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Abstract

To efficiently transport goods by heavy-duty trucks, it is important that vehicles
have a high degree of availability and in particular avoid becoming standing
by the road unable to continue the transport mission. An unplanned stop by
the road does not only cost due to the delay in delivery, but can also lead to
a damaged cargo. High availability can be achieved by changing components
frequently, but such an approach is expensive both due to the frequent visits to
a workshop and also due to the component cost. Therefore, failure prognostics
and flexible maintenance has significant potential in the automotive field for
both manufacturers, commercial fleet owners, and private customers.

In heavy-duty trucks, one cause of unplanned stops are failures in the electrical
power system, and in particular the lead-acid starter battery. The main purpose
of the battery is to power the starter motor to get the diesel engine running, but
it is also used to, for example, power auxiliary units such as cabin heating and
kitchen equipment. Detailed physical models of battery degradation is inherently
difficult and requires, in addition to battery health sensing which is not available
in the given study, detailed knowledge of battery chemistry and how degradation
depends on the vehicle and battery usage profiles.

The main aim of the given work is to predict the lifetime of lead-acid batteries
using data-driven approaches. Main contributions in the thesis are: a) the choice
of the Random Survival Forest method as the model for predicting a conditional
reliability function which is used as the estimator of the battery lifetime, b)
variable selection for better predictability of the model and c) variance estimation
for the Random Survival Forest method.

When developing a data-driven prognostic model and the number of avail-
able variables is large, variable selection is an important task, since including
non-informative variables in the model have a negative impact on prognosis
performance. Two features of the dataset has been identified, 1) there are few
informative variables, and 2) highly correlated variables in the dataset. The
main contribution is a novel method for identifying important variables, taking
these two properties into account, using Random Survival Forests to estimate
prognostics models. The result of the proposed method is compared to existing
variable selection methods, and applied to a real-world automotive dataset.

Confidence bands are introduced to the RSF model giving an opportunity
for an engineer to observe the confidence of the model prediction. Some aspects
of the confidence bands are considered: a) their asymptotic behavior and b)
usefulness in the model selection. A problem of including time related variables
is addressed in the thesis with arguments why it is a good choice not to add them
into the model. Metrics for performance evaluation are suggested which show
that the model can be used to find and optimize cost of the battery replacement.
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Chapter 1

Introduction

Intelligent, condition based, maintenance is an effective and cost-effective tool to
improve availability and uptime in many industrial applications. High availability
can be achieved by changing components frequently, but such an approach is
expensive both due to the frequent visits to a workshop and also due to the
component cost. Therefore, failure prognostics and flexible maintenance has
significant potential.

Areas of significant current interest are autonomous systems and autonomous
vehicles where the main aim are systems that can perform required tasks without
any supervision from humans. Self-driving vehicles should deliver goods to the
customers and help at work at the construction sites. Autonomous operation of
dynamic systems with high uptime requirements and no direct user feedback is
a challenging task and flexible, condition based, maintenance is then even more
important.

Also in more established applications, like heavy-duty trucks that is the
main motivating business for this thesis work, it is important that vehicles
have a high degree of availability and in particular avoid standing by the road
unable to continue the transport mission. An unplanned stop by the road or
at the construction site does not only cost due to the delay in delivery, but
can also lead to damaged cargo or influence the work plan of other self-driving
vehicles. Therefore, maintenance planning becomes important in the automotive
industry, in particular where car or truck manufactures do not only produce and
deliver cars and trucks, but also provide maintenance services that will allow
fleet owners or regular customers to avoid unexpected failures. In heavy-duty
trucks, one cause of unplanned stops are failures in the electrical power system,
and in particular, the lead-acid starter battery. Flexible maintenance and fault
prognosis of lead-acid batteries is the topic of this thesis. It is an industrially
relevant component and prognostics is technically challenging which motivates
this research.

1
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1.1 Lead-acid batteries

It can be a surprising fact, but first batteries could exist as early as thousands
years ago. One such battery was found in 1936 near Baghdad. However, some
scientists believe it was not used as the source of energy, but the object has all
elements that make it possible to consider the discovered object as a battery.
The battery was in the form of a clay jar and had iron rod as a positive terminal,
copper cylinder as a negative terminal and probably a vinegar solution as an
electrolyte.

Considering modern batteries, there are a few different types of batteries
available, for example lead-acid, nickel-based, lithium-ion, sodium-sulfur etc.
This thesis concerns lead-acid batteries that are used in heavy-duty trucks. The
main purpose of the battery is to power the starter motor to get the diesel engine
running, but it is also used to, for example, power auxiliary units such as cabin
heating and kitchen equipment. Figure 1.1 shows one example of a lead-acid
starter battery used in Scania heavy-duty trucks.

Figure 1.1: Lead-acid starter battery used at Scania CV.

This thesis concerns tracking battery degradation and main reasons for
the lead-acid battery degradation are sulfation, corrosion, and internal short.
Sulfation happens when the battery is not charged to its full charge value.
This is common for the trucks operated within cities as they start the battery
quite often and do not charge it fully because of the frequent stops and short
travelling distance within the cities. Corrosion appears due to high charge
voltage which can happen if a vehicle is operated in a broad temperature range
and charging procedure is not designed properly. Internal short is a type of
degradation that happens due to the fact that with time part of the lead from
the plates accumulates at the bottom of the battery container which can lead to
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(a) healthy positive plate (b) degraded positive plate

Figure 1.2: Healthy, left figure, and degraded, right figure, positive plates in
lead acid batteries.

a conducting layer formation that connects two plates. Figure 1.2 demonstrates
a healthy and a degraded plate from a lead-acid battery.

1.2 Lifetime prognostics

This section gives a brief introduction to the research methods of lifetime
prognostics area highlighting main differences between them and making a
bridge to the further discussion in this thesis.

There are, coarsely, two categories, (Roemer et al., 2005), of approaches
to lifetime prognostics, namely, model based and data-driven methods. Cor-
nerstones of the model based methods are physical laws and equations that
describe degradation of the components. However, accurate predictions of the
model based methods rely on the accurate degradation models. It is sometimes,
and this is certainly true for lead-acid batteries, hard to develop an accurate
degradation model for a particular system, and then data-driven methods can
be an alternative if reliability data is available. Data-driven models work with
data which is logged during the operation of the systems under study.

A basic notion in lifetime prognostics is Remaining Useful Life (RUL), which
is either the remaining time until component failure or to the point where it
can no longer fulfill its function. It is common in both approaches to aim for
a reliable estimate of the remaining useful life. In general, RUL is estimated
using sensors that give health related information of the component, meaning,
there is a possibility to track the state of health related parameters during the
lifetime of the component. Examples of model-based prognostics are given in
(Daigle and Goebel, 2011; Hanachi et al., 2015; Saha and Goebel, 2009). Authors
in (Daigle and Goebel, 2011) developed a detailed physics-based model of a
pneumatic valve in a cryogenic refueling system and predict the RUL of the
component based on a discrete sequence of observations and a particle filter
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as a predictive technique. Prognostics and health management of gas turbine
engines is addressed in (Hanachi et al., 2015) where a comprehensive nonlinear
thermodynamic model is developed. In (Saha and Goebel, 2009) authors model
li-ion battery capacity depletion in a particle filtering framework similar to
(Daigle and Goebel, 2011). Here, an empirical model that describes battery
depletion during a discharge cycles is suggested, then, it is used in a particle
filter to predict the RUL. It is worth to notice that the mentioned works all
have the possibility to either measure key parameters of the models during the
operational time or at least during the period of tuning the model. However,
and this is a key observation for the battery problem studied in this thesis, this
is not the case for the data under study.

Data-driven models use machine learning methods to either estimate RUL,
the health of the component, or prognostic related information. These data-
driven methods can be categorized into parametric and non-parametric methods.
A parametric approach assumes a parametric form of the distribution of the RUL
and the parameters of interest are estimated based on observations. An approach
based on Hidden Markov Models is proposed by the authors in (Medjaher et al.,
2012) as machine learning method to predict the degradation of the bearings.
There, it is assumed that the observation probability densities are a mixture
of Guassians and that there are signals from the sensors that can capture
degradation of the bearings. Thus, data from the sensors can be used to estimate
parameters of the distributions and as the result the RUL. A parametric method
COSMO is proposed in (Fan et al., 2015) to detect and predict faults in air
pressure compressors of a fleet of city busses. The signals from the busses are
collected continuously and compared to measurements from the failed busses
aggregated in the distribution. In turn, non-parametric data-driven methods use
machine learning methods that do not have any basic assumption regarding the
underlying distribution of the RUL (Ishwaran et al., 2008; Prytz et al., 2015).
In (Ishwaran et al., 2008) the model is the ensemble of tree-based classifiers,
Random Survival Forest, which are built with the help of a function that splits
the sample into two in a such way that the difference between the two samples is
as large as possible. For the battery case, this corresponds to separating the set
of vehicles such that vehicles in the same sample has similar battery degradation
properties. Another non-linear ensemble method, called Random Forest, is
used in a data-driven approach proposed by Prytz et al. (2015) which combines
pattern recognition with RUL estimation. The type of data set, which is available
for the study in (Prytz et al., 2015), is similar to the data set used in this thesis.
Another example of a non-parametric data-driven model is an artificial neural
network (Cheng and Titerington, 1994). Artificial neural networks do not need
any assumptions about the underlying degradation distribution and can learn
degradation profiles from data. Nowadays, hybrid methods, a fusion of model-
based and data-driven, are proposed. For example, in (Zhao et al., 2015) an
integrated prognostic method is proposed that uses Paris’ law as a degradation
model of a gear and Bayesian inference as the tool to address the changes in the
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physical model depending on operating conditions.

1.3 Vehicle fleet data

For a data-driven approach, the available data is of key importance. The data
used throughout the thesis is introduced in the current section and its distinctive
characteristics are described. This thesis is part of a project together with Scania
CV, our industrial partner, and access to the data has been generously given by
them.

The data set used here is different from the data that is mentioned in
Section 1.2. First, the data under study is static, i.e., there is only one set
of measurements for each vehicle. This means that it is not possible to track
battery lifetime related measurements during a vehicle’s lifetime. This fact
makes it difficult to apply a model based method, because they mostly rely on
time series sensor measurements of health related parameters of the battery.
Another distinctive feature of the data set is that the true underlying degradation
profiles are not known. This means that, in addition to the lack of time series
for a vehicle, it is not possible to compare a prediction of a model with a true
degradation curve.

The data set contains stationary and variable information. Stationary data
is given in the form of discrete variables and represent specification of a vehicle,
for example engine model, battery position, if there is a kitchen equipment and
so on. As an example, a battery position variable takes one of three possible
values: right, left mounting point and rear frame position. Variable data is
represented in the form of histograms which show how the vehicle has been
operated during the period up to the visit to the workshop when the data is
collected. For example, there is a battery voltage histogram which has 10 bins.
Each bin shows what fraction of time out of the total operational time a vehicle
has been operated in some voltage range. Every bin of the histogram is treated
as a separate variable and therefore the voltage histogram contributes with 10
variables to the data set.

It should be noted that measurements directly related to battery health are
not available. For the case of the voltage histogram, the logged voltage is the
battery voltage right before the vehicle is switched on. The measured value of
the voltage is not the open circuit voltage, because the battery requires hours of
relaxation time to get to the open circuit voltage.

Two data sets which represent two versions of similar information are provided
by Scania CV. The data sets have information from vehicles operating in 5
European markets. For example, the older data set contains 33,603 vehicles
each with 284 variables, while the newer data set has data from 56,163 vehicles
with 536 variables. Battery failures are observed for only a small fraction of
the vehicles. A vehicle in the database that has a functioning battery is called
censored, since the future failure time of the battery is unknown. The censoring
rate for the two data sets is as high as 80 and 90 percent. Therefore, the vast
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majority of the vehicles do not experience battery problems throughout time of
the study and the proposed method should handle censored data in a systematic
way. Some characteristics of the data sets are summarized below:

• 56,163/33,603 vehicles from 5 EU markets

• 536/284 variables stored in each vehicle snapshot

• One single snapshot per vehicle

• Heterogeneous data, i.e., a mixture of categorical and numerical data

• Histogram variables

• Censoring rate about 80/90 percent

• Significant missing data rate about 40 percent

The data sets that are being used merge information from three different
databases: a) one contains static information/specification of the vehicles, b)
another has variable information/histogram variables and c) the third database
contains information about workshop visits. Information whether the vehicles
had problem with a battery or not is extracted from the workshop information
after some data preprocessing. After this the three databases are merged into a
new one based on a unique vehicle identifier used in all databases.

1.4 Scope and aim

The main aim of the work is to construct a data-driven prognostic framework
applicable to lifetime prognostics not only for the lead-acid batteries in heavy-
duty trucks, but also to the other components of the vehicle in the future when
the data set is similar to the one considered in the current work. Taking into
account the characteristics of the data set described in Section 1.3, a conditional
probability function is selected as the target for the prognostic framework instead
of the RUL. The conditional probability function being estimated in the given
work is the probability for a random variable T , the time of a battery failure, be
larger than t+ t0 time units given that the battery has survived t0 time units.
The time t0 represents the time when making the prognosis, e.g., when visiting a
workshop with a functioning battery, but one would like to estimate the expected
lifetime of the battery or the next suitable time for a battery replacement. The
conditional probability function is formally written as

BV(t; t0) = P (T > t+ t0 | T ≥ t0, V) (1.1)

where V are the measurements from the vehicle retrieved at the workshop at
time point t0. It is worth emphasizing that neither true degradation profiles
nor time series of measurements are available for a vehicle, therefore, instead of
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determining the RUL, the objective stated here is to estimate the probability of
failure or survival at a given time point.

The following problems are addressed in this licentiate thesis: a) the prog-
nostic framework construction process together with an accuracy estimation of
the model and b) selection of variables important for prognostics in the case
of highly correlated variables. These two directions in the work are done in
the Random Survival Forest framework developed in (Ishwaran et al., 2008).
There is also an alternative approach explored, in the form of a technical report,
that uses neural network, a multilayer perceptron, and a method to predict the
conditional reliability function.

1.5 Contributions

The main contributions are summarized for each included paper.

Data-driven battery lifetime prediction and confidence
estimation for heavy-duty trucks

Submitted to a journal

A method for estimating the conditional probability function for predicting
the lifetime of lead-acid batteries in heavy-duty trucks based on fleet data is
demonstrated. A method for estimation of the confidence bands for the RSF
method is developed as an extension of existing techniques for estimating variance
of Random Forest predictions. The following aspects of the confidence bands are
considered: a) their asymptotic behavior and b) usefulness in model selection.
A problem of time related variables is identified in the paper by analyzing
performance of the models with and without time related variables.

Heavy-duty truck battery failure prognostics using ran-
dom survival forests

Published in Proceedings of the IFAC Symposium on Advances in
Automotive Control, Norrköping, Sweden, 2016

A new method for identifying important variables using random survival forests
is proposed which is applied for battery failure prognosis. A key property of
the approach is that it aims at selecting important variables in a large set of
variables where many of them are uninformative and/or correlated. Advantage
of our approach is demonstrated by the comparison of variable selection to the
existing approaches.
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Variable selection for heavy-duty vehicle battery fail-
ure prognostics using random survival forests

Published in Proceedings of European Conference of the PHM Society,
Bilbao, Spain, 2016

For the data set introduced in Section 1.3, two features has been identified,
1) there are few informative variables, and 2) there are highly correlated vari-
ables in the dataset. The main contribution is a novel method for identifying
important variables, taking these two properties into account, using Random
Survival Forests to estimate prognostics model. Compared to “Heavy-duty truck
battery failure prognostics using random survival forests”, this paper introduces
additional mechanics to the variable selection method and its properties in
the case of large number of correlated variables important for prediction and
significant amount of noise are analyzed. Prognostic models with all and reduced
set of variables are generated and differences between the model predictions are
discussed, and favorable properties of the proposed approach are highlighted.

Battery failure prognostics using multilayer percep-
tron

Technical report

In this work a multilayer perceptron model is introduced for the given data
from the fleet of the vehicles. The multilayer perceptron model can be used for
estimating the conditional probability function used for maintenance planning.
The model is designed in a such way that it can work with categorical and
numerical variables, i.e., the type of data available in the study. The main
contributions are the design of the input layer of the network as well as the
choice of the parameters in the hidden layers. Another contribution is the
introduction of the classification-survival framework. At first, a class of a vehicle
is determined, i.e., failed or censored vehicle, then based on the answer from
the classification step the individual lifetime of the battery is predicted. The
influence of different network architectures on the prediction is also identified.



Chapter 2

Theoretical basis

This chapter will introduce the theoretical basis and methods that are used in
the included papers. Survival data and the machinery behind survival analysis
is presented first and an introduction to Random Forest (RF) and Random
Survival Forests (RSF) follows next including a derivation of the Infinitesimal
Jackknife variance estimate for bagged predictors finishes the chapter.

2.1 Survival analysis

Introduction of the survival analysis below is based on the book by Cox and
Oakes (1984). Survival analysis concerns the prediction of future events called
failures for a group or groups of individuals. The failure time is defined as either
the time when end of life for the particular individual occurs or when the state
of individual is such that execution of its intended task is no longer possible
with the required quality. Example applications of survival analysis could be
prediction of component failure times in a gas turbine, the survival times of
patients in medicine or the prediction of economic crisis occurrence in economics.

A distinctive feature of survival analysis is the process called censoring.
Usually, only a fraction of the individuals fail during trials or time of observation
which means that the remaining part of the population do not experience failures,
i.e., the failure times are censored. Typical data used for survival analysis is
presented in Figure 2.1 where the time of censoring is depicted with circles and
time of failures with squares. Figure 2.1 shows that 3 out of 7 individuals are
censored and the method for prediction has to take this information into account.
In general, if there is a random variable Ti of failure time for the ith individual
and a censoring time which is represented by a random variable ci, then the
observed variable Xi = min(Ti, ci) together with a response variable Ri = 0
for censored and Ri = 1 for failed individuals are the targets for the survival
analysis.

9
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t0

Figure 2.1: Lifetime for failed, represented by squares, and censored, represented
by circles, individuals as data for survival analysis.

Survival analysis can be performed either by building models that use only
survival time for prediction, i.e., the time when an individual experience a
failure or is being censored, or model prediction that can rely on so called
variables/covariates/features that explaining the health degradation of individual.
For instance, a variable that shows how long a battery has been operated under
low voltages or high temperatures can be used in a predictive method.

