model and flow model are connected by flow

connectors (see Section 3.3). In the volume model the

output variable quantities are pressure, specific enthalpy,

density, temperature, specific entropy and ratio of specific

heats, respectively. And the input variable quantities

are mass flow and convective heat. While the flow

model’s output variables are mass flow and convective

heat flow, the input information is pressure, specific

enthalpy and so on.

Suppose the gas (or air) in the volume model is uniform.

Any heat transfer and momentum are neglected. The energy

and mass balances of a volume can be expressed in the

follow balance equations (take the enthalpy and pressure as

the state variables):

m2i Km1i CVi

vri

vpi

dpi

dti

C
vri

vhi

dhi

dti

� �
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vVi

vti
Z 0 (1)



Fig. 4. Volume and flow model.

Fig. 5. Medium models.
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Where m is the mass flow; positive and negative sign are

associated to flow into and out of the control volume,

respectively; V is the cubage of volume model; r is the

density of airflow; h is the enthalpy; u is the internal energy

and i is the subscript, representing the different element. For

simplicity, dissipative works has been neglected here. Based

on these balance equations, the basic energy equations in

volume model can be acquired as following:
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As Fig. 4 shows, between two volumes a flow model has

to be connected with them. Here, the flow model is applied

in the compressor, turbine, nozzle, etc.; to calculate the

corrected mass flow rate of air based on the pressure ratio,

temperature, angular speed, etc. In the flow model the

mechanical power is transmitted to internal energy of the air

by increasing the air pressure and vice versa.

3.2. Medium model

This paper wishes to provide the users with the

capability to assemble an engine the same way as that in

thermodynamics, that is, by coupling the physical com-

ponents together using thermodynamic linkages, such as

the working fluid flows and the shafts. So in this modular

model library, it also includes a medium model for

calculating the thermo-physical properties. The medium

model is chosen according to the applications field.

Take the working fluid flow as an example. During the

gas path balancing, it acts as a means of data transmission

between two components. As depicted in Fig. 5, if

component A and B are coupled together by a working

fluid flow, the value of any thermodynamic parameter at A’s
outlet should be equal to that at B’s inlet. If the value on one

side is known and that on the other side is unknown, the

fluid flow must assign the known value to the other side. The

transmitted data are of various types, ranging from

temperature, pressure, to enthalpy, mass flow rate, and/or

chemical composition [8]. Some unexpected types of data

may also need to be involved when the components are of

special type. Besides, although the working fluid flows are

unidirectional from upstream to downstream, the data

transmissions do not have to behave in the same way. The

previous models tried to wrap all these complexities in one

single object, whose mechanism of data transmission turned

out to be too complicated for new parameter types to be

inserted in and hence new component types and balancing

methods are extended and customized.

There are too many medium composition, it is not

possible to create all of them. So based on the OO

technology, a new medium model can be easily added by

users follow the old medium model structure in the library.
3.3. Connector model

Component interaction is defined by Connector models.

The connector represents an exchange of information data

between successive models or components.

A consequence of allowing multifidelity and multi-

disciplinary models to be incorporated in an engine

component is that an engine model maybe composed of

component models having differing fidelity and discipline.

There are different connector models available in the

library. Such as: mechanical connectors, thermo connectors,

hydraulic connectors, etc. Structure of the Connector is tied

to the discipline level of the component model. That is to

say, the different connectors are used corresponding to the

variables transferred.

In this paper several connector combinations are

introduced and classified into the sub-package. For

example, there are two output ports in the high-pressure

compressor of a recuperative gas turbine, one for the main



Fig. 6. Compressor flow model structure.

Y. Cao et al. / Advances in Engineering Software 36 (2005) 127–134 131
airflow and one for the coolant. So the three ports interface

model named ‘ThreePortsSingleDynamic’ is introduced.