For a non-negative random variable T which represent time of failure the
survival, or reliability, function is defined as

R(t) = P (T ≥ t). (2.1)

The function gives the probability that the failure time T occurs after t time
units. Usually, it is handy to work with the probability density function for the
random variable T which is related to the reliability function R(t) as

f(t) = −R′(t). (2.2)

The functions in (2.1) and (2.2) are two different ways to define the distri-
bution of the failure time T . Another special notion in survival analysis is the
hazard function which defines probability of instantaneous failure as

h(t) = lim
δ→0+

P (t ≤ T < t+ δ|T ≥ t)

δ
. (2.3)

The hazard function plays an important role in survival analysis. The relationship
between the reliability function and the hazard function can be seen by denoting
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the cumulative distribution function for the random variable T with F (t) and
expanding (2.3) as

h(t) = lim
δ→0+

P (t ≤ T < t+ δ|T ≥ t)

δ
= lim

δ→0+

1

P (T ≥ t)

P (t ≤ T < t+ δ)

δ
=

=
1

R(t)
lim

δ→0+

F (t+ δ)− F (t)

δ
=

f(t)

R(t)
=

= −
d
dt (1− F (t))

R(t)
= −

d
dtR(t)

R(t)
= − d

dt
logR(t)

Then the relation between the hazard and reliability functions is

R(t) = exp

(
−
∫ t

0

h(u)du

)
= exp (−H(t)) (2.4)

where H(t) is called the integrated or cumulative hazard rate. Two classes of
methods are available when it comes to modelling the survival time T , parametric
and non-parametric. The parametric methods assume a parametric distribution
as a model for the random variable T , for instance exponential or log-normal.
In turn, non-parametric methods do not make any such assumption, making use
only of the observations. When one is confident in the underlying distribution
of the survival times, then it is better to choose a parametric method since they
will give a more accurate prediction compared to a non-parametric one. However,
if information about the survival time distribution is not known, non-parametric
methods can be used. In the given study non-parametric methods are chosen
due to the fact that actual degradation profiles of the batteries are not known.

Concepts introduced above such as the reliability function and hazard rate are
defined for the case when the random variable T has a continuous distribution.
In general, a discrete distribution is used in non-parametric methods. Therefore,
let time points t1 < t2 < . . . < tn be the time points where either censoring or
failure occurs. Then, a non-parametric Kaplan-Meier estimator, (Kaplan and
Meier, 1958), of the reliability function is given by

R̂(t) =
∏
tj<t

(1− ĥj) (2.5)

where ĥj is maximum likelihood estimator of hazard rate hj defined at time
point tj . The estimate ĥj is represented as

ĥj =
dj
rj

(2.6)

where dj is the number of failed cases at time point tj and rj =
∑n

i=j+1(di + ci)
is the number of available cases at time point tj with ci being the number of
censored cases at time ti.
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Greenwood’s formula, (Cox and Oakes, 1984), is another tool which is often
used in the survival analysis. It estimates the variance of the reliability estimate
R̂(t) under the assumption that (2.5) is efficient, i.e., reaches its Cramer-Rao
bound and using a linearization approach, as follows

var
[
R̂(t)

]
=
(
R̂(t)

)2 ∑
tj<t

dj
rj(rj − dj)

. (2.7)

The confidence bands with (1−α)% confidence, under a Gaussian assumption,
for the reliability estimator R̂(t) are computed as

R̂(t)± zα

(
var
[
R̂(t)

]) 1
2

at each time point t where zα = −Φ−1(α/2) is a quantile of the normal distribu-
tion with mean zero and unit variance being computed using cumulative density
function Φ(x).

The Kaplan-Meier estimator and Greenwood’s formula are useful tools to
estimate the reliability and estimator variance if the classes of the individuals are
known, i.e. classes of individuals with different degradation profiles. However, it
is not the case for the data under study in the current work, therefore, one can
not apply the aforementioned estimates directly.

Another concept from the survival analysis being used in the papers of the
current work is the Nelson-Aalen estimator which is a non-parametric estimator
of the cumulative hazard rate H(t). The estimate is written in terms of dj and
rj as

Ĥ(t) =
∑
tj<t

dj
rj

(2.8)

and according to (2.4) it holds that Ĥ(t) = − log
(
R̂(t)

)
. Introduced concepts

from the survival analysis will be used in the consecutive sections and form part
of the theoretical basis of the given work.

2.2 Bagged predictors

In the selection of a suitable data-driven method for the studied battery prog-
nostic problem the following needs to be taken into account. The underlying
baseline hazard functions are not known in the data set under study, in addition,
it is not clear how to estimate parameters in the case of a parametric model
such as in Cox regression, see (Cox, 1972). Therefore a non-parametric approach
is chosen. Random Survival Forest (RSF), (Ishwaran et al., 2008), is a non-
parametric method that gives the ability to handle different types of data, direct
applicability of the method to survival analysis, and automatic missing data
imputation. The output from the RSF model is an estimate of the reliability
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function which can be directly used in the analysis of this work. The basic idea
of the RSF model is to group individuals with similar degradation profiles and
estimate the reliability function for that particular group of individuals.

Before Random Survival Forest is summarized a brief introduction to basic
classification and regression trees and Random Forest methods are given. Classi-
fication and regression trees are machine learning techniques that maps/predicts
a feature or variable space X into a space of outcomes Y by means of binary
trees (Breiman et al., 1984) where the features and outcome for a particular case
are considered as a pair (xi, yi). Target values yi from the outcome space could
be continuous valued in case of regression and discrete in case of a classification
problem. A decision tree is a non-linear estimator

θ̂(xi) = ŷi (2.9)

where θ̂(x) is built by partitioning the feature space X, which can contain many
features/variables, into disjoint regions Rm with some fitting model for each
region. For a regression problem a fitting model is a real value that fits data in
a region Rm best, for instance the mean, while for the classification the fitting
value is, for example the majority class among all classes in the given region.
An example of the aforementioned process is illustrated in Figure 2.2 where the
feature space X has two variables v1 and v2 and regions R1, R2 and R3 are
formed in such way that green, blue and red classes are maximally separated, i.e.
a region Ri contains as few individuals from the minority classes as possible.

The aforementioned partitioning process happens at every node of the tree,
see Figure 2.3 where a structure of the ordinary classification and regression tree
is presented. For a basic decision tree the best splitting variable and splitting
value is determined in a greedy manner, namely, all variables and every possible
splits are accessed based on a cost function. The split with the lowest value
of the cost function is then selected. A tree node where a process of splitting
stops is called a terminal node, nodes with si variables in Figure 2.3. Splitting
stops if either a selected minimal number of individuals in the node is reached
or the tree has grown to the predetermined value of maximum depth. Decision
trees can be applied to data sets with different types of variables and another
advantage is interpretability as rules can be built from a single decision tree. A
decision tree is a weak classifier, (Hastie et al., 2009), and generally performs
well on the training data, however, they may generalize poorly on unseen data,
i.e., have big variance of the predictor.

Therefore, ensemble of trees, a Random Forest (RF) model, was introduced
by Breiman (2001). There are different implementations of ensemble of trees
such as (Dietterich, 2000) and (Ho, 1998), however, the basic Breiman model
is described here since the RSF model is an extension of RF. There are two
techniques that are distinctive features of the RF method, namely, bootstrap
aggregation, also known as bagging, and a step that reduces correlation between
trees in the forest. When the number of data samples is small, bootstrap is a
powerful method for estimating statistics of an estimator. By sampling from
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v 2

v1

R1 R2

R3

Figure 2.2: Example of the partitioning of the space X with two variables (v1, v2)
into disjoint regions Ri.

the given data samples with replacement one can construct a large set of new
samples that can be used to estimate target statistics. Bootstrap aggregation is
an ensemble method that combines predictions from different machine learning
models. An example of bootstrapping and bootstrap aggregation is given next.

Example 1 (Bootstrap samples and bootstrap aggregation). This example will
show what a bootstrap sample is and how the results can be used to improve the
properties of an estimator. Consider a sample (y1, . . . , y5) obtained by sampling
from the normal distribution with expected value 2 and variance 4. One possible
set of samples is given below

(y1, . . . , y5) = (4.6918, 3.9905, 3.0924,−1.8254, 5.8425).

The bootstrap method creates new samples, bootstrap samples, from the original
(y1, . . . , y5) by sampling from it with replacement. For instance, one realization
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s18

⇓
data = (y1, . . . , yn)

variables = (v1, . . . , vn)

splitting variable

tree node

Figure 2.3: Structure of the ordinary binary classification and regression tree.

of 3 bootstrap samples is presented below as

(y11 , . . . , y
1
5) = (5.8425, 4.6918, 4.6918,−1.8254,−1.8254)

(y21 , . . . , y
2
5) = (3.0924, 3.0924, 5.8425, 3.9905, 4.6918)

(y31 , . . . , y
3
5) = (4.6918,−1.8254, 3.9905, 3.0924, 3.0924).

With a non-linear estimator θ̂ = θ(y), the results of the bootstrap estimates
θ̂i = θ(yi) can be aggregated as

1

B

B∑
i=1

θ̂i

where B is the number of bootstrap samples. This bootstrap aggregation can be
very beneficial in some situations, for example in Random Forest models.

A basic use of using bootstrap samples to estimate variance of an estimator
is illustrated in the next example.

Example 2 (Bootstrapping for variance estimation). This example will show
an example how bootstrap samples can be used to estimate statistics of a specific
estimator, in this case the variance of a standard estimator for the expected
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Figure 2.4: Estimate of the estimator variance compared to the true variance as
a function of number of bootstrap samples.

value. A main observation of the example is how the method is applicable to any
statistics and without any assumptions on underlying distributions.

Therefore, consider an independent set of samples (y1, . . . , yN ) from an
unknown distribution. An expected value estimator is then

µ̂ =
1

N

N∑
i=1

yi.

Assume now that we want an estimate of the covariance of the estimate µ̂. In this
case, since the estimator is simple and linear, the true variance of the estimator
is

var µ̂ =
1

N
σ2
y (2.10)

where σ2
y is the variance of the data.

The bootstrap approach, applicable to any non-linear estimator, is then to
generate a set of bootstrap samples yi i = 1, . . . , B and then apply the estimator
on each bootstrap sample computing µ̂i. The variance estimate for the estimator
is then

1

B

B∑
i=1

(µ̂i − µ̂(·))2, µ̂(·) =
1

B

B∑
i=1

µ̂i.

Consider the case where the sample yi are drawn from a uniform distribution
between 0 and 1 and the number of samples N = 50. Figure 2.4 shows how
the bootstrap variance estimate compares to the theoretical value from (2.10) for
different number of bootstrap samples B. It is clear that the bootstrap method
can estimate the variance but with no assumption on linearity or knowledge on
underlying distribution.

In the case of a forest of trees, a number of sets of bootstrap samples are
created and then a classification or regression tree model is fitted for each of
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Figure 2.5: Structure of the RF model.

the bootstrap samples. As mentioned, a single tree model is sensitive to unseen
data, but by combing outputs from a set of trees, grown on different bootstrap
samples, the resulting output has reduced variance of a predictor compared to
the single tree model. In regression, the output from a bootstrap aggregation
model is the mean of outputs of all trees

θ̂BAGG(x) =
1

B

B∑
i=1

θ̂i(x) (2.11)

where θ̂i(x) is a tree model fitted to the ith bootstrap sample, and B is the
number of trees/bootstrap samples. It was suggested by Breiman (2001) that
introducing randomness into the procedure of choosing variables for splitting
reduces correlation between trees and increase performance of the aggregated
model. Therefore, instead of choosing all m available variables for split at each
node, only a fraction p of them is considered. This step also increases speed of
the algorithm as it requires less variables to check at each split. Structure of the
random forest is presented in Figure 2.5.

A Random Survival Forest (RSF) model is an RF model modified for the
purpose of survival analysis (Ishwaran et al., 2008). Structurally, an RSF model
is similar to an RF except for the following changes. The cost function used for
splitting is so called log-rank test (Ciampi et al., 1986). It is a hypothesis test
which compares survival distributions of samples that are formed by dividing
data available at the splitting node into two samples which will be the part
of the two child nodes. The best split corresponds to a variable with a value
under which two samples have as distinctive degradation profiles as possible.
The log-rank test is non-parametric and designed for censored data, a type
of data encountered in survival analysis. At each terminal node, a node at
which splitting no longer is performed, the Nelson-Aalen estimate (2.8) of the
cumulative hazard rate is computed (Cox and Oakes, 1984). The estimated
cumulative hazard rate Ĥ(t) of the whole forest is computed by averaging over
tree hazard rates and, finally, the estimate R̂(t) of the reliability function is
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computed as
R̂(t) = e−Ĥ(t) (2.12)

The estimate R̂(t) of the reliability function is the forest output.

2.3 Confidence estimate of a bagged predic-
tor

This section describes the process behind finding IJ estimates for some bagged
predictor and, then the explicit expressions for the variance estimates and bias
are derived in the case of RF and RSF models. The results are available in
the existing literature, but the complete derivation can not be found in any
publication. Assume a bagged predictor (2.11) which is complex, nonlinear, and
deriving an explicit expression for the estimation covariance is infeasible. Then,
one option is to use a bootstrap technique. Since the estimator already uses
bootstrap, a bootstrap strategy for estimating the variance would require to
compute bootstrap of bootstraps which is not computationally feasible (Efron,
2014). Another approach is to use the original bootstrap samples and structure of
the bagged model to estimate the variance of the predictor. One such procedure
is the Infinitesimal Jackknife (IJ) variance estimate suggested by (Efron et al.,
2014). The theoretical fundamentals are described, based on the works by Efron
et al. (2014) and then extended to RSF models.

To summarize the results from (Efron et al., 2014), consider the ith bootstrap
sample Y ∗

i = (y∗i1, y
∗
i2, . . . , y

∗
in) which is sampled from the initial data set Y =

(y1, y2, . . . , yn) where y∗ij represents the number of times a particular data point
yj , a set of variables for the vehicle from the data set mentioned in Section 1.3,
is included in bootstrap sample Y ∗

i . Introduce a resampling vector as

P = (p1, p2, . . . , pn) (2.13)

where pi denotes the probability of selecting yi in a bootstrap sample. This
vector belongs to a set such that

Ln =

{
P : Pi ≥ 0,

n∑
i=1

Pi = 1

}
(2.14)

The resampling vector represents the weight each data point yi in the initial
sample Y = (y1, y2, . . . , yn) has in the ith bootstrap sample. For example, the
resampling vector P 0 = ( 1n , . . . ,

1
n ) is associated with an initial sample Y where

each element of the sample has equal weight.
The distribution for the resampling vector P under the bootstrap procedure

is a scaled multinominal distribution

P ∼ Mult(n,P 0)

n
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with mean and covariance matrices(
P 0,

I

n2
− P 0′P 0

n

)
.

By definition, the variance of θ̂BAGG is

var
[
θ̂BAGG

]
= E

[
θ̂BAGG − E

[
θ̂BAGG

]]2
.

An expansion of the nonlinear estimator θ̂BAGG using directional derivatives
around resampling vector P 0 keeping only a linear term gives

θ̂BAGG = θ̂BAGG(P ) = θ̂BAGG(P
0)+(P−P 0)·U+O((P−P 0)·(P−P 0)′).

(2.15)

The column vector U consists of the directional derivatives Ui defined as

Ui = lim
ϵ→0

θ̂BAGG(P
0 + ϵ(δi − P 0))− θ̂BAGG(P

0)

ϵ
, i = 1, . . . , n (2.16)

with δi being the ith coordinate vector. Taking the expectation of (2.15),
ignoring higher order terms, gives

E
[
θ̂BAGG

]
≈ θ̂BAGG(P

0) + E
[
P − P 0

]
·U =

=
{
E
[
P − P 0

]
= E [P ]− P 0 = P 0 − P 0 = 0

}
= θ̂BAGG(P

0).

Thus, the variance of θ̂BAGG becomes

var
[
θ̂BAGG

]
≈ E

[
θ̂BAGG(P

0) + (P − P 0) ·U − θ̂BAGG(P
0)
]2

=

= E
[
(P − P 0) ·U

]2
= E

(p1 − 1

n
, . . . , pn − 1

n

)
·

U1

...
Un



2

=

= E

[
n∑

i=1

(
pi −

1

n

)
Ui

]2
= E

[
n∑

i=1

(
pi −

1

n

)2

U2
i

]
+

+ 2E

∑
i ̸=j

(
pi −

1

n

)
Ui

(
pj −

1

n

)
Uj

 =

n∑
i=1

E

[(
pi −

1

n

)2
]
U2
i +

+ 2
∑
i̸=j

E

[(
pi −

1

n

)(
pj −

1

n

)]
UiUj =

n∑
i=1

1

n2

(
1− 1

n

)
U2
i +

+ 2
∑
i ̸=j

(
− 1

n3

)
UiUj =

1

n2

n∑
i=1

U2
i − 1

n3

(
n∑

i=1

Ui

)2

(2.17)
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Now, let us show that the sum of all directional derivatives Ui is 0. First,
the gradient vector D is defined as

D =

D1

...
Dn

 Di =
∂

∂pi
θ̂BAGG(P )

∣∣∣∣
P=P 0

.

Thus, the directional derivative Ui can be expressed as

Ui = (δi − P 0) ·D.

From this follows that

Ui =

− 1

n
, . . . ,− 1

n︸ ︷︷ ︸
i - 1

, 1− 1

n
,− 1

n
, . . . ,− 1

n

 ·

D1

...
Dn

 =

=
∑
j ̸=i

(
− 1

n

)
· ∂

∂pj
θ̂BAGG(P )

∣∣∣∣
P=P 0

+

(
1− 1

n

)
· ∂

∂pi
θ̂BAGG(P )

∣∣∣∣
P=P 0

(2.18)

It is evident from (2.18) that the sum of Ui is 0. Taking this result into
account and using (2.17), the infinitesimal jackknife (IJ) variance estimate V̂IJ

of the true variance var
[
θ̂BAGG

]
of the bagged predictor is

V̂IJ =
1

n2

n∑
i=1

U2
i . (2.19)

To compute the variance estimator, we then need the directional derivatives.
For a bagged estimator θ̂BAGG, it turns out that there exists an explicit expression
for the asymptotic, with respect to number of bootstrap samples B, expression of
the directional derivatives. Now follows a derivation of the directional derivatives
for an RF model.

Consider again a vector Y ∗ = (y∗1 , y
∗
2 , . . . , y

∗
n) which represents the number

of times a particular sample appears in the bag/bootstrap sample of a tree. The
distribution of Y ∗ is a multinomial

Y ∗ ∼ Mult(n,P 0).

Consider a forest with B = nn trees which corresponds to all possible samples.
Then, the Random Forest estimator θ̂RF(P ) could be written as

θ̂RF(P ) =

B∑
i=1

P (Y ∗
i )t∗i (2.20)
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where P (Y ∗) is the probability of bootstrap sample under multinomial distribu-
tion, t∗i is the output from the ith tree in the forest. We explicitly state that the
Random Forest estimator depends on the resampling vector P associated with
the bootstrap sample Y ∗.

Let P0(Y
∗
i ) and P (Y ∗

i ) denote the probability of a bootstrap sample under
the multinomial distributions with P0 and a general P respectively. Then, using
the fact that under P0 all bootstrap samples are equally probable

P (Y ∗
i ) =

P (Y ∗
i )

P0(Y ∗
i )

P0(Y
∗
i ) =

n!
y∗
i1!...y

∗
in!

p
y∗
i1

1 · . . . · py
∗
in

n

n!
y∗
i1!...y

∗
in!

p
y∗
i1

0 · . . . · py
∗
in

0

· 1

B
=

1

B

n∏
k=1

(npk)
y∗
ik

(2.21)

Combining results in (2.20) with (2.21) gives

θ̂RF(P ) =

B∑
i=1

1

B

n∏
k=1

(npk)
y∗
ik t∗i

Let a vector Pj be Pj = P 0 + ϵ(δj − P 0), then

θ̂RF(Pj) =

B∑
i=1

1

B

n∏
k=1

(n(p0 + ϵ(δjk − p0)))
y∗
ik

︸ ︷︷ ︸
A(ϵ)

t∗i

A(ϵ) = (1 + ϵ(n− 1))
y∗
ij (1− ϵ)

∑
k ̸=j y∗

ik = (1 + ϵ(n− 1))
y∗
ij (1− ϵ)

n−y∗
ij .

(2.22)

A Taylor expansion of non-linear function A(ϵ) around 0 leads to

A(ϵ) = 1 +
(
y∗ij(n− 1) (1 + ϵ(n− 1))

y∗
ij−1

(1− ϵ)
n−y∗

ij −

−(n− y∗ij) (1 + ϵ(n− 1))
y∗
ij (1− ϵ)

n−y∗
ij−1

)∣∣∣
ϵ=0

ϵ+O(ϵ2) =

= 1 + n(y∗ij − 1)ϵ+O(ϵ2)

Substituting the obtained result in the forest estimate from (2.22) gives us

θ̂RF(Pj) =
1

B

B∑
i=1

(
1 + n(y∗ij − 1)ϵ+O(ϵ2)

)
t∗i . (2.23)

Noticing that under multinomial distribution with resampling vector P 0 forest
estimator becomes

θ̂RF(P
0) =

B∑
i=1

1

B

n∏
k=1

(np0)
y∗
ik t∗i =

1

B

B∑
i=1

t∗i , (2.24)
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gives the result for computing the directional derivatives Uj , (2.16), as

Uj = lim
ϵ→0

θ̂RF(P
0 + ϵ(δj − P 0))− θ̂RF(P

0)

ϵ
=

= lim
ϵ→0

(
1
B

∑B
i=1 t

∗
i +

1
B

∑B
i=1 n(y

∗
ij − 1)ϵ

ϵ
+

O(ϵ2)
B

∑B
i=1 t

∗
i − 1

B

∑B
i=1 t

∗
i

ϵ

)
=

=
n

B

B∑
i=1

(
y∗ij − 1

)
t∗i . (2.25)

Let us show that the result for Uj in (2.25) can be expressed as

Uj = n · Ĉovj where Ĉovj = cov(y∗ij , t
∗
i ) =

1

B

B∑
i=1

(
y∗ij − 1

)
(t∗i − t̄)

and t̄ = 1
B

∑B
i=1 t

∗
i . Denote column vector Y ∗

.j as

Y ∗
.j =


y∗1j
y∗2j
...

y∗Bj

 .

The vector Y ∗
.j shows how many times jth individual appears in all bags. Ac-

cording to the distribution of vector Y ∗ it holds that

E
[
Y ∗
.j − 1

]
= 0.

Taking into account that B = nn and every possible bootstrap combination is
considered, it follows that

E
[
Y ∗
.j − 1

]
=

1

B

B∑
i=1

(y∗ij − 1) = 0

Therefore, the directional derivative Uj can be rewritten as

Uj =
n

B

B∑
i=1

(
y∗ij − 1

)
t∗i =

n

B

B∑
i=1

((
y∗ij − 1

)
t∗i −

(
y∗ij − 1

)
t̄
)
=

=
n

B

B∑
i=1

(
y∗ij − 1

)
(t∗i − t̄) = n · Ĉovj

Taking into account the last result we can write the estimate of variance of θ̂RF
as

V̂IJ =

n∑
i=1

Ĉov
2

i (2.26)
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where

Ĉovi =
1

B

B∑
b=1

(y∗bi − 1)(t∗b − t̄). (2.27)

Usually estimators are biased and it would be great to take it into account.
It turns out that for the RF model it is possible to find an estimate for the bias
in an explicit form. To find a bias expression consider V̂IJ which is the perfect
estimator when B → ∞,

V̂ ∞
IJ =

n∑
j=1

(Covj)
2

where Covj means perfect covariance estimate of (2.27) when B → ∞. Thus,
the bias of the estimator can be written as follows

Bias = E
[
V̂IJ

]
− V̂ ∞

IJ =

n∑
i=1

(
E
[
Ĉov

2

i

]
− (Covi)

2
)
=

=

n∑
i=1

(
E
[
Ĉov

2

i

]
−
(
E
[
Ĉovi

])2)
=

n∑
i=1

var
[
Ĉovi

]

Assuming independence of y∗ij and t∗i , we have the following for the large
enough samples, i.e., when n → ∞,

Bias =
n∑

j=1

var
[
Ĉovj

]
= n · var [cov1] =

= n · cov

 1

B

B∑
i=1

(y∗i1 − 1) (t∗i − t̄) ;
1

B

B∑
j=1

(
y∗j1 − 1

) (
t∗j − t̄

) =

=
n

B2

B∑
i=1

B∑
j=1

(
E
[
(y∗i1 − 1)(y∗j1 − 1)(t∗i − t̄)(t∗j − t̄)

]
−

−E [(y∗i1 − 1)(t∗i − t̄)]E
[
(y∗j1 − 1)(t∗j − t̄)

])
. (2.28)

Assuming that original sample Y is large enough and that t∗i and y∗ij are
independent, (2.28) simplifies as

Bias =
n

B2

B∑
i=1

B∑
j=1

(
E
[
(y∗i1 − 1)(y∗j1 − 1)

]
E
[
(t∗i − t̄)(t∗j − t̄)

]
−

−E [(y∗i1 − 1)]E [t∗i − t̄]E
[
(y∗j1 − 1)

]
E
[
t∗j − t̄

])
. (2.29)
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The random variable y∗ij has the following properties

E
[
(y∗i1 − 1)(y∗j1 − 1)

]
= cov

[
y∗i1; y

∗
j1

]
=

1

n
→ 0,

n → ∞, b ̸= j

E [y∗i1 − 1] = E
[
y∗j1 − 1

]
= 0

E
[
(y∗i1 − 1)2

]
= var [y∗i1] = 1− 1

n
→ 1,

n → ∞, b = j

Therefore, if it is assumed that size of sample n → ∞ and n tends to infinity
faster than B, the bias becomes

Bias =
n

B2

B∑
i=1

(
E
[
(y∗i1 − 1)2

]
E
[
(t∗i − t̄)2

])
=

n

B2

B∑
j=1

(t∗j − t̄)2 (2.30)

An improved unbiased estimator of var
[
θ̂RF

]
using the results in (2.26) and

(2.30) can then be written as

V̂IJ-U = V̂IJ −
n

B2

B∑
b=1

(t∗b − t̄)2. (2.31)

2.3.1 IJ variance estimate of the ratio of random vari-
ables

This subsection demonstrates the extension of the IJ variance estimate to the
RSF model and lifetime function as in (1.1). The lifetime function could be
expressed through the ratio of the reliability function estimates as

B̂V(t, t0) =
R̂V(t+ t0)

R̂V(t)
(2.32)

where R̂V(t) = P (T ≥ t|V) is the output from the RSF model. There are two
main differences between IJ variance estimate of the RF model compared to
the variance estimate of the lifetime function BV(t, t0). First, the output of the
RF model is either a class or regression value, but in the RSF case the output
function is time dependent, and secondly, the lifetime function is a ratio of the
reliability estimates.

For the first difference mentioned above, the reliability function is computed
on the predefined grid of time points, the variance estimate V̂ RSF

IJ (t) of the true
forest variance var

[
θ̂RSF

]
becomes

V̂ RSF
IJ (t) =

n∑
i=1

Ĉov
2

i (t) (2.33)
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where

Ĉovi(t) =
1

B

B∑
b=1

(y∗bi − 1)(R̂V
b (t)− R̂V(t)) (2.34)

Here, the reliability R̂V
b (t) is the output reliability from the bth tree for a

particular vehicle with data V and R̂V(t) is the output from the forest. These
values correspond to t∗b and t̄ in (2.26) respectively. An unbiased IJ variance
estimate V̂ RSF

IJ-U in analogy with Efron’s estimate is then

V̂ RSF
IJ-U (t) = V̂ RSF

IJ (t)− n

B2

B∑
b=1

(R̂V
b (t)− R̂V(t))2 (2.35)

For the second property, the variance estimate for the lifetime function B̂V(t, t0),
which is a ratio of the outputs of the random survival forest, is estimated and
summarized in the next theorem.

Theorem 1. Let BV(t, t0) be the battery lifetime function. Then

B̂V(t, t0) =
R̂V(t+ t0)

R̂V(t0)

is the RSF estimate of BV(t, t0) and a first order IJ variance estimate is given
by

var
[
B̂V(t, t0)

]
≈

(
µX

µY

)2

·
(

var [X]

µ2
X

+
var [Y ]

µ2
Y

− 2
cov [X,Y ]

µXµY

)
(2.36)

where the random variable X is the reliability function R̂V(t+ t0) at time point
t+ t0 and the random variable Y is the reliability function R̂V(t0) at time point
t0 and

µX ≈ R̂V(t+ t0)

µY ≈ R̂V(t0)

var [X] = V̂ RSF
IJ-U (t+ t0)

var [Y ] = V̂ RSF
IJ-U (t0)

cov [X,Y ] = covBias [X,Y ]− Bias

Result for the estimation of cov [X,Y ] is given in Lemma below.

Proof. As mentioned in (2.32) lifetime function can be expressed as ratio of the
reliability functions R̂V(t). Assume that R̂V(t + t0) is a random variable X
and R̂V(t0) is a random variable Y . Then, the variance of the lifetime function
can be estimated using a Taylor series expansion as (2.36) where instead of
µX and µY the outputs from the forest R̂V(t + t0) and R̂V(t0) are used at
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time t + t0 and t0 respectively. The variances var [X] and var [Y ] correspond
to IJ variance estimates V̂ RSF

IJ-U (t) computed at time t+ t0 and t0 respectively.
Covariance cov [X,Y ] = ĉov

[
R̂V(t+ t0), R̂

V(t0)
]

is a covariance between two
random variables which are represented by the values of two points from the
reliability curve R̂V(t) at time t+ t0 and t0.

The only missing part and the main contribution to the theorem is the
derivation of cov [X,Y ] = ĉov

[
R̂V(t+ t0), R̂

V(t0)
]

which is given in the next
lemma.

Lemma 1. Let R̂V(t) be an RSF model with B trees grown on the original
sample Y = (y1, y2, . . . , yn) with size n. Assume that the tree output R̂V

b (t)
is independent from one data point y∗ij from the ith bag, then an asymptotic

expression of the infinitesimal jackknife estimate of ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

and
its bias correction are

cov [X,Y ] = covBias [X,Y ]− Bias (2.37)

where

covBias [X,Y ] = ĉov
[
R̂V(t+ t0), R̂

V(t0)
]
=

n∑
i=1

Ĉovi(t0)Ĉovi(t + t0) (2.38)

Bias =
n

B2

B∑
i=1

(R̂V
i (t0) − R̂V(t0))(R̂

V
i (t + t0) − R̂V(t + t0)) (2.39)

as the sample size n → ∞, the number of trees B → ∞, and n tends to infinity
faster than B.

Proof. Following the steps similar to derivation of variance estimate and its bias
of the RF estimator formula (2.38) and (2.39) can be achieved. Full derivation
is given in “Data-driven battery lifetime prediction and confidence estimation
for heavy-duty trucks” paper, included as Paper C in this thesis.
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Abstract

Predicting lead-acid battery failure is important for heavy-duty trucks
to avoid unplanned stops by the road. There are large amount of data
from trucks in operation, however, data is not closely related to battery
health which makes battery prognostic challenging. A new method
for identifying important variables for battery failure prognosis using
random survival forests is proposed. Important variables are identified
and the results of the proposed method are compared to existing variable
selection methods. This approach is applied to generate a prognosis
model for lead-acid battery failure in trucks and the results are analyzed.
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1 Introduction

Heavy-duty trucks are important for transporting goods, working at mines, or
construction sites and it is vital that vehicles have a high degree of availability.
In particular, this means to avoiding unplanned stops by the road which does
not only cost due to the delay in delivery, but can also lead to damaged cargo.

One cause of unplanned stops is a failure in the electrical power system, and
in particular the lead-acid starter battery. The main purpose of the battery is
to power the starter motor to get the diesel engine running, but it is also used
to, for example, power auxiliary units such as heating and kitchen equipment.

Prognostics and health management is an important part to prevent unex-
pected failures by more flexible maintenance planning. The purpose is to replace
the battery before it fails but avoid changing it too often. Coarsely, there are
two main approaches in prognostics, data-driven and model-based techniques
but also hybrid approaches that combines the two are possible. Model-based
prognostics utilizes a model of the monitored system and the fault to monitor to
predict the degradation rate and Remaining Useful Life (RUL), see for example
(Daigle and Goebel, 2011). Statistical data-driven methods generate a prediction
model based on training data to predict RUL, see for example (Si et al., 2011),
and is the approach followed here.

The main contribution in this work is a data-driven method to identify
important variables from a set of variables, where many are not relevant for
lead-acid battery failure prognosis, and use them to build prognostic models.
The goal is to find important variables to design a battery failure prognostics
model for automotive applications based on random survival forests (Ishwaran
et al., 2008). This type of analysis is also important to better understand which
factors that are correlated with battery failure rate and also what is causing it.

The outline is as follows. The problem is motivated in Section 2 and some
background on random survival forests and variable importance are given in
Section 3. Evaluation of existing methods for variable importance in random
survival forests is presented in Section 4 showing the need for methodological
developments in variables selection. The proposed variable selection method is
described in Section 5. Then, the method is analyzed in detail in Section 6 and
used to generate a random survival forest prognostic model in Section 7. Finally,
some conclusions are presented in Section 8.

2 Problem motivation

The prognostic problem studied here is to estimate a battery lifetime prediction
function based on recorded vehicle data. The lifetime prediction function is
defined as

Bν(t; t0) = P (T > t+ t0 | T ≥ t0, ν)

where T is the random variable failure time of the battery and ν the vehicle data
at t = t0. The function Bν(t; t0) is a function of t and gives the probability that
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the battery will function at least t time units after t0. The data ν is recorded
operational data for a specific vehicle which is further described in Section 2.1.

The reliability function (Cox and Oakes, 1984) is defined as

R(t) = P (T ≥ t) (1)

which is the probability that the battery of the specific vehicle will survive at
least t time units. Then, the battery lifetime prediction function can be rewritten
using the reliability function as

Bν(t; t0) = P (T > t+ t0 | T ≥ t0, ν) =
Rν(t+ t0)

Rν(t0)
. (2)

Random Survival Forests (RSF) is a data-driven method that can be used for
computing maximum-likelihood estimates of the reliability function, as illustrated
by Fig. 1. The main objective in this work is to use Random Survival Forests to
identify, from data, which vehicle data that is relevant for building RSF models
to predict battery failures.

RSF
model

ν R̂ν(t)

Figure 1: A random survival forest computes the maximum likelihood estimate
R̂ν(t) of the reliability function given a vehicle represented by the data ν. With
the estimate R̂ν(t), the battery lifetime prediction function Bν(t; t0) in (2) can
be computed.

2.1 Operational data

In this work a vehicle fleet database is provided, where one snapshot of data is
available from each vehicle including information regarding how the truck has
been used and the configuration of the specific truck. There is also information
if the battery has failed or not. The database contains a lot of information from
the truck, not always related to battery degradation, meaning that it is not
known what available information is relevant for this specific task. Therefore, it
is relevant to identify which variables are relevant for predicting battery lifetime.
Previous works considering this vehicle data set are presented in (Frisk et al.,
2014) and (Frisk and Krysander, 2015).

The choice of using RSF is motivated by the properties of the available
database. Its main characteristics can be summarized as follows:

• 33603 vehicles from 5 EU markets

• 284 variables stored for each vehicle snapshot



36 Paper A. Heavy-duty truck battery failure prognostics

• A single snapshot per vehicle

• Heterogeneous data, i.e., it is a mixture of categorical and numerical data

• Availability of histogram variables

• Censoring rate more than 90 percent

• Significant missing rate

The database contains different types of variables, including both categorical
and numerical data. The censoring rate refers to that less than 10 percent of
the vehicles in the database have had battery failures. This means that for most
vehicles it is not known how long the battery will last. Also, there is a significant
amount of missing data for the different vehicles, a property of database handled
by RSF. One reason for the missing rate is due to the fact that data was recorded
for different type of vehicles for which some variables are not applicable.

Another main characteristic of the database is that there are no time series
available for a vehicle. It means that there is only one snapshot ν of the variables
in the database for each vehicle. Information describing how the vehicle has
been used is stored as histogram data where different variables represent how
often specific sensor data is measured within different intervals. For example,
there is a histogram describing how much time the vehicle has been subjected
to different ambient temperatures.

When applying RSF to the data in the database, the objective is to find
classes of vehicles with similar battery degradation properties. The reliability
computed for a given class is an approximation of the true vehicle reliability
which can be used to prognose battery failure. Due to the non-specific purpose
of the database, it is probable that only small number of variables from set ν
influence prediction of the battery failure rate. Thus, identifying the important
variables in order to remove irrelevant ones, may improve the performance of
a battery prognosis model. This problem is considered and explained in the
successive subsection.