Although in some conditions, the thermo connector

models used in the volume models are the same form as the

flow models’, the structures of them are different. In volume

model pressure, specific enthalpy, density, temperature,

specific entropy and ratio of specific heats of entrance

connector are respectively equal to these of export connector,

however, in flow model the mass flow and connective heat

flow are the same but other variables are not.
Fig. 7. Compressor model.
4. Component example—compressor

In this section, a component of gas turbine—compressor

will be taken as an example to illustrate how to use the

model library explained above to build a component model.

The compressor model in the library can be divided into

two parts: one is an essential flow model. In this model, the

pressure potential and kinetic energy of the working fluid in

the compressor will be increased by transmitting the

mechanical energy of the shaft. And the other is the volume

model. The compressor model is also used to model the Fan

component in the engine model.

In the volume and flow models only thermodynamic

parameters are considered, i.e. pressures and temperatures,

as related to engine performance and performance analysis.

The engine shaft speed is another important engine

parameter. Modeling of the thermodynamics depends on

the shaft speeds and vice versa. In this case generalized

semi-empirical engine component models (performance

maps) and mechanical model that are related to the

compressor may be used.

Compressor performance is represented by a set of

overall performance maps normalized to design point

values. Baseline performance maps provide normalized

corrected mass flow rate and normalized efficiency as a

function of normalized pressure ratio and normalized

corrected spool speed.

mcorrectedZ f ðu; p;TÞ (5)

The normalized adiabatic efficiency value is obtained

from the baseline compressor performance map. The
adiabatic efficiency his, is then computed by multiplying

the normalized adiabatic efficiency by the designing

adiabatic efficiency value.

his Z

p2

p1

� �ðkK1=kÞ

K1

p2

p1

� �ðkK1=hpkÞ

K1

(6)

Based on shaft rotation speed, the pressure, temperature

and enthalpy, etc., which are transferred from the previous

and next volume models period. The power or rate of energy

transmitted from the shaft to the fluid in compressor flow

modes is:

Pcomp Z mðhout KhinÞ (7)

Based on the OO technology, the compressor flow model

can be built through the inheritance and the objects’

composition. Its structure is shown in Fig. 6.

A complete compressor component model is constructed

through combining compressor flow model and volume

model. It is shown in Fig. 7.
5. Gas turbine models library and an example

5.1. Gas turbine library

The previous sections have described the architecture of

Gas Turbine library, which is an object-oriented framework

for modeling and simulation of aero gas turbine systems.

This library can be classified into four parts: (1) Partial

Components: it is the package of the aero-engine physical

components and volume components models. These



Fig. 8. Gas turbine library.
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components are the basic blocks for building Aeroengine

models; (2) Base Classes: they are the bases of other models

in the library. They can be inherited or extended by other

models. The records sub-package is the class of the variables

and parameters, and the functions sub-package is the class of

all functions. They are both put in the Base Classes package

as sub-packages. (3) Interfaces: the connectors among
Fig. 9. Overview of gas t
the components are defined here; and (4) Demos. The

structure is shown in Fig. 8.

With the OO technology this library provides a flexible

and extensible environment that can be used to compose

new engine component models graphically or program-

matically, to inspect and edit the existing models,

and simulate the display execution results. It also provides

plug-compatible software components which users can

combine to form increasingly complex gas turbine engine

models according to application requirements.
5.2. An aero-engine model

In this section, we utilize the gas turbine library and

electrical library developed by our team to graphically build

and simulate the characteristics of gas turbine connecting

with a switch reluctance generator. An acceleration process,

the shaft speed from 7000 to 14000 rpm, is simulated. The

compressor performance map is compared with the GSP’s

result. The NLR’s GSP (Gas turbine Simulation Program) is

an off-line component-based modeling environment for gas

turbine. It is developed by the Netherlands National

Aerospace Laboratory.
urbine framework.
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Components are the basic blocks for building engine

models. In gas turbine library, a basic component model is

represented by an icon. Components are dragged-and-

dropped from library windows onto the model window and

arranged to form the desired aero engine system configur-

ation (see Fig. 9) according to the prototype. The main

frame model (left figures of Fig. 9) is divided into three sub-

models: Atmospheres, Gas Turbine Engine, and

SR_Generator.