2.2 Variable selection using Random Survival Forests

The problem of identifying a set of important variables from a large set of
variables is a relevant topic in machine learning, usually referred to as variable,
or feature, selection, see (Guyon and Elisseeff, 2003). There are several reasons
why variable selection is important when working with data-driven models. First,
it is possible to improve the prediction performance by reducing the number
of variables, for example, the quality of the predictor may become bad if the
number of noisy variables (those that have no effect on battery failures) is large.

In the following illustrative example, two RSF are trained using synthetic
data to show how the number of noisy variables can have a negative impact on
prognostics performance.
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Synthetic data is created with the following properties. Let h0 be a constant
nominal hazard rate h0 for battery failure. The hazard rate

h(t) = lim
dt→0

P (t ≤ T < t+ dt | t ≤ T )

dt
(3)

represents the probability of a battery failure at a particular time t, see (Cox
and Oakes, 1984) for more details. In this example, the hazard rate does not
change with time and the nominal hazard rate corresponds to an expected 10
years of battery life. It is assumed that there is one variable v1 that explains
how vehicle usage profile influences failure rate and changes h0 to three hazard
rates

h =


1 · h0, if v1 = 1

2 · h0, if v1 = 2

3 · h0, if v1 = 3.

(4)

The scaling factors show how particular usage of the vehicle, described by v1,
changes the failure rate. Thus, there are three classes of batteries with different
degradation profiles. Data for 3000 vehicles is generated with a censoring rate
about 80 percent. The censoring rate is selected high to resemble the real vehicle
database since censoring rate significantly affects the prediction performance
of the RSF model. Two models with different numbers of noisy variables are
considered to observe how it changes the RSF prediction.

In the first dataset, two noisy variables are added in addition to v1, and in
the second dataset, 100 noisy variable are added to v1. After generating two
RSF models, one for each dataset, one vehicle from each degradation profile
is sampled from validation data and fed to the forest to generate predictions.
It is shown in Fig. 2 (a) that predictions from the RSF for the case of 2 noisy
variables (dashed blue curves) are following the theoretical reliability functions
(red solid curves) significantly better than the predictions from the RSF for
the case with 100 noisy variables, see Fig. 2 (b). Note that comparing the
results shows a larger number of noisy variables results in worse prediction. The
estimated reliability functions follow the theoretical values better with fewer
noisy variables. This is something that can be expected.

One measure to evaluate prediction performance of RSF is error rate which
should be low and is discussed further in Section 3. The error rate for the
case with two noisy variables is 0.4088, for the case with 100 noisy variables
is 0.4188. An important observation is that both cases give comparable error
rates. However, Fig. 2 shows that there is a significant difference between the
two predictors indicating the limitations of using error rate as a performance
measure. The given situation happens due to the fact that for the case with a
large number of noisy variables, it is hard for the model-building algorithm to
find the relevant variables.

This example is illustrative, showing the effects of keeping a lot of noisy
variables when generating the RSF model. The true reliability curves are in
general unknown but the evaluation using the simulated data shows the advantage
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(a) Model 1. Important variable v1 and 2 noisy.

0 0.2 0.4 0.6 0.8 1

0.7

0.75

0.8

0.85

0.9

0.95

1

t [time units]

R
(t

)

(b) Model 2. Important variable v1 and 100
noisy.

Figure 2: Predictive performance of RSF for different amount of noisy variables
evaluated on synthetic data. Blue dashed curves correspond to RSF predictions,
red solid curves - to theoretical reliabilities.

Table 1: Example of forest generation time given different number of variables.

Number of variables Time (s)
3 41.6
51 104.3
101 165.9
201 275.19

of reducing the number of noisy variables to improve prediction performance. It
motivates the relevance of finding the important variables in a set of data and
at the same time remove noisy variables.

A second motivation for variable selection is better interpretability of the
results. It is often useful to understand which factors are important for battery
failure to utilize this knowledge, for instance, for engineers to improve the design
of the vehicle to mitigate degradation of the battery, or to design better models
for understanding battery degradation. The interpretability of the model is
easier when the model is based on fewer variables.

A third motivation is to reduce model generation time. By reducing the
number of variables used for generating the RSF, computational time can be
saved. Table 1 shows time spent to grow random survival forest models for
different number of variables on a standalone PC. There is a linear dependence
of time on number of variables.

The motivations discussed in this subsection show that variable selection is
a relevant problem when generating prognosis models.
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3 Random survival forests

Random survival forest is here used to make predictions of battery degradation
in terms of the lifetime function Bν(t, t0) in (2). This section will give a brief
overview of the basic principles and describe what are the basic tools for variables
selection related to the given method. RSF was first introduced by (Ishwaran
et al., 2008). It is a survival analysis (Cox and Oakes, 1984) extension of a
machine learning method called Random Forest (RF) (Breiman, 2001) which is a
decision tree based classifier mostly used for regression and classification problems.
In this work, the RSF models are generated in R using the RandomForestSRC
package (Ishwaran and Kogalur, 2007).

The difference between an ordinary decision tree classifier and a random
forest is that there is randomness of two kinds injected into the process of
growing the forest. The first source is the usage of a bootstrap procedure. Each
tree is grown using its own bag of cases which are sampled from the training set.
Second, for each node in a tree, splitting variables are selected from a randomly
sampled subset. RSF extends the RF approach to right-censored survival data,
i.e., objects in the study without experiencing a failure. The output from each
tree T is the Nelson-Aalen estimate of cumulative hazard function (Cox and
Oakes, 1984).

Let tT1 < tT2 < . . . < tTN be N distinct event times when failures of objects
under study occur. Then, the Nelson-Aalen estimate for tree T and vehicle
(data) ν is

ĤT (t|ν) =
∑
tTj ≤t

fj,ni

sj,ni

(5)

where fj,ni
and sj,ni

are number of failures and survived objects in terminal node
ni of a tree T at event time tTj respectively. Terminal node ni is determined by
dropping vehicle ν down through the forest. The cumulative hazard estimate
Ĥ(t|ν) for the whole forest is received by averaging over all ĤT (t|ν). Finally,
reliability function Rν(t) from (2) obtained from the fact

Rν(t) = e−Ĥ(t|ν) (6)

and then Bν(t; t0) can be computed from (2).

3.1 Prediction error

A performance measure of the RSF is the prediction error (Ishwaran and Kogalur,
2007). It estimates the probability that for two randomly selected out of
bag objects, i.e., not used in growing the forest, RSF incorrectly ranks the
battery lifetime. It should be noted that prediction error does not fully capture
performance of the model. The example in Section 2 shows that the two RSF
models generate predictions with similar prediction error. However, it is shown
in Fig. 2 that the quality of the predictions is significantly different.
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3.2 Measures of variable importance and RSF

There is a tool incorporated in RSF called variable importance VIMP. It mea-
sures for a given variable the increase in prediction error when the variable is
randomized when used as a splitting variable in the forest. A larger increase
indicates that the variable is important for correct classification while a low
increase (or even a decrease) in prediction error indicates that the variable is
not important.

VIMP is a candidate tool for variable selection by selecting a subset of
variables with sufficiently high VIMP values. The variable selection can be done
by manually selecting a threshold to separate important from noisy variables.
However, previous analyses, (Ishwaran et al., 2011), have shown that VIMP
can have problems when there are many correlated variables, a situation that
is expected in our case. If several important variables are correlated they will
share importance and the computed VIMP will be low even if the variables are
important. Thus, there is a risk that important variables will be lost and result
in degraded prediction performance. It should be noted that it is not necessary
that VIMP fails in our case, but uncertainty motivates an investigation of an
alternative approach in selecting important variables.

As an alternative to VIMP, a candidate measure called minimal depth for
variable selection in RSF has been proposed (Ishwaran et al., 2010, 2011).
Minimal depth for variable v is the distance from the root to the closest node
where it appears. The motivation for this measure is that important variables
should have a higher probability to be selected as splitting variables at low levels,
close to the root, when generating trees. Thus, the average minimal depth for
important variables in the forest should be lower compared to noisy variables. A
distribution for minimal depth Dv of noisy variables can be derived as (Ishwaran
et al., 2010, 2011)

P (Dv = d | v is noisy variable) =

=

(
1− 1

p

)Ld
[
1−

(
1− 1

p

)ld
]
, 0 ≤ d ≤ D(T )− 1 (7)

where D(T ) is a depth of a tree, ld is number of nodes at depth d, Ld =
l0 + l1 + . . .+ ld−1 and p is number of variables chosen to split node. Then, a
threshold to separate important variables from noisy variables can be selected
as the mean value for variable distribution (7). If the minimal depth measure
of a variable mean value is less than the threshold, it is treated as important,
otherwise as noise. The minimal depth measure is evaluated in (Ishwaran et al.,
2010) and (Ishwaran et al., 2011) where it is shown to be successful for finding
important variables in problems with few important variables and large number
of noisy ones, even when the data set is relatively small.
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4 VIMP and minimal depth evaluation

VIMP and minimal depth are used to analyze the variables in the vehicle
database. For the analysis, three random variables were generated and included
into the database to evaluate if the two approaches are able to identify them
as non-important. VIMP is evaluated and the value for different variables is
shown in Fig. 3. Large positive values correspond to important variables, while
values close to zero or negative to non-important variables. To compare the
different variable selection methods, five specific variables in the database are
highlighted. Four of them are variables that can intuitively contain information
about battery degradation. The first one shows if there are battery powered
kitchen facilities in a truck, idnicating that the barrery is used not only for
starting the combustion engine. Low batttery voltages and low temperatures are
important for battery health, and the second variable is therefore a histogram bin
with low temperatures of battery voltage histogram. Further, starter motor time
and road slope are two bins from respective histograms where first one correlates
with battery load and the second one with vehicle usage. The last variable,
noise, is one of the added noisy variables and used for testing purposes. It could
be seen in Fig. 3 that battery voltage and kitchen equipment are identified as
important and noise variable as non-important. It is a positive sign. However,
there is no confidence that road slope and starter motor time are not important,
because of the problem of the correlated variables VIMP has.

The minimal depth approach is applied to the vehicle database using the
recommended configuration described in (Ishwaran et al., 2011). The result of
the minimal depth approach is shown in Fig. 4. The x-axis is the mean minimal
depth and the y-axis show the mean value of the second minimal depth. Second
minimal depth is the distance to the root from a node, in another branch of the
tree, where the variable appears the second time. Important variables are thus
expected to appear in the lower left corner and non-important in the upper right.
The computed threshold, based on (7), is shown as the red vertical line. Most
variables are located below the threshold, including the known noisy variable,
meaning that the variable selection is not able to distinguish the important
variables from noisy variables.

The minimal depth of one of the noisy variables shown as a blue cross in
Fig. 4 and is located lower than the computed threshold. The other two noisy
variables have similar positions. The minimal depth approach was not able to
remove the noisy variables and did not work satisfactory. The previous results
presented in (Ishwaran et al., 2011) were based on medical databases. There
could be several reasons for different performances where different types of data
in the databases could be one reason. Another is the censoring rate, which for
the vehicle database is more than 90 percent and much higher than considered
in the previous paper. The analysis shows that there seem to be limitations
with the existing proposed importance measures and that they are not suitable
in this case.
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Figure 3: VIMP values for all variables from vehicle database where x axis
corresponds to variables from vehicle database, y axis shows VIMP value for a
particular variable. Large positive values of VIMP corresponds to important
variables.

5 Measure for variable selection

Due to the limitations using the VIMP and minimal depth measures, as discussed
in the previous section, a new measure of variable importance is proposed. The
principle of the proposed measure is similar to minimal depth but considers not
the mean of the first appearance of a variable in a tree, but that the probability
that a splitting variable is used varies with different levels of the tree. An
important variable should be used more often as a splitting variable at lower
tree levels, close to the root, and less at higher tree levels. If noisy variables are
selected as splitting variables the probability should be low for low tree levels
and not change as much between different tree levels, maybe increase slightly
for higher levels. Fig. 5 illustrates the qualitative shapes of the probability
distributions with respect to the tree levels for important and noisy variables.
Thus, main idea of the new variable importance measure is to evaluate for a
given splitting variable the probability that it is used at different levels of the
trees in the RSF.

Let d = 1, 2, . . . ,max(D(T )), where D(T ) is a tree depth, be all possible tree
levels in a RSF and v ∈ ν is a splitting variable. Consider d as a random variable,
and define P (v, d) which describes the joint probability that v is selected as a
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Figure 4: Minimal depth approach applied to vehicle database where x axis
corresponds to mean value of the first appearance of a variable in a tree, y
axis corresponds to mean value of the second appearance of a variable in a
tree. Dashed red line is a threshold that separates important and non-important
variables. Important ones should lay to the left from the threshold.

splitting variable in a node at a tree level d. Then,

P (d|v) = P (v|d)P (d)

P (v)
(8)

where, P (v|d) denotes the conditional probability that v is selected as a splitting
variable in a node given tree level d. The probability P (d) is an a priori probability
to select a specific level in the tree, independent of splitting variable, and P (v) is
the marginal probability of selecting v as a splitting variable for the whole tree.
It is assumed that there is no a priori knowledge of P (d), thus, the probability
is set equal for all levels, i.e., P (d) = 1

max(D(T )) , ∀d. The conditional probability
P (d|v) can be interpreted as the a posteriori probability of selecting a tree level
given that v is used as a splitting variable. The a posteriori distribution (8) is
here considered a relevant measure of the importance of the splitting variable v
in the RSF. The measure avoids the problem, for example, VIMP has where the
importance will be shared between the correlated variables. This is because (8)
consider the probability of selecting different tree levels given that a splitting
variable is selected and does not depend on the probability of selecting v which
is reduced if variables are correlated.
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The conditional probability (8) will be used as a variable importance measure.
However, the true probability is not known because it depends on many different
factors, for example, the parameters when generating the RSF. However, it can
be estimated from the RSF by computing the mean ratio for all trees that v is
used as a splitting variable in a node for each level d of the tree. This, can be
done by first computing

ϕv(d) =

∑
T

ld,v
ld

# of trees in RSF

where ld,v is number of nodes at level d where v is splitting variable. Equation
(9) is then used to compute the estimate

Pv(d) =
ϕv(d)∑
k ϕv(k)

. (9)

which will be used when analyzing the RSF.
Generating an RSF for identifying important variables differs from generating

an RSF for battery life prediction. To identify important variables it is useful to
generate the RSF such that the chance of having significant variations between
variables is increased. Thus, each tree in the forest is allowed to grow deep to
have as many levels and branches as possible. Therefore, the minimal terminal
node size was chosen to be two. This parameter choice is not suitable for battery
life prediction where instead a minimal terminal node size of 200 was used.
In the later case, the focus is in quality of prediction and taking into account
the fact that there are no time series for each vehicle, it should be associated
with a class of vehicles with similar usage profile. Therefore, small values of
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minimal node size could be a bad choice. However for variable selection, trees
are required to be as deep as possible, because quality of (9) depends on it.
Based on experience, but also to compare the results with the minimal depth
approach, 1000 trees was selected to be generated in the RSF.

After growing an RSF with minimal terminal node size 2 and calculating
probability mass functions (pmf) according to (9), five probability mass functions
for different splitting variables are shown in Fig. 6. The variables stating whether
a vehicle has kitchen equipment or not and how long the battery has had a
voltage within a given interval are intuitively important since they indicate how
the battery is used. This is visible in the figure since Pv(d) is large for small d
and decreasing with increasing d, while the noise variable is more flat starting
from level 5. The estimated Pv(d) with respect to the road slope where the
vehicle has been run has the same shape as the noise indicating that it is not
important regarding battery degradation. The estimate Pv(d) of the starting
motor time does not have the same shape as kitchen equipment but there is
still more likely that it is used as a splitting variable close to the root in a tree
indicating that it still has some importance. This is reasonable since a degraded
battery can be correlated with that the starting motor is used more. These
observations indicate that the shape of Pv(d) can be used to measure variable
importance.

6 Identifying important variables for battery
failure prognostics

The proposed variable importance measure estimate (9) is here used to analyze
data from the vehicle database. There is a number of different histogram variables
describing how the vehicle is used where each bin represents how much a variable
has been measured within a specific interval. As a first step, the analysis will
evaluate if it is possible to identify important operating regions and vehicle
configurations which are correlated with battery degradation. The results are
discussed based on expert knowledge for variables related to battery voltage,
fuel consumption, starter motor usage, ambient temperature, and configuration
variables. Then, in a second step an automatic procedure is outlined and applied
to the full set of variables.

Based on the observations in Fig. 6, the shape of Pv(d) for high d is more
noisy due to varying sizes of the different trees. Thus, for better visualization
(9) is plotted for each histogram variable but only for tree levels d ≤ 20. Fig. 7
upper plot shows Pv(d) for different histogram bins of battery voltage variable
when the battery is used, where bin 1 represents low battery voltage and bin
9 high battery voltage. The three lowest histogram bins have higher values at
lower tree levels indicating that the time the battery in the truck is having low
voltage is important for battery health prediction. It is also visible that the bin 9
significantly higher at lower tree levels, compared to the bins 4-8, meaning that



46 Paper A. Heavy-duty truck battery failure prognostics

tree level
0 5 10 15 20 25 30 35 40 45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Kitchen equipment
BattVolt
StartMotorTime
Road slope
Noise

P
v
(d
)

Figure 6: Probability mass functions Pv(d) for 5 variables from vehicle database
calculated according to (9).
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Figure 7: Variable importance analysis of battery voltage histogram variables.

high voltages are also relevant for battery health prognostics. When comparing
the result to VIMP, Fig. 7 lower plot, it is visible that both methods identifies low
voltages as important, high positive values of VIMP mean important variables,
but the high voltage is not identified by VIMP.

Another variable is fuel consumption speed which is shown in Fig. 8. It is
visible from upper plot that mainly lower fuel consumption speeds are correlated
to battery failure which could be related to city driving with lots of starts and
stops increasing the usage of the battery. VIMP, lower plot, varies more and it
is more difficult to identify any bin as more important.

The analysis of the time that the starter motor is used is shown in Fig. 9.
Compared to noisy variables it is indicated that the starter motor time has some
relevance, see Fig. 6 upper plot, for the whole interval, but not as much as, for
example, low battery voltage. Also, note that there is a small trend of increasing
importance with increasing starter motor time indicating that battery failure is
correlated with when the starter motor is used more often which is reasonable
since the battery is used more. The computed VIMP measure, lower plot, does
not have any clear indication of any bin being important, except possibly bin 6.

It is known that cold temperatures are not good for battery health which is
also visible in Fig. 10. It is mainly the lowest temperature bin that is relevant
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Figure 8: Variable importance analysis of fuel consumption speed histogram
variables.
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Figure 10: Variable importance analysis of ambient temperature histogram
variables.

for battery degradation. When comparing the results with VIMP, the VIMP
measure is very close to 0 and even negative in many cases.

Finally, a set of variables describing the vehicle configuration is analyzed in
Fig. 11. The variables consider both battery type and position and variables
that are related to if the driver sleeps in the truck, for example, if there are
any kitchen equipment or beds and thereby use the battery for more purposes
than starting the combustion engine. The figure shows that if there is kitchen
equipment or not and, the battery position, and if there are any beds in the
truck are important variables. This result is understandable since if the driver
is using the truck to sleep in it and cook food, the battery will be used, not only
for starting the engine but also for powering these auxiliary units. The battery
position indicates that some battery positions are correlated to faster battery
degradation, for example, increased vibrations. VIMP identifies the kitchen
equipment variable but there seems to be no significant importance for the other
configuration parameters.

These examples show that the results from (9) can be explained from expert
knowledge. Further, the examples indicate that the measure is useful for identi-
fying variables relevant for battery failure prognostics and extracts information
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Figure 11: Variable importance of different truck configuration variables.
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not obtained from VIMP or minimal depth metrics.
However, the analysis here is performed manually. To automatically select

important variables for generating an RSF model, it must be possible to measure
the variable importance based on the shape of (9).

6.1 Variable selection using shape of depth distribu-
tion

To select a suitable set of variables, the variable importance is measured by
computing the skewness and mean of Pv(d) in (9) for each variable v,

µd = EPv
[d] (mean)

γd = EPv

[(
d− µd

σd

)3
]

(skewness)
(10)

where σd is the standard deviation of d. Fig. 12 shows plotted mean and skewness
of Pv(d) for each variable v from vehicle database. Important variables should
have a large positive values of skewness and a low mean value, i.e., they should
be in the lower right corner of the figure, while noisy variables should be in the
upper left corner. Most of the variables are located in the upper left corner,
including the injected noisy variables, indicating that many variables are not
relevant for battery degradation. However, there is a set of points that are
located along the way down to the right indicating their increasing importance.

The corresponding skewness and mean for each of the variables in Fig. 6
are marked in Fig. 12 showing that the variables thought to be important are
located down to the right while the noise variable is located up to the left.

7 Evaluating RSF model for battery health
prognosis

Based on Fig. 12, a manually selected threshold is defined to select a subset of
variables that are most important to generate a new RSF. The performance of
the RSF using the reduced set of variables is compared to using all variables. The
selected subset of variables includes 50 variables out of 283 variables. For both
sets of variables, an RSF is generated with 1000 trees and a minimal terminal
node size of 200. The error rate for the case with all features is 0.2011, and for
the reduced set 0.2186 which are comparable in size. Note that, as observed in
Section 2.2, this does not necessarily mean similar predictor performance.

For the analysis, 10 vehicles with battery failures and 10 without are selected
randomly. These vehicles are then used as inputs in the RSF to compute the life
functions Bν(t; t0) and the results are shown on Fig. 13 and Fig. 14 for vehicles
with battery problems and healthy ones, respectively. It should be noted that
time units were used on x axis for both figures, original time was scaled to
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hide true life-time of batteries to not reveal sensitive information for industrial
partner.
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Figure 13: Lifetime functions Bν(t; t0) for 10 vehicles with battery failures from
vehicle database. Two models of RSF compared, namely, with all features and
with reduced set of features.

The computed lifetime functions have, in general, higher values for vehicles
without battery problems than for vehicles with battery problems, see Fig. 13
and Fig. 14. This is true for the cases with and without feature selection which
is expected. Another thing that can be noticed is that the lifetime functions are
more less the same for the case with all variables and the case with only the
identified important ones. It is difficult to evalaute the quality of the predictions
of the two RSF models. However, the results in the example in Section 2 shows
that a reduced number of noisy variables should have a positive impact on
prediction accuracy even though the error rates are comparable.
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Figure 14: Lifetime functions Bν(t; t0) for 10 censored vehicles from vehicle
database. Two models of RSF compared, namely, with all features and with
reduced set of features.
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8 Conclusions

A heavy-duty truck battery failure prognosis model is estimated based on truck
operational data using random survival forests. The available data have several
complicating factors, such as, missing and censored data, varying variable types,
etc., which can be handled using random survival forests. Applying variable
selection before generating the battery failure prognosis model can help improve
the prognosis, but also interpretability, and computational cost. Standard
techniques for variables importance measures are evaluated. Since satisfactory
performance was not achieved, a new variable importance measure is proposed to
identify variables relevant for battery failure prognosis. The analysis is used both
to identify which variables are relevant for battery lifetime prediction and to
improve prediction performance. The results of the new approach are consistent
with expert knowledge, for example, identifying low ambient temperatures and
if the driver uses kitchen equipment in the truck as important information. The
performance of the proposed variable importance measure promising for this
application when compared to existing measures. Training an RSF for the two
cases, using all variables and only 18% of important ones, result is comparable
in error rates. The introductory example shows that similar error rates still give
varying results compared to the truth which indicates that the proposed variable
selection method should improve prediction performance. However, more work
should be done in this direction to justify the results.
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Abstract

Prognostics and health management is a useful tool for more flexible
maintenance planning and increased system reliability. The application
in this study is lead-acid battery failure prognosis for heavy-duty trucks
which is important to avoid unplanned stops by the road. There are large
amounts of data available, logged from trucks in operation. However,
data is not closely related to battery health which makes battery prog-
nostic challenging. When developing a data-driven prognostics model
and the number of available variables is large, variable selection is an
important task, since including non-informative variables in the model
have a negative impact on prognosis performance. Two features of the
dataset has been identified, 1) few informative variables, and 2) highly
correlated variables in the dataset. The main contribution is a novel
method for identifying important variables, taking these two properties
into account, using Random Survival Forests to estimate prognostics
models. The result of the proposed method is compared to existing vari-
able selection methods, and applied to a real-world automotive dataset.
Prognostic models with all and reduced set of variables are generated and
differences between the model predictions are discussed, and favorable
properties of the proposed approach are highlighted.
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1 Introduction

Prognostics and health management are important parts to prevent unexpected
failures by more flexible maintenance planning. The purpose is to replace a
failing component before it fails, but avoid changing it too often. Coarsely, there
are two main approaches in prognostics, data-driven and model-based techniques,
but also hybrid approaches that combine the two are possible. Model-based
prognostics uses a model of the monitored system and the fault to monitor to
predict the degradation rate and Remaining Useful Life (RUL), see for example
(Daigle and Goebel, 2011). Statistical data-driven methods (Si et al., 2011)
generate a prediction model based on training data to predict RUL.

One relevant application is lead-acid starter battery prognosis for heavy-duty
trucks. Heavy-duty trucks are important for transporting goods, working at
mines, or construction sites, and it is vital that vehicles have a high degree
of availability. Unplanned stops by the road can result in increased cost for
the company due to the delay in delivery, but can also lead to damaged cargo.
One cause of unplanned stops is a failure in the electrical power system, and in
particular the lead-acid starter battery. The main purpose of the battery is to
power the starter motor to get the diesel engine running, but it is also used to,
for example, power auxiliary units such as heating and kitchen equipment.

The main contribution in this work is a data-driven method for variable
selection when estimating a battery failure prognostics model for automotive
lead-acid batteries based on Random Survival Forests (Ishwaran et al., 2008).
In particular, two key properties of the application data set are addressed 1)
the number of informative variables is assumed to be small, and 2) the data
contains highly correlated variables. Both aspects make building a prognostics
model more difficult and are the main motivating factors for the proposed
approach. Further, variable selection is also important to better understand
which factors that are correlated with battery failure rate and also what is
causing it. This work is a continuation of (Voronov et al., 2016), where the main
focus was to analyze the automotive application case study. Here, the main
contribution is an extended analysis of the variable selection problem that results
in an augmentation of the decision space with an extra dimension. Further,
characteristics of existing variable selection methods for Random Survival Forests
are analyzed and compared to the proposed method, in particular for the case
where there are many correlated variables in the data set. In addition, a basic
variable selection methodology is proposed.

2 Problem formulation

The main objective in this work is to use Random Survival Forests (RSF)
(Ishwaran et al., 2008) to identify, from data, which variables are relevant for
building RSF models for survival analysis. The problem of identifying important
variables is usually referred to as variable selection and is a relevant topic in
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data-driven prognostics and machine learning in general (Guyon and Elisseeff,
2003).

The prognostic problem studied here is to estimate the battery lifetime
prediction function based on recorded vehicle data. The lifetime prediction
function is defined as

BV(t; t0) = P (T > t+ t0 | T ≥ t0, V) (1)

where T is the random variable failure time of the battery and V the vehicle
data at time t = t0 when data is submitted into the model, in our case when
a vehicle comes to the workshop. The function BV(t; t0) is a function of t and
gives the probability that the battery will function at least t time units after t0.
The data V is recorded operational data for a specific vehicle.

2.1 Operational data

In this work a vehicle fleet database is provided by an industrial partner, where
one snapshot of data is available from each vehicle including information regarding
how the truck has been used and the configuration of the specific truck. There
is also information if the battery has failed or not. The database contains
lots of information from the truck, not always related to battery degradation,
meaning that it is not known what available information is relevant for this
specific task. Therefore, it is relevant to identify which variables are relevant for
battery lifetime prediction. Previous works considering this vehicle data set are
presented in (Frisk and Krysander, 2015) and (Frisk et al., 2014).

The main characteristics of the database can be summarized as follows:

• 33603 vehicles from 5 EU markets

• A single snapshot per vehicle

• 284 variables stored for each vehicle snapshot

• Heterogeneous data, i.e., it is a mixture of categorical and numerical data

• Availability of histogram variables

• Censoring rate more than 90 percent

• Significant missing data rate

A main characteristic of the database is that there are no time series available
for a vehicle. It means that there is only one snapshot V of the variables in
the database from each vehicle. Information describing how the vehicle has
been used is stored as histogram data representing how often specific sensor
data is measured within different intervals. As an example, there is a histogram
describing how much time the vehicle has been subjected to different ambient
temperatures.
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Due to the non-specific purpose of the database, it is probable that only a
small number of variables from set V influence prediction of the battery failure
rate. Thus, identifying the important variables in order to remove irrelevant
variables, should improve the performance of a battery prognosis model.

2.2 Motivation for variable selection

There are several reasons why variable selection is important when working with
data-driven models. First, it is possible to improve prediction performance by
reducing the number of variables. The second motivation is better interpretability
of the results by clearly understanding which factors are important for battery
failure. The third motivation is to reduce model generation and prediction time
by reducing the number of variables used for generating the RSF.

An example why the quality of predictor may become bad if the number of
noisy (non-important) variables is significantly large is given below. Synthetic
data is created with the following properties. Let h0 be a constant nominal
hazard rate (Cox and Oakes, 1984) for battery failures. The hazard rate

h(t) = lim
dt→0

P (t ≤ T < t+ dt | t ≤ T )

dt
(2)

represents the probability of a battery failure at a particular time t. In this
example, the hazard rate does not change with time and the nominal hazard
rate corresponds to an expected 10 years of battery life. It is assumed that there
is one variable v1 with an impact on battery hazard rate h as

h =


1 · h0, if v1 = 1

2 · h0, if v1 = 2

3 · h0, if v1 = 3

(3)

where h0 is the nominal hazard rate. Data for 3000 vehicles is generated with
a censoring rate about 80 percent. Different numbers of noisy variables are
included in the synthetic data to observe how they change the RSF output.

First, only two noisy variables are added in addition to v1. In the second
case, 100 noisy variables are added. All noisy variables are sampled from a
normal distribution with zero mean and unity variance. After generating two
RSF models, one for each set of variables, the reliability functions (Cox and
Oakes, 1984)

R(t) = P (T ≥ t) (4)

computed by the two RSF models are compared with the theoretical values of
the reliability as shown in Figure 1. One vehicle from each of the three classes
was chosen and submitted to the forest to receive the predictions. It is shown in
Figure 1 (a) that predictions from RSF for the case of 2 noisy variables, dashed
blue curves, are following the theoretical reliability functions, red solid curves,
better than the case with 100 noisy variables, see Figure 1 (b). However, the
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error rate, which is a common performance measure for the RSF, is similar for
both cases. This means that the error rate is not a good measure in prognostic
terms. It is worth to notice that in the simulation environment, information
about the true reliability curves is available. However, this is not the case for
the vehicle fleet database.
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Figure 1: Predictions from RSF with different number of noisy variables.

The example motivates the relevance of finding the important variables and
at the same time removing noisy ones, especially if number of important is small,
in a set of data as expected in the vehicle fleet database. The quality of the
estimated reliability function from the RSF is significantly improved when the
noisy variables are removed.

3 Random survival forests

A brief description of Random Survival Forests and two standard methods for
evaluating variable importance are presented. For a more detailed description,
the interested reader is referred to, for example, (Ishwaran et al., 2008) and
(Ishwaran et al., 2011).

The difference between an ordinary decision tree classifier and a random forest
is that there is randomness of two kinds injected into the process of estimating
the model. The first source is the usage of a bootstrap procedure. Each tree
is grown using its own bag of cases which are sampled from the training set.
Second, for each node in a tree, splitting variables are selected from a randomly
sampled subset. RSF extends the RF approach to right-censored survival data,
i.e., objects in the study without experienced failure.

RSF is a data-driven method that can be used for computing maximum-
likelihood estimates of the reliability function (4). It can be used to rewrite the
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lifetime prediction function (1) as

BV(t; t0) = P (T > t+ t0 | T ≥ t0, V) =
RV(t+ t0)

RV(t0)
(5)

The output from each tree T in the RSF is the Nelson-Aalen estimate of the
cumulative hazard rate, see (Cox and Oakes, 1984). Let tT1 < tT2 < . . . < tTN be
N distinct event times when failures of objects under study occur. Then, the
Nelson-Aalen estimate for tree T and vehicle (data) V is

ĤT (t|V) =
∑
tTj ≤t

fj,ni

sj,ni

(6)

where fj,ni
and sj,ni

are number of failures and survived objects in terminal node
ni of a tree T at event time tTj respectively. Terminal node ni is determined by
dropping vehicle V down through the forest. The cumulative hazard estimate
Ĥ(t|V) for the whole forest is received by averaging over all ĤT (t|V). Finally,
the reliability function RV(t) from (5) is obtained from the fact (Cox and Oakes,
1984)

RV(t) = e−Ĥ(t|V) (7)

and then BV(t; t0) can be computed from (5).
One measure of prediction error of RSF models proposed in (Ishwaran et al.,

2008) is based on pair-wise evaluation of non-censored data, called concordance
index (Harrell et al., 1982). In short, the measure takes into consideration
if the RSF model correctly predicts which of the two samples that will fail
first. However, note that it does not take into consideration how accurate the
prediction is with respect to the actual failure time. Therefore, the error rates
of the two models in Figure 1 turn out to be more or less equal even though the
model with fewer variables is visibly more accurate.

3.1 Variable selection using VIMP

One intuitive measure of variable importance is to measure the increase in
prediction error when ignoring a variable in the RSF. This is done by randomizing
the sample variable value when used as a splitting variable in the forest (Ishwaran
et al., 2008). The idea is that a large increase in prediction error indicates that
a variable is important while a low increase (or a decrease) indicates that the
variable is not important. This variable importance method is called VIMP and
is a candidate tool for variable selection by selecting a subset of the variables
with the highest VIMP values. However, previous works, for example (Ishwaran
et al., 2011), have shown that VIMP can have problems when there are many
correlated variables. If several important variables are correlated they will share
importance and VIMP will be low even if the variables are important. Thus,
there is a risk that important variables will be lost and result in degraded
prediction performance.
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3.2 Variable selection using Minimal depth

As an alternative to VIMP, a candidate measure called minimal depth for variable
selection in RSF has been proposed, see (Ishwaran et al., 2011) or (Ishwaran et al.,
2010). The minimal depth for variable v is defined as the average distance from
the root to the closest node where it appears in the RSF. Important variables
should have a higher probability to be selected as splitting variables, compared
to noisy variables, at low levels close to the root when the trees are generated.
Thus, the minimal depth for important variables in the forest should be lower
compared to noisy variables. To identify important variables using minimal
depth, a threshold that distinguishes important variables from noisy variables is
derived in (Ishwaran et al., 2011) based on the distribution for minimal depth
Dv of noisy variables as

P (Dv = d | v is noisy variable) =

=

(
1− 1

p

)Ld
[
1−

(
1− 1

p

)ld
]
, 0 ≤ d ≤ D(T )− 1 (8)

where D(T ) is the tree depth, ld is number of nodes at depth d, Ld = l0 + l1 +
. . .+ ld−1 and p is number of candidate variables chosen from when generating
the splitting rule in a node. The threshold can be selected as the mean value
for the variable distribution (8). If the minimal depth measure of a variable
mean value is less than the threshold, it is treated as important, otherwise as
noise. The minimal depth measure is evaluated in (Ishwaran et al., 2011) and
(Ishwaran et al., 2010) where it is shown to be successful for finding important
variables in problems with few important variables and large number of noisy
ones, even when the data samples are relatively small.

4 Variable depth distribution method

VIMP and minimal depth are the standard methods for variable selection in RSF
models. However, there are problems connected with them. If many correlated
variables are present in the database, as expected in our case, variables share
VIMP between each other and it could happen that important variables will
be lost if a VIMP based variable selection procedure is applied. The second
reason why VIMP can have problems is that it is associated with error rate.
As illustrated in Section 2, low error rate does not always correspond to good
prognostic performance. Minimal depth does not depend on error rate and the
variable selection approach has shown good results when applied to different
databases in medical applications, see (Ishwaran et al., 2011) and (Ishwaran
et al., 2010). However, it will be shown later that it did not work well when
applied to the vehicle database. Taking into account aforementioned reasons, a
new method for variable selection called Variable Depth Distribution (VDD) is
proposed.
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Figure 2: VIMP of variables in vehicle database sorted in ascending order.

The VIMP and minimal depth measures are applied to the vehicle database
and the results are shown in Figure 2 and Figure 3, respectively. As a reference,
three variables, only containing Gaussian noise, are included in the data set.
The computed VIMP is positive for half of the variables, but the VIMP curve
starts to flatten out after the first 30 variables with highest VIMP indicating
that approximately 10% of the variables are expected to be relevant for battery
lifetime prediction. The result of the minimal depth measure is presented in
Figure 3 where the x axis is a mean value of the first appearance of the variable
in the forest, y axis is a mean value of the second appearance of the variable in
the forest, and the red dashed line is the threshold computed based on (8). The
figure shows that most variables are identified as important, including the added
noisy variables. Since the noisy variables are identified as important, it is an
indication that minimal depth is not a suitable method for the vehicle database.

Due to the limitations using the VIMP, as discussed above, and the evaluation
of the minimal depth measure in Figure 3, a new measure of variable importance
is proposed. The principle of the proposed measure is similar to minimal depth,
but considers the probability of a splitting variable being used at different levels
of a tree. An important variable should be used more often as a splitting variable
at lower tree levels, close to the root, and less at higher tree levels as illustrated
in Figure 4. If noisy variables are selected as splitting variables the probability
should not change as much between different tree levels, maybe increase slightly
for higher levels.

Let d = 1, 2, . . . ,max(D(T )), where D(T ) is the tree depth, be all possible
tree levels in a RSF and v ∈ ν is a splitting variable. Consider two random
events, namely, choosing at random level d in a tree and picking a variable v as
splitting in a tree. First event is similar to the problem of drawing a one ball
from the boxes of enumerated balls. First, define P (v, d) which describes the
joint probability that v is selected as a splitting variable in a node at a tree level
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Figure 3: Minimal depth analysis of vehicle data. Black crosses correspond to
30 variables with highest VIMP and red triangles to added noise variables. Red
dashed line is a threshold. Noisy variables should be located to the right of the
red dashed line.

d. Then, according to Bayes rule

P (d|v) = P (v|d)P (d)

P (v)
(9)

where, P (v|d) denotes the conditional probability that v is selected as a splitting
variable in a node given tree level d. The probability P (d) is a prior probability
to select a specific level in a tree, independent of splitting variable, and P (v)
is the probability of selecting v as a splitting variable for the whole tree. It is
assumed that there is no prior knowledge of P (d), therefore, the probability is
set equal for all levels, i.e., P (d) = 1

max(D(T )) , ∀d. The conditional probability
P (d|v) can be interpreted as the a posterior probability of selecting a tree level
given that v is used as a splitting variable. The posterior distribution (9) is here
considered a relevant measure of the importance of the splitting variable v in
the RSF. The measure avoids the problem that, for example, VIMP has where
the importance will be shared between the correlated variables. This is because
(9) considers the probability of selecting different tree levels conditioned that a
splitting variable is selected and does not depend on the probability of selecting
v which is reduced if variables are correlated.

The conditional probability (9) will be used as a variable importance measure.
However, the true probability is not known because it depends on many different
factors, for example, the parameters when generating the RSF. It can be noticed



68 Paper B. Variable selection for battery failure prognostics

Important variable
Noisy variable

P
ro

ba
bi

lit
y

P (v is used as splitting variable in node at level l)

Tree level

Figure 4: Illustrative example of the probability that a given splitting variable
is used in a node at different tree levels.

from (9) that P (d|v) ∝ P (v|d) and if P (v|d) is known the value P (d|v) could
be found as well. After growing the forest, P (v|d) can be estimated by first
computing

ϕv(d) =

∑
T

ld,v
ld

# of trees in RSF

where ld,v is number of nodes at level d where v is splitting variable. Equation
(10) is then used to compute the estimate

Pv(d) =
ϕv(d)∑
k ϕv(k)

. (10)

which will be used when analyzing the RSF. An example of different distributions
Pv(d) are shown in Figure 5. Four variables from the vehicle data and one added
noise variable are analyzed how they are used in a RSF generated from the
vehicle fleet database. The distribution Pv(d) of the noise variable is almost
evenly distributed between levels 3 to 30, while variables related to battery usage,
such as, if there is kitchen equipment in the truck and information about the
battery voltage are significantly skewed to the left, indicating that these variables
are important for prognostics of the battery health. The starter motor time
variable has a higher probability mass at lower tree levels compared to the noisy
variable but not as much as the kitchen equipment and battery voltage variables.
The real data in Figure 5 resembles Figure 4 and the level of importance appears
to increase with increased probability mass at lower tree levels.

Instead of comparing the whole distribution Pv(d) for each variable v, two
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Figure 5: Examples of the estimated Pv(d) for five different variables including
one known noisy variable.

representative features are considered, mean and skewness,

µd = EPv
[d] (mean)

γd = EPv

[(
d− µd

σd

)3
]

(skewness)
(11)

According to Figure 4 and Figure 5, an important variable should have high
positive value of skewness and low value of mean. These two features can be
used alone to identify which variables that are important. There is one drawback
with this approach, namely, it is possible that a noisy variable will be selected
by random at low level of a tree. It means it will have values of skewness and
mean as important variable. However, for a noisy variable, this is likely to be
a rare event. Therefore, introducing information about how often a variable
is used as a third dimension can help to filter out noisy variables in the area
where important one should reside. Two possible candidates to express this
information are:

• The probability that v is used as a splitting variable in each node P (v).

• The probability that v is used as a splitting variable in a tree.

The first candidate can be estimated by counting the fraction of nodes a variable
is used in a tree and taking the average over the whole forest. The second
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feature only considers if a variable is used at all in a tree and can be estimated
by counting the number of trees in the forest where a variable is used. As it is
shown below, the third dimension, which take into account how often variable
is selected, can help identify important variables more efficiently than if only
mean and skewness is used as in (Voronov et al., 2016).

4.1 Real data case study

The result of applying the first candidate to the vehicle data as the third
dimension together with mean and skewness (11) is shown in Figure 6 where
each dot represents one variable. For comparison in the analysis, the 30 most
important variables according to VIMP, are highlighted as black crosses and
variables rejected by minimal depth are highlighted as green triangles pointing
up. Also for the analysis the three added noisy variables are highlighted as red
triangles pointing right.

Note that the 30 variables with highest VIMP have similar properties in
Figure 6. They have low mean, high skewness, and are used in a relatively large
fraction of the nodes. This can be interpreted as variables with high VIMP are
used as splitting variables in many nodes close to the root of each tree. The
noisy variables are also used in many of the nodes, but are located further away
from the root node, thus having high mean and low skewness. There is also a
number of variables with low mean and high skewness but are used in a smaller
fraction of the nodes. Some of these variables are binary, meaning that they
cannot be used as splitting variables more than once in a branch. Thus, they
can be relevant for the problem but will not be used in many nodes. Note that
the variables that are only used in a low fraction of nodes are variables rejected
by minimal depth in Figure 3.

Comparing with the results using minimal depth in Figure 3 the results in
Figure 6 looks promising because it is possible to find threshold to separate most
of the important variables given by VIMP from noisy ones. Here, it is assumed
that there are important variables among the 30 best given by VIMP, but it
does not mean that all are important. The minimal depth method maps most
of the variables below the threshold, including the known noisy variables, which
indicates that it has difficulties with this data set. Note that Figure 6 clearly
illustrates what properties are important in this case study according to VIMP
and Minimal depth.

5 Analysis

Before continuing the analysis of the vehicle fleet data using the new variable
selection method in the prognostic algorithm, the properties of the proposed
measure in Section 4 are further analyzed. As mentioned in Section 4, there is
no knowledge which variables are important in the vehicle database. There is an
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Figure 6: Skewness and mean of (10) of vehicle data combined with fraction
of nodes. Black crosses correspond to 30 variables with highest VIMP, green
triangles are variables rejected by minimal depth, and red triangles are added
noise variables.
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intuition that some of them could be informative, but it is not clear how many
they are and what their influence is on the battery hazard rate.

In this section, two case studies are performed, namely, understanding the
properties of the VDD method in a simulated environment and how to select
important variables using an ad-hoc threshold based on simulations. First, a
simple model is considered where only one important variable influences the
life of the battery. Then, another example with a large number of correlated
variables is considered. A third example using the simulated environment shows
when the VDD method can be more advantageous than VIMP. Finally, the
VDD method is applied to the vehicle fleet database where a set of important
variables is selected using on the proposed methodology.

5.1 Case study in simulated environment

To analyze the properties of the measure discussed in Section 4, simulated battery
failure data is generated which should resemble the general characteristics of
the real vehicle database. Similar to the example from Section 2, it is assumed
that the average battery lives for 10 years which is defined by a constant hazard
rate h0. One important variable v1 changes the hazard rate h0 by a factor h1

defined as

h1 =



1, if v1 = 1

1.5, if v1 = 2

2.5, if v1 = 3

2.9, if v1 = 4

3.4, if v1 = 5

(12)

Thus, the hazard rate for a randomly generated vehicle would be h1 · h0. After
generating hazard rates for all vehicles, simulated battery lifetimes are generated
sampling from an exponential distribution with mean µ = 1

h1·h0
. Censoring

is done by sampling censored times from a gamma distribution, with shape
parameter k = 1

7·h0
and scale parameter θ = 1, and comparing achieved time

values with failure ones. If the battery lifetime is less than the censored time
the battery experienced failure, otherwise it is censored. The selected gamma
distribution gives a censoring rate of approximately 80 percent which is similar
to the vehicle database.

In the first example, data from 10 000 vehicles is generated and one hundred
noisy variables are added to simulate non-important variables. Half of them are
normally distributed with zero mean and unit variance and the other half are
discrete uniformly distributed numbers from 1 to 10. The result of applying
the proposed method is shown in Figure 7. The known important feature is
highlighted as a black cross and noisy variables are shown as blue dots.

Figures 8 and 9 show the results for the same problem, but using VIMP and
minimal depth respectively. Using VIMP, it is easy to identify the important
variable, therefore, VIMP and the method proposed in the paper gives similar
results in this case. In Figure 9, the red dashed line is the threshold that
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Figure 7: Simulated data from 10000 generated vehicles with censoring rate 80
percent. The important variable is marked with a cross.

separates important and non-important variables according to (Ishwaran et al.,
2011). Variables to the left of the threshold should be important and variables
to the right are not. Figure 9 shows that the specific threshold is not able to
distinguish important variables in this case. However, it is visible that it is
possible to manually select a threshold that could to that.

When using VIMP, correlated variables will share importance. Therefore,
there is a risk that they will be missed when choosing a set of important variables
since their individual importance will be low. In the proposed method, skewness
and mean of strongly correlated variables should be similar to each other,
because they should be chosen in a tree at the same levels. To illustrate this, 20
correlated variables to the important one from the previous example are added
to the simulated database. The number of vehicles in the simulated database is
kept unchanged as well as number of noisy variables and censoring rate. Results
are presented in Figures 10 - 12. Note that the gap between important and
non-important variables using VIMP has almost vanished compared to the
previous example in Figure 8. At the same time, skewness and mean of the
21 important variables are similar to the single variable case in Figure 10 and
Figure 7, respectively. The main difference is that the number of trees where
each variable is chosen has decreased. The minimal depth approach fails in this
case and is treating all important variables as non-important, see Figure 12
which is consistent with the observation in Figure 6. The proposed VDD method,
as can be seen above, does not suffer of problems with correlated variables like
VIMP do.

An example showing why the VDD method could be more advantageous
in some situations with respect to VIMP is presented below. The case of one
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Figure 8: Computed VIMP of simulated data from 10 000 generated vehicles
with censoring rate 80 percent. The important variable is marked with a cross.

important variable and 20 correlated is considered. The number of vehicles
was reduced to 500 but keeping censoring rate unchanged. The number of
noisy variables is also increased to 400, equally splitting between discrete and
continuous noise. Results are shown in Figure 13 - Figure 15. Note that the
added third dimension helps to separate important variables from noise in
Figure 13. VIMP performs worse than VDD, see Figure 14, where the level
of importance for some noisy variables is higher than for important ones. The
Minimal depth still have problems identifying the important variables as shown
in Figure 15.

5.2 Strategy for variable selection

As it was shown above, it is possible to set up a threshold that separates
important variables from noisy, however, it is not straightforward. Further
studies are required to understand how information contained in the three
dimensions could be used to build a consistent and automatic algorithm for
variable selection. However, it is possible, using the results in the paper and
experience from simulated data, to suggest an ad-hoc strategy.

Variables from the vehicle database are plotted in Figure 16 where the
number of trees a variable is used in is used as the third dimension. Important
variables should be used in most of the trees. Therefore, selecting a threshold
that sorts out variables that are not used in many trees, for example 800, should
give a first set of candidates of important variables. It could be the case that
important variables are used less if there are many correlated variables, however,
in that case it is expected that skewness and mean would be similar for those
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Figure 9: Minimal depth of simulated data from 10 000 generated vehicles with
censoring rate 80 percent. The important variable is marked with a cross.

variables, Section 5.1. Then, there should be variables that are grouped in
the skewness-mean plane which is not observed for the variables with values
of number of trees less than 800. Therefore, it is assumed that there are no
important variables in that area. It was shown in Section 5.1 that for some
difficult cases, noisy variables are used as splitting variables more often than
important variables, see Figure 13. Setting up a threshold with aforementioned
strategy will not work for that case. This situation is not considered in this case
study, but a more general strategy for selecting the threshold is required for a
final version of the variable selection algorithm.

The second step is to project candidate important variables into the skewness-
mean plane and to set up a new threshold to remove noisy variables. This step
is illustrated in Figure 17. Important variables should have high positive value
of skewness and low value of mean. The threshold is manually selected to reject
the cloud of variables which are treated as noisy. This step is similar to approach
in (Voronov et al., 2016). However, number of variables that are considered
to be important is less than in the previous paper due to the augmentation of
two dimensional space with the extra dimension. The methodology for variable
selection could be summarized in the following steps:

1. Set up threshold in the number of trees dimension to filter out noisy
variables which are seldom used.

2. Project remaining variables in the skewness-mean plane and set up a
threshold that distinguishes important variables as the subset of variables
with high positive value of skewness and low value of mean.
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Figure 10: Simulated data from 10000 generated vehicles with censoring rate 80
percent. The important strongly correlated variables are marked as crosses.

6 Case study: Battery failure prognostics

Using the manually chosen thresholds as described in Section 5 and demonstrated
with the means of Figures 16-17, 34 of the variables, i.e. about 12 percent, are
selected and treated as important. The performance of the RSF using the
reduced set of variables is compared to using all variables. The performances of
the generated RSF models are evaluated using error rate. However, as discussed
earlier in Section 2, the error rate is not an optimal measure since the two
models in Figure 1 achieves similar error rates while their prediction quality is
significantly different.

An RSF is generated with 1000 trees and a minimal terminal node size of
200 for both variable sets, the 34 selected variables and all variables. The error
rate for the case with all variables is 0.2011, and for the reduced set, 0.2177,
which are comparable in magnitude. It is worth to emphasize that node size 200
is here used for growing the forest for predictive purposes and node size 2 for
variable selection.

For the analysis, 10 vehicles with battery failures and 10 without are selected
randomly as validation data. These vehicles are then used as inputs in the RSF
to compute the lifetime prediction functions BV(t; t0) and the results are shown
in Figures 18 and 19, respectively, for vehicles with battery problems and healthy
ones.

In Figure 18 (b), vehicles are clearly more grouped compared to Figure 18 (a)
where most vehicles have faster decaying lifetime prediction. The result seems
reasonable since lifetime of the batteries of grouped vehicles with fast decaying
lifetime prediction functions BV(t; t0) in Figure 18 (b) are within 2 to 3 time
units which is quite long life for batteries. Therefore, fast decaying lifetime
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Figure 11: Computed VIMP for simulated data from 10000 generated vehicles
with censoring rate 80 percent. The important strongly correlated variables are
marked as crosses.

prediction functions for those vehicles should be expected. Battery lifetime of
the vehicle corresponding to the purple curve in Figure 18 is about 0.14 time
units. However, the vehicle failed early and value of lifetime function would
not allow to predict the failure, but it is possible that the cause of the battery
problem is not so common in the vehicles from the database. In general, it could
be seen that vehicles that lived longer are well separated from the ones that lived
shorter. Of cause, it could not be used as the evaluation of the method, but as a
positive sign. Note that the lifetime function of the vehicle which corresponds to
the green curve in Figure 18 has changed significantly between the two figures.
This vehicle operated for about 2.5 time units. It has not yet failed, but should
be likely to fail soon. That is why the lifetime prediction function decays faster
than for the other vehicles. It should be noticed that we need a measure for
assessing predictive performance of RSF, and, when it is available, more can be
said about the influence of variable selection on prognostic capabilities of the
model.

7 Conclusions

A method for variable selection and variable importance analysis using random
survival forests is proposed and analyzed. Main motivating factors for the
approach are 1) small number of informative variables, and 2) highly correlated
variables in the data set. Analyzing the feature space in Figure 6 indicates that
it is possible to distinguish how VIMP and Minimal depth determines which
variables that are considered important and this should be analyzed further. The
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Figure 12: Minimal depth of simulated data from 10000 generated vehicles
with censoring rate 80 percent. The important strongly correlated variables are
marked as crosses.

proposed method is evaluated in the industrially relevant problem of heavy-duty
vehicle battery failure prognostics and evaluated using real vehicle fleet data
and simulated data. Simulated data shows that important variables can be
distinguished from noisy variables even in difficult cases. The case study using
real data shows that a prognosis model with 12% of the available variables
achieves comparable error-rate with using all variables.
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Figure 18: Lifetime prediction function BV(t; t0) for vehicles with battery failures.
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Figure 19: Lifetime prediction function BV(t; t0) for censored vehicles.
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Abstract

Maintenance planning is important in the automotive industry as it will
allow fleet owners or regular customers to avoid unexpected failures of
the components. One cause of unplanned stops of heavy-duty trucks is
failures in the lead-acid starter battery. High availability of the vehicles
can be achieved by changing the battery frequently, but such an approach
is expensive both due to the frequent visits to a workshop and also due
to the component cost. Here, a data-driven method based on Random
Survival Forest (RSF) is proposed for predicting the reliability of the
batteries. The data set, covering more than 50000 trucks, available
for the study has two important properties. First, it does not contain
measurements related directly to the battery health, in addition there are
no time series of measurements for every vehicle. It is shown in the paper
that the RSF method is used to predict the reliability function for a
particular vehicle using data from the fleet of vehicles given that only one
set of measurements per vehicle is available. A theory behind confidence
bands for the RSF method is developed which is the extension of the
existing technique for estimating variance of Random Forest method.
Adding confidence bands to the RSF method gives an opportunity to
an engineer to evaluate the confidence of the model prediction. Some
aspects of the confidence bands are considered: a) their asymptotic
behavior and b) usefulness in model selection. A problem of including
time related variables is addressed in the paper with arguments why it is
a good choice not to add them into the model. Metrics for performance
evaluation are suggested which show that the model can be used to
schedule and optimize the cost of the battery replacement.
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1 Introduction

In order to transport goods efficiently by heavy-duty trucks, it is important
that vehicles have a high degree of availability and in particular avoid becoming
standing by the road unable to continue the transport mission. An unplanned
stop by the road does not only cost due to the delay in delivery, but can also
lead to damaged cargo. Therefore, maintenance planning becomes important in
the automotive industry and in the near future car or truck manufactures do not
only produce and deliver cars and trucks, but also provide maintenance services
that will allow fleet owners or regular customers to avoid unexpected failures.
High availability can be achieved by changing components frequently, but such
an approach is expensive both due to the frequent visits to a workshop and also
due to the component cost. Therefore, failure prognostics and flexible mainte-
nance has significant potential in the automotive field for both manufacturers,
commercial fleet owners, and private customers.

In heavy-duty trucks, one cause of unplanned stops are failures in the electrical
power system, and in particular, the lead-acid starter battery. The main purpose
of the battery is to power the starter motor to get the diesel engine running, but
it is also used to, for example, power auxiliary units such as cabin heating and
kitchen equipment. Detailed physical models of battery degradation is inherently
difficult and requires, in addition to battery health sensing which is not available
in the given study, detailed knowledge of battery chemistry and how degradation
depends on the vehicle and battery usage profiles.

Methods for lifetime prognostics of system components can coarsely be split
into two categories: model based and data-driven methods (Roemer et al.,
2005). Model based methods rely on physical laws and equations that describe
degradation of the components and for accurate predictions, accurate degradation
models are required. However, it is sometimes hard to develop an accurate
degradation model for a particular system, and then data-driven methods can
be an alternative. It is common for both approaches to estimate the Remaining
Useful Life (RUL) which is either the remaining time until component failure
or to the point where it can no longer fulfill its function. In general, RUL is
estimated using sensors that give health related information of the component,
meaning, there is a possibility to track and predict the state of the health
related parameters during the lifetime of the component. Examples of model-
based prognostics are given in (Daigle and Goebel, 2011; Hanachi et al., 2015;
Saha and Goebel, 2009) where detailed physics-based degradation models are
developed and used. Data-driven methods use machine learning algorithms to
either estimate RUL, or health of the component, and can be categorized into
parametric and non-parametric methods. A parametric approach assumes that
the underlying degradation can be well described by a parametric distribution
where the parameters of interest are estimated through the observations, see for
example (Medjaher et al., 2012; Cox, 1972). In turn, non-parametric data-driven
models use machine learning methods that do not have any basic assumption
regarding underlying degradation distribution (Ishwaran et al., 2008). Nowadays,
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hybrid methods that fuse predictions both from the model-based and data-driven
approaches are proposed, see (Zhao et al., 2015; Liao and Kottig, 2014). Unlike
the aforementioned methods, where in most cases time series of sensor data is
available, the data set under study only contains static information, i.e., one
can not observe a battery degradation during its lifetime. For this reason, an
alternative approach is adopted here where a conditional probability distribution
of the battery lifetime, referred to as the battery lifetime function, is estimated
instead of the RUL.

Given snapshots from a fleet of the vehicles coming into a workshop, the
problem of estimating the lifetime function of the lead-acid battery, using
a non-parametric approach, for the vehicles is considered in order to decide
when to replace its battery. A distinctive feature of the data set is lack of
information directly related to the battery health. Therefore, battery health
must be estimated using available information in variables correlated with battery
usage. Taking all into account and the fact that the degradation profiles of the
batteries are not available, a non-parametric method called Random Survival
Forest (RSF) (Ishwaran et al., 2008) is selected to estimate the reliability function
of a particular battery and subsequently the lifetime function. Contributions
in this paper are the following: a) the lifetime function is used instead of the
RUL and the RSF model is proposed to estimate the lifetime function, b) a
variance estimate of the predictor is suggested which uses the structure of the
RSF model allowing to judge the quality of the prediction and c) an analysis of
the predictive capabilities of the RSF model with different sets of input variables.

2 Problem motivation

Prognostics for flexible maintenance of batteries in heavy-duty vehicles is the
topic of this study. To illustrate the potential for flexible maintenance in the case
under study, consider the distribution of failure and censoring times, times when
a vehicles leaves the study without experiencing a battery failure, in Fig. 1 (time
is scaled to avoid revealing sensitive information). The shape of the distribution
of failed vehicles, red curve in the figure, is such that it is impossible to set up
an efficient maintenance point to replace the battery. If the maintenance point
is scheduled, for instance, around 0.5 time units, then majority of the batteries
are replaced before failure, however, the batteries are not used efficiently, in
addition, customers will not be happy with the quality of the batteries if they
are changed too soon and will shift to another battery manufacturer who can
deliver better service. On the other hand, if the maintenance point is scheduled
around 5 time units, majority of the batteries are used till the end of their lives,
but many battery failures are missed. Therefore, the figure motivates the need
for a vehicle specific prognostic model described in the paper. Before the studied
problems are explicitly stated, the vehicle fleet data is introduced which is used
to build the model.
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2.1 Vehicle fleet data

The data source is a vehicle fleet database from an industrial partner, Scania
CV a heavy-duty truck manufacturer in Sweden. Each vehicle has a record,
called snapshot, in the database which tells how the vehicle was used during its
complete lifetime until the snapshot time. The snapshot is comprised of variables
where a subset of the variables correspond to the vehicle configuration, i.e., are
fixed for the complete life of the vehicle. Other variables are related to usage
of the vehicle and will therefore change over time. Information is logged in the
database when a vehicle comes to a workshop and it is noted in the data if the
vehicle has had a battery problem and a time stamp of the event. A snapshot
with no indication on battery problems is called censored, since the future time
of failure is not known. Information present in the database is general purpose,
meaning it is not designed for battery prognostics and there is no specific battery
health indicator in the data. In addition, there are relatively few variables that
are directly related to the battery usage.
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Figure 1: Distribution of failure times for censored, blue curve, and failed vehicles,
red curve.

Main characteristics of the database are:

• 56,163 vehicles from 5 EU markets

• 536 variables stored in each vehicle snapshot

• One single snapshot per vehicle
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• Heterogeneous data, i.e., a mixture of categorical and numerical data

• Histogram variables

• Censoring rate about 80 percent

• Significant missing data rate about 40 percent

The data set includes both categorical and numerical variables where categor-
ical variables have a limited number of possible values. For example, the battery
position variable has three possible values (right, left hand side and rear frame
end). Numerical data is mostly organized in the form of histograms but there
are, so called, accumulative variables such as mileage and age which increase
with time. As an example, one of the histogram data is a voltage histogram that
has ten bins, each showing what fraction of time the battery of the vehicle have
been operating in a particular voltage range. Here, every bin of the histograms
is treated as a separate variable and then the voltage histogram contributes with
10 variables to the study. The censoring rate is another distinctive property.
Only a fraction of the vehicles have problems with batteries while all others
do not, meaning that the failure times are censored. Missing data is also an
essential characteristic of many real life data sources and the main reason in
our case is the fact that variables introduced for one type of vehicle are not
relevant for another type. The missing data rate is about 40 % and it should
be noted that missing values are not uniformly distributed among variables.
Specific variables can have significantly higher missing rate than others. Thus,
systematic handling of missing data is important in the proposed approach.

Another thing to notice is that there are no time series of snapshots for the
vehicles and therefore it is not possible to track degradation of the battery over
time for a given vehicle. All characteristics of the database mentioned above
significantly influence the choice of techniques in the proposed approach.

2.2 Battery lifetime function

A probabilistic framework is used to describe the battery prognostic information
corresponding to the battery health. In model based prognostics a health
indicator is generally measured or modeled, and it is possible then to track the
health indicator during the whole life of a battery. Here, there are no variables
in the database of study which correspond directly to battery health, in addition,
properties of the database such as missing data rate and censoring will add
uncertainties to the predictor. Therefore, a probabilistic model is used since it
is then possible to explicitly represent the inherent uncertainty in the model.

Let a random variable T be the battery failure time, V the snapshot of
variables for a given vehicle taken at time point t0. The main objective is
to estimate the conditional probability function, here referred to as lifetime
prediction function, of the battery defined as

BV(t; t0) = P (T > t+ t0 | T ≥ t0, V). (1)
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The function states the probability that failure time T for a battery of interest is
greater than t+t0 time units given that it has survived t0 time units conditioning
on snapshot data V. Prediction of battery lifetime can be made, for example,
in the workshop when data is retrieved from the vehicle. The lifetime function
BV(t; t0) can be expressed using the established reliability function RV(t) =
P (T ≥ t | V), see (Cox and Oakes, 1984), as

BV(t; t0) =
RV(t+ t0)

RV(t0)
. (2)

2.3 Estimate confidence of a predictor model

As mentioned in Section 2.2, the objective is to estimate the battery lifetime
prediction function (2). To evaluate if an estimate is reliable or not, some measure
of confidence is needed. A common approach is to add a standard deviation
forming confidence bands of the estimator. Fig. 2 shows a prediction with a
corresponding confidence band, a 95% confidence band based on a Gaussian
assumption, i.e., assumption that the estimator is normally distributed. The
figure is based on a synthetic data set to show the advantage of adding confidence
bands. There are 5 classes of the vehicles with different degradation profiles of
the batteries in the synthetic data set. Fig. 2 demonstrates estimation of the
true reliability for one of the classes. Information about the true reliabilities
is not available in the real data set, and, therefore, the synthetic data set is
used to show statistical properties of the estimator. When classes of vehicles
with true degradation profiles are known, it is possible to compute a Kaplan-
Meier estimate, a maximum likelihood estimate of the reliability function (Cox
and Oakes, 1984), shown as a green curve in Fig. 2, and the 95 % confidence
bands with Gaussian assumption using a standard deviation estimated by a
the Greenwood formula (Cox and Oakes, 1984), dashed blue curves in Fig. 2.
A main problem studied in the paper is how to estimate standard errors and
confidence intervals for a battery lifetime function estimator. A main difference
between this case and the basic survival analysis case is that in the battery data
case there are not a set of distinct degradation classes but rather a continuum
of degradation profiles and therefore, the Kaplan-Meier and Greenwood formula
are not directly applicable.

2.4 Summary

Maintenance planning is based on the estimation of the battery lifetime function
together with confidence bands. The main objective is to estimate vehicle
individual battery lifetime functions together with variance estimates of the
predictor. Analysis regarding the predictive capabilities of the RSF models with
different type of variables is carried out and properties of the estimator are
analyzed on both the real data set and synthetic data where the ground truth is
known.
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Figure 2: True reliability function for a vehicle battery, magenta curve, Kaplan-
Meier estimate for the given class of vehicles, green curve, and 95 % confidence
bands with Gaussian assumption where variance estimated using Greenwood
formula, blue dashed curves.

3 Lifetime prediction function model

In the selection of a suitable data-driven method for the studied battery prognos-
tic problem, a few things need to be taken into account. The underlying baseline
hazard functions, i.e., the failure rates, are not known in the data set under
study. In addition, it is not clear how to estimate parameters in the case of a
parametric model such as in a Cox regression model, see (Cox, 1972). This is
the main reason for choosing a non-parametric approach and Random Survival
Forest (RSF) (Ishwaran et al., 2008) is a suitable method that gives the ability
to handle different types of data, direct applicability of the method to survival
analysis, and automatic missing data imputation. The output from the RSF
model is a reliability function which can be directly used to estimate the lifetime
function (2). The basic idea of the RSF model is to group vehicles with similar
battery degradation characteristics and estimate the reliability function for that
particular group of vehicles.

Next, Random Survival Forest is briefly summarized in Section 3.1 and then
the approach is applied to the battery prognostic case in Section 3.2.

3.1 Random survival forests

Classification and regression trees are machine learning techniques that maps/predicts
a feature or variable space X into a space of outcomes Y by means of binary
trees (Breiman et al., 1984) where features and outcome for a particular case
are considered as a pair (xi, yi) . Target values yi from the outcome space could
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be continuous valued in case of regression and discrete in case of a classification
problem. A decision tree is a non-linear estimator

θ̂(xi) = ŷi (3)

where θ̂(x) is built by partitioning the feature space X into disjoint regions Rm

with some fitting model for each region. For a regression problem a fitting model
is a real value that fits data in a region Rm best, for instance the mean, while
for the classification fitting value is, for example the majority class among all
classes in the given region.

The aforementioned partitioning process happens at every node of the tree.
For a basic decision tree the best splitting variable and splitting value is de-
termined in a greedy manner, namely, all variables and every possible splits
are accessed based on a cost function. The split with the lowest value of the
cost function is then selected. Decision trees can be applied to data sets with
different types of variables and another advantage is interpretability as rules
can be built from a single decision tree. A decision tree is a weak classifier and
generally perform well on the training data, however, they usually generalize
poorly on unseen data.

Therefore, ensemble of trees, a Random Forest (RF) model, was introduced
by Breiman (2001). There are different implementations of ensemble of trees
such as (Dietterich, 2000) and (Ho, 1998), however, the basic Breiman model
is described here since the RSF model is an extension of RF. There are two
techniques that are the distinctive features of the RF method, namely, bootstrap
aggregation, also known as bagging, and a step that reduces correlation between
trees in the forest. When number of data samples is small, bootstrap is a
powerful method for estimating statistics. By sampling from the given data
samples with replacement one can construct a significantly large set of new
samples that can be used to estimate target statistics. Bootstrap aggregation is
an ensemble method that combines predictions from different machine learning
models. In the case of trees, a number of sets of bootstrap samples are created
and then a classification or regression tree model is fitted for each of bootstrap
sample. As mentioned, a single tree model is sensitive to unseen data, but by
combing outputs from a set of trees, grown on different bootstrap samples, the
resulting output has reduced variance of a predictor compared to the single tree
model. In regression, the output from a bootstrap aggregation model is the
mean of outputs of all trees

θ̂BAGG(x) =
1

B

B∑
i=1

θ̂i(x) (4)

where θ̂i(x) is a tree model fitted to the ith bootstrap sample, and B is the
number of trees/bootstrap samples. It was suggested by Breiman (Breiman,
2001) that introducing randomness into the procedure of choosing variables
for splitting reduces correlation between trees and increase performance of the
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aggregated model. Therefore, instead of choosing all m available variables for
split at each node, only a fraction p of them is considered. This step also
increases speed of the algorithm as it requires less variables to check at each
split.

A Random Survival Forest (RSF) model is a RF model modified for the
purpose of survival analysis (Ishwaran et al., 2008). Structurally, an RSF model
is similar to a RF except for the following changes. The cost function used for
splitting is so called log-rank test (Ciampi et al., 1986). It is a hypothesis test
which compares survival distributions of samples that are formed by dividing
data available at the splitting node into two samples which will be the part of
the two child nodes. The best split corresponds to a variable with a value under
which two samples have as distinctive degradation profiles as possible. The
log-rank test is non-parametric and designed for censored data, a type of data
encountered in survival analysis. At each terminal node, a node at which splitting
no longer is performed, the Nelson-Aalen estimate of the cumulative hazard rate
H(t) is computed (Cox and Oakes, 1984). The estimated cumulative hazard
rate Ĥ(t) of the whole forest is computed by averaging over tree hazard rates.
Since the cumulative hazard rate is the negative logarithm om the reliability
function R(t) Cox and Oakes (1984), the estimate R̂(t) of the reliability function
is computed as

R̂(t) = e−Ĥ(t). (5)

The estimate R̂(t) of the reliability function is the forest output.

3.2 Battery prediction model

The output from the RSF is an estimate of reliability function as in (5). Then,
an estimate of the lifetime function B̂V(t, t0) can be expressed directly from (2)
as

B̂V(t, t0) =
R̂V(t+ t0)

R̂V(t0)
(6)

4 Confidence estimate for the battery life-
time prognostics function

Assume a bagged predictor (4). Such an estimator is complex, nonlinear, and
deriving an explicit expression for the estimation covariance is infeasible. Then,
one option is to use a bootstrap technique. Since the estimator already uses
a bootstrap technique, a bootstrap strategy for estimating the variance would
require to compute bootstrap of bootstraps which is not computationally feasible,
(Efron, 2014). Thus, an approach that uses the original bootstrap samples
used when building the model also for estimating variance is desired. One
possibility for such an approach is the Infinitesimal Jackknife (IJ) variance
estimate suggested in (Efron et al., 2014) for random forests. The basic approach
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is described in Section 4.1 and then the technique will be extended to RSF and
the battery lifetime function in Section 4.2.

4.1 Theoretical background on IJ variance estimation

To summarize results from (Efron et al., 2014), consider the ith bootstrap
sample Y ∗

i = (y∗i1, y
∗
i2, . . . , y

∗
in) which is sampled from the initial data set Y =

(y1, y2, . . . , yn) where y∗ij represents the number of times a particular data point,
a snapshot of the vehicle from the data set in the given study, is included in the
bootstrap sample. Introduce a resampling vector as

P = (p1, p2, . . . , pn) (7)

where pi denotes probability of selecting yi in the bootstrap sample. This vector
belongs to a set such that

Ln =

{
P : Pi ≥ 0,

n∑
i=1

Pi = 1

}
. (8)

The resampling vector represents the weight each data point yi from the initial
sample Y = (y1, y2, . . . , yn) has in the ith bootstrap sample. For example, the
resampling vector P 0 = ( 1n , . . . ,

1
n ) is associated with an initial sample Y where

each element of the sample has equal weight. The infinitesimal jackknife (IJ)
variance estimate is based on a linearization approach and the variance estimate
V̂IJ of the true variance var

[
θ̂BAGG

]
of the bagged predictor is

V̂IJ =
1

n2

n∑
i=1

U2
i (9)

where n is the size of the sample and Ui are the directional derivatives

Ui = lim
ϵ→0

θ̂BAGG(P
0 + ϵ(δi − P 0))− θ̂BAGG(P

0)

ϵ
,

i = 1, . . . , n (10)

with δi being the ith coordinate vector. For a bagged estimator, it turns out that
there exists an explicit expression for the asymptotic, with respect to number of
bootstrap samples B, expression of the directional derivatives

V̂IJ =

n∑
i=1

Ĉov
2

i (11)

where

Ĉovi =
1

B

B∑
b=1

(y∗bi − 1)(t∗b − t̄).
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Here, the bth tree grown on the bth bootstrap sample is built with the Breiman
procedure and t̄ is the RF output. As stated in Efron et al. (2014), estimator
(11) is biased and an improved unbiased estimator can be derived as

V̂IJ-U = V̂IJ −
n

B2

B∑
b=1

(t∗b − t̄)2 (12)

4.2 IJ variance estimate for the lifetime function

There are two main differences between IJ variance estimate of the RF model
compared to variance estimate of lifetime function (6). First, the output of the
RF model is either a class or regression value, but in the RSF case the output is
a time dependent function, and secondly, the lifetime function is a ratio of the
reliability estimates R̂V(t) as in (2).

For the first difference mentioned above, the reliability function is computed
on a predefined grid of time points, the variance estimate V̂ RSF

IJ (t) of the true
forest variance var

[
θ̂RSF

]
becomes

V̂ RSF
IJ (t) =

n∑
i=1

Ĉov
2

i (t) (13)

where

Ĉovi(t) =
1

B

B∑
b=1

(y∗bi − 1)(R̂V
b (t)− R̂V(t)). (14)

Here, the reliability R̂V
b (t) is the output reliability from the bth tree for a

particular vehicle with data V and R̂V(t) is the output from the forest. These
values correspond to t∗b and t̄ in (12) respectively. An unbiased IJ variance
estimate V̂ RSF

IJ-U in analogy with Efron’s estimate is then

V̂ RSF
IJ-U (t) = V̂ RSF

IJ (t)− n

B2

B∑
b=1

(R̂V
b (t)− R̂V(t))2. (15)

For the second property, the variance estimate for the lifetime function B̂V(t, t0)
from (6), which is a ratio of the outputs of the random survival forest, is estimated
and summarized next.

Theorem 1. Let BV(t, t0) in (2) be the battery lifetime function. Then

B̂V(t, t0) =
R̂V(t+ t0)

R̂V(t0)

is the RSF estimate of BV(t, t0) and a first order IJ variance estimate is given
by

var
[
B̂V(t, t0)

]
≈

(
µX

µY

)2

·
(

var [X]

µ2
X

+
var [Y ]

µ2
Y

− 2
cov [X,Y ]

µXµY

)
(16)
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where the random variable X is the reliability function R̂V(t+ t0), the random
variable Y is the reliability function R̂V(t0), and

µX ≈ R̂V(t+ t0)

µY ≈ R̂V(t0)

var [X] = V̂ RSF
IJ-U (t+ t0)

var [Y ] = V̂ RSF
IJ-U (t0)

cov [X,Y ] = covBias [X,Y ]− Bias.

The random forest directly gives µX , µY above, and the infinitesimal jack-
knife estimator (12) gives var [X] and var [Y ]. A result for the estimation of
cov [X,Y ] is given in Lemma 1.

Proof. From (2), the lifetime function can be expressed as the ratio of the
reliability functions R̂V(t) and R̂V(t+ t0). Assume that R̂V(t+ t0) is a random
variable X and R̂V(t0) is a random variable Y . Then, the variance of the lifetime
function can be estimated using a Taylor series expansion as (16) where instead
of µX and µY the outputs from the forest R̂V(t + t0) and R̂V(t0) are used at
time t + t0 and t0 respectively. The variances var [X] and var [Y ] correspond
to IJ variance estimates V̂ RSF

IJ-U (t) computed at time t+ t0 and t0 respectively.
Covariance cov [X,Y ] = ĉov

[
R̂V(t+ t0), R̂

V(t0)
]

is a covariance between two
random variables which are represented by the values of two points from the
reliability curve R̂V(t) at time t+ t0 and t0.

The missing part and a main contribution is the derivation of cov [X,Y ] =

ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

using an infinitesimal jackknife approach also here. The
result is summarized in the lemma below.

Lemma 1. Let R̂V(t) be an RSF model with B trees grown on the original
sample Y = (y1, y2, . . . , yn) with size n. Assume that the output, R̂V

b (t), from
tree b is independent from one data point y∗ij from the ith bag, then an asymptotic

expression of the infinitesimal jackknife estimate of ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

and
the corresponding bias correction are

cov [X,Y ] = covBias [X,Y ]− Bias (17)

where

covBias [X,Y ] = ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

=

n∑
i=1

Ĉovi(t0)Ĉovi(t + t0) (18)

and

Bias =
n

B2

B∑
i=1

(R̂V
i (t0) − R̂V(t0))(R̂

V
i (t + t0) − R̂V(t + t0)) (19)
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as the sample size n → ∞, the number of trees B → ∞, and n tends to infinity
faster than B.

Proof. According to the definition of the covariance

ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]
=

= E
[(

R̂V(t+ t0)− E
[
R̂V(t+ t0)

])
·
(
R̂V(t0)− E

[
R̂V(t0)

])]
(20)

Now, let us write the estimate from the forest for a particular time point t as
θ̂RSF(P , t) = R̂V(t) which corresponds to one point on the reliability function.
An expansion of nonlinear estimator θ̂RSF(P , t) using directional derivatives
around resampling vector P 0 keeping only a linear term gives

θ̂RSF(P , t) = θ̂RSF(P
0) + (P − P 0) · U + O((P − P 0) · (P − P 0)′) (21)

where U(t) is a column vector of directional derivatives

Ui(t) = lim
ϵ→0

θ̂RSF(P
0 + ϵ(δi − P 0), t)− θ̂RSF(P

0, t)

ϵ
, i = 1, . . . , n (22)

Taking the result in (21) into account, covariance of reliabilities in (20) becomes

ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]
=

= E
[(

θ̂RSF(P , t+ t0)− E
[
θ̂RSF(P , t+ t0)

])
·
(
θ̂RSF(P , t0)− E

[
θ̂RSF(P , t0)

])]
=

= E
[(
(P − P 0)U(t+ t0)

) (
(P − P 0)U(t0)

)]
(23)

It could be seen that a resampling vector for each tree has a rescaled multinominal
distribution

P ∼ Multn(n,P 0)

n

with mean and covariance matrices

(
P 0,

I

n2
− P 0′P 0

n

)
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Covariance expression with the directional derivatives becomes

ĉov
[
R̂V(t+ t0), R̂

V(t0)
]
=

= E

( n∑
i=1

(pi −
1

n
)Ui(t+ t0)

) n∑
j=1

(pj −
1

n
)Uj(t0)

 =

= E

[
n∑

i=1

(
pi −

1

n

)2

Ui(t0)Ui(t+ t0) +

+
∑
i ̸=j

(
pi −

1

n

)(
pj −

1

n

)
Ui(t0)Uj(t+ t0)+

+
∑
i ̸=j

(
pi −

1

n

)(
pj −

1

n

)
Ui(t+ t0)Uj(t0)

 =

=

n∑
i=1

1

n2

(
1− 1

n

)
Ui(t0)Ui(t+ t0)+

+
∑
i ̸=j

(
− 1

n3

)
Ui(t0)Uj(t+ t0)+

+
∑
i̸=j

(
− 1

n3

)
Ui(t+ t0)Uj(t0) =

=
1

n2

n∑
i=1

Ui(t0)Ui(t+ t0)−
1

n3

( n∑
i=1

Ui(t0)

) n∑
j=1

Uj(t+ t0)

 (24)

Now, let us show that the sum of directional derivatives Ui(t) is 0. First, gradient
vector D is defined as

D =

D1

...
Dn

 where Di =
∂

∂pi
θ̂RSF(P , t)

∣∣∣∣
P=P 0

Therefore, according to the definition of directional derivative Ui(t) in (10) could
be expressed as

Ui(t) = (δi − P 0) ·D

where δi has 1 at the ith position and 0 at all others. Rewriting Ui(t) using
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knowledge about the vectors’ structure gives

Ui(t) =

− 1

n
, . . . ,− 1

n︸ ︷︷ ︸
i - 1

, 1− 1

n
,− 1

n
, . . . ,− 1

n

 ·

D1

...
Dn

 =

=
∑
j ̸=i

(
− 1

n

)
· ∂

∂pj
θ̂RSF(P , t)

∣∣∣∣
P=P 0

+

+

(
1− 1

n

)
· ∂

∂pi
θ̂RSF(P , t)

∣∣∣∣
P=P 0

It could be seen that if the sum of Ui(t) is considered then a factor next to
every partial derivative will consist of a sum of one summand

(
1− 1

n

)
and all

others being
(
− 1

n

)
. Therefore, the following could be written

n∑
i=1

Ui(t) =

n∑
i=1

(1− 1

n

)
+

n−1∑
j=1

(
− 1

n

) · ∂

∂pi
θ̂RSF(P )

∣∣∣∣
P=P 0

=

=

n∑
i=1

((
1− 1

n

)
−
(
n− 1

n

))
· ∂

∂pi
θ̂RSF(P )

∣∣∣∣
P=P 0

= 0

Thus by substituting zeroes for the sums of directional derivatives in (24) we get

ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]
=

1

n2

n∑
i=1

Ui(t0)Ui(t+ t0) (25)

Following the same steps as in (Efron et al., 2014) it could be shown that

Ui(t) = nĈovi(t)

which proves (18). Bias from (19) of ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]

estimate can
be found as follows

Bias = E
[
ĉovBias

[
R̂V(t+ t0), R̂

V(t0)
]]

− cov
[
R̂V(t+ t0), R̂

V(t0)
]

(26)

Here, cov
[
R̂V(t+ t0), R̂

V(t0)
]

is a covariance between reliabilities when number
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of trees in the forest B → ∞. One can rewrite (26) as

Bias =
n∑

j=1

(
E
[
Ĉovi(t0)Ĉovi(t+ t0)

]
− Covi(t0)Covi(t+ t0)

)
=

=

n∑
j=1

(
E
[
Ĉovi(t0)Ĉovi(t+ t0)

]
− E

[
Ĉovi(t0)

]
E
[
Ĉovi(t+ t0)

])
=

=

n∑
j=1

cov
[
Ĉovi(t0); Ĉovi(t+ t0)

]
(27)

Taking into account expression for Ĉovi(t0) in (14) bias becomes

Bias =
n∑

j=1

cov

[
1

B

B∑
b=1

(y∗ij − 1)(R̂V
b (t0)− R̂V(t0));

1

B

B∑
b=1

(y∗bj − 1)(R̂V
b (t+ t0)− R̂V(t+ t0))

]
=

=
1

B2

n∑
j=1

B∑
i=1

B∑
b=1

(
E
[
(y∗bj − 1)(y∗ij − 1)(R̂V

i (t0)− R̂V(t0))(R̂
V
b (t+ t0)− R̂V(t+ t0))

]
−

−E
[
(y∗ij − 1)(R̂V

i (t0)− R̂V(t0))
]
· E
[
(y∗bj − 1)(R̂V

b (t+ t0)− R̂V(t+ t0))
])
(28)

Assuming that original sample Y is large enough it becomes possible to sup-
pose that R̂V

i (t) and y∗ij are independent. This make simplifications in bias
computations.

Bias =
1

B2

n∑
j=1

B∑
i=1

B∑
b=1

(
E
[
(y∗bj − 1)(y∗ij − 1)

]
·

E
[
(R̂V

i (t0)− R̂V(t0))(R̂
V
b (t+ t0)− R̂V(t+ t0))

]
−

− E
[
(y∗ij − 1)

]
E
[
(R̂V

i (t0)− R̂V(t0))
]
·

E
[
(y∗bj − 1)

]
E
[
(R̂V

b (t+ t0)− R̂V(t+ t0))
])

(29)
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Random variable y∗ij has the following properties

E
[
(y∗ij − 1)(y∗bj − 1)

]
= cov

[
y∗ij ; y

∗
bj

]
=

1

n
→ 0,

n → ∞, b ̸= j

E
[
y∗ij − 1

]
= E

[
y∗bj − 1

]
= 0

E
[
(y∗ij − 1)2

]
= var

[
y∗ij
]
= 1− 1

n
→ 1,

n → ∞, b = j

Therefore, if it is assumed that size of sample n → ∞ and n tends to infinity
faster than B, bias becomes

Bias =
1

B2

n∑
j=1

B∑
i=1

(
E
[
(y∗ij − 1)2

]
·

E
[
(R̂V

i (t0)− R̂V(t0))(R̂
V
i (t+ t0)− R̂V(t+ t0))

])
=

=
n

B2

B∑
i=1

(R̂V
i (t0)− R̂V(t0))(R̂

V
i (t+ t0)− R̂V(t+ t0)) (30)

The expression in (30) is similar to the bias correction for RF model found in
(Efron et al., 2014) and presented in (12).

4.3 Analysis of the IJ covariance estimate

Theorem 1 summarizes the expressions for the covariance estimate of the life-
time function. This section will explore and highlight some properties of the
variance estimate. First, consequences of the bias correction is analyzed and the
importance of the covariance estimate ĉov

[
R̂V(t+ t0), R̂

V(t0)
]

is demonstrated.
Then, model selection based on confidence bands is discussed.

When ĉov
[
R̂V(t+ t0), R̂

V(t0)
]

and bias are estimated, it is possible to plot

confidence bands for an estimate of the lifetime function BV(t, t0). Fig. 3 shows
a 95% confidence band for 4 vehicles from the validation set with a Gaussian
assumption for the lifetime function estimate. The RSF model used for the figure
had 1000 trees. To motivate the need in estimating the ĉov

[
R̂V(t+ t0), R̂

V(t0)
]

and the estimator bias, three types of confidence bands are plotted. Blue
dashed curves are 95% confidence bands computed using the variance from
(16) where biased IJ variance estimates are used, i.e., values var

[
R̂V(t+ t0)

]
,

var
[
R̂V(t0)

]
, and cov

[
R̂V(t+ t0), R̂

V(t0)
]

are biased. It can be seen that when
biased estimates are used in (16), the confidence bands become conservative.
The black curves are 95% confidence bands computed using the variance from
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(16) with the unbiased IJ variance estimates var
[
R̂V(t+ t0)

]
and var

[
R̂V(t0)

]
of reliabilities and assumption that values of R̂V(t) are independent at time
point t and t + t0, i.e., ĉov

[
R̂V(t+ t0), R̂

V(t0)
]
= 0. The red curves are 95%

confidence bands computed using variance from (16) with the unbiased IJ
variance estimates var

[
R̂V(t+ t0)

]
and var

[
R̂V(t0)

]
of reliabilities and esti-

mated cov
[
R̂V(t+ t0), R̂

V(t0)
]
. Fig. 3 shows that for three vehicles out of four

black and red curves are close to each other, however, for a vehicle in top
right corner they differ significantly. This indicates the importance in finding
ĉov

[
R̂V(t+ t0), R̂

V(t0)
]

and its bias.
Confidence bands can be used for the model selection. For example, an

estimate for lifetime functions together with confidence bands for two RSF
models, one with 100 trees and one with 1000 trees, are presented in Fig. 4.
It is not surprising that more trees improves the variance of the predictor.
However, let us consider model selection based on the available error metric.
One of the metrics measuring error available in the RSF framework is the error
rate (Ishwaran et al., 2008). It relies on the Concordance index which counts
prediction as erroneous when for two randomly selected vehicles the shorter
survival time has worse predicted value of survival function. The error rate curve
for the given example starts to converge after about 100 trees, and then it is
tempting to stop increasing the number of trees in the RSF model. However, it
is evident from Fig. 4 that the quality of the prediction in the case of 1000 trees
is significantly better than in the case of 100 trees, because confidence bands
are narrower and estimates of the lifetime functions also differ. The experiment
shows that adding confidence bands to the predictor helps to find better model
than the one created by relying only on the error rate values.

It is evident from the results above that the unbiased covariance estimates
give less conservative variance estimate of the lifetime function and, in addition,
confidence bands can be used as a complimentary tool, for example, to the error
rate for model selection.

5 Synthetic data set study

A main problem with the vehicle database is that actual battery degradation
profiles are not known and therefore it is hard to validate lifetime estimates and
confidence bands in, for example, Fig. 3. To answer the question how trustworthy
the results received in Section 4 are, a synthetic data set is considered where
the underlying degradation profiles are known, controllable, and with similar
properties as the vehicle data set.

The generated synthetic data has 6 variables and 1000 vehicles. One variable
is important for prognosis as it controls the degradation of the battery. The
other five variables are noise in the sense that they do not influence the battery
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Figure 3: IJ variance estimates of lifetime function for 4 vehicles from validation
set. Green curve is an estimate of lifetime function BV(t, t0). Blue curves
are 95% confidence bands computed using variance from (16) with biased IJ
variance estimates of covariance of reliabilities. Black curves are 95% confidence
bands computed using variance from (16) with unbiased IJ variance estimates of
covariance of reliabilities and assumption that values of R̂V(t) are independent
at time point t and t + t0. Red curves are 95% confidence bands computed
using variance from (16) with unbiased IJ variance estimates of covariance of
reliabilities.

degradation. The battery degradation is controlled by varying the hazard rate
(Cox and Oakes, 1984), i.e., the probability of instantaneous failure at time t,
according to the one important variable. Expected lifetime of batteries with
the selected nominal hazard rate is set to 10 years and it is assumed that the
important variable v1 has an impact on the battery hazard rate h as

h =



1 · h0, if v1 = 1

1.5 · h0, if v1 = 2

2.5 · h0, if v1 = 3

2.9 · h0, if v1 = 4

3.4 · h0, if v1 = 5

(31)

where h0 = 1
10 is the nominal hazard rate. Censoring is added to the database

at a level comparable with the one in the real database. Vehicles are uniformly
distributed among the five classes, meaning, that each class has about 200
vehicles.
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Figure 4: Estimate of the lifetime function BV(t, t0), green curve corresponds to
the model with 100 trees and red to the model with 1000 trees, with the 95%
confidence bands, blue curves correspond to the model with 100 trees and black
curves to the model with 1000 trees.

Here, in contrast to the vehicle data set, the class of each vehicle is known
and then it is possible to compute the Kaplan-Meier estimate, R(t), of the
reliability function, which is the maximum likelihood estimator, for every class
together with confidence bands computed using the standard Greenwood formula.
This corresponds to the estimates based on an ideal vehicle classifier, i.e.,
that perfectly separates vehicles into the 5 defined classes. Aforementioned
estimates for the third class of the vehicles are presented in Fig. 2. Now, let us
compare them to estimates from the RSF model. There are two main parameters
when building the model, minimal node size and number of trees in the forest.
The parameters are selected or changed while constructing the forest and all
other options are set to their default (Ishwaran and Kogalur, 2007). Minimal
node size was selected to be 200 to allow a fair comparison to the maximum
likelihood estimates. Several options are tried for number of trees B, namely,
B ∈ {100, 500, 1000, 2000, 5000, 10000}.

First, let us make prediction for one of the vehicles in the validation set
belonging to the third class. Fig. 5 shows the predictions from the forest of 1000
trees together with maximum-likelihood estimates. The magenta curve is the
true reliability, green and blue curves are the Kaplan-Meier estimate and 95%
confidence bands respectively, and the RSF reliability and 95% confidence bands
based on IJ variance estimate are black and red curves respectively. It can be
seen from the Fig 5 that the confidence bands based on IJ variance estimate is
close to the the ones given by the maximum likelihood estimate, Greenwood
formula. To show how variance