Atmosphere sub-model represents the environment. In

this sub-model some variables, such as the atmosphere

temperature, pressure, Mach number and so on are

calculated.
Fig. 10. Some resul
The Gas Turbine Engine sub-model represents a two-

spool engine. It includes the low-pressure compressor and

turbine, combustor, high-pressure compressor and turbine,

low and high-speed shaft, fuel pump, nozzle, power turbine.

The volume models are placed between two flow models to

define the initial conditions, boundary conditions and handle

inter-component fluid dynamics.

The SR_Generator sub-model represents an aero gen-

erator. It is driven by the gas turbine through a gearbox.

In unsteady simulations, the independent variables are

functions of time and may be implicitly integrated to predict

their value at a future time based on known past values. So

before proceeding to the transient analysis, the simulation
ts of the model.
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first attempts to drive the engine to balanced (stable-state)

conditions to make sure the values of initial operating

point. This ensures that the engine model is in a consistent,

physically valid operating state before beginning the

transient operation.

After the model being built, each of these components is

shown on a model window whose properties and charac-

teristics can be specified by user via data modification.

Compressor model has input fields named compressor

customizer for defining design point values and perform-

ance map. So do the turbines, nozzle, and duct. The initial

operating point values are set on volume model’s

customizer.

The DASSL numerical algorithm method is used to

resolve the problem of the modeling. Relative tolerances

have to be assigned to tell the integration methods how

accurately the solution should be computed. The accuracy

of the computed state variables is comparable to the relative

error tolerances. The integration step-size is chosen in such

a way, that the local error is smaller than the desired

maximum local error, defined via the relative and absolute

tolerance. The relative tolerance is 1E-4.

Once the initial and boundary condition values are fixed,

the model can be simulated. When the simulation finishes

successfully, then the results are available. All variables for

each component in the simulation model can be plotted.

Fig. 10(a) shows the compressor performance map, and

Fig. 10(b) shows the same map of GSP. Comparing

these two plots, we can conclude that our model is effective

and correct, Fig. 10(c) and (d) show the temperature before

turbine (T3*) and the compressor outlet’s pressure.

Especially, in Fig. 10(c) there is a decline of T3* during

the acceleration process. With the mechanical inertia and

cubage of volume model decreasing, the T3* decline will

gradually reduce. That is to say, the inertia and the volume

in gas turbine affect the acceleration remarkably. Fig. 10(e)

and (f) also show the plot of single-phase flux linkage circle

and load current of the SR_Generator model.
6. Conclusion

Designing and developing new aero engine is a time-

consuming and expensive process. Computational simu-

lation is a powerful means for alleviating this cost, thanks to

the flexibility it provides for rapid and relatively inexpen-

sive evaluation of alternative designs in design phase. So a

framework named Gas Turbine Library representing engine

components, subcomponents and subassemblies is devel-

oped and illustrated in this paper.
The Gas Turbine Library described in this paper provides

framework components that, together, form an integrated

system for aircraft gas turbine engine. It can help one to

understand the engine performance behavior and to identify

the causes of possible deficiencies in engine performance in

a highly cost-effective manner. It has also become very

useful for efficient mission analysis, the preliminary design

studies of engines and their matching to airframes.

The object-oriented technology is utilized to produce a

reusable component-based architecture that can be extended

and customized to meet future application requirements.

The modular individual components in this library can be

easily modified and extended, so new components models

can be added conveniently. As a result the library will be

enlarged and changed by users, the library can be adjusted

and updated by users with the aero engine developing.

The Dymola/Modelica is a new powerful simulation tool.

In this paper it is applied in a new engineering field, and

proved to be successful. On the other hand its libraries group

has been enriched too.
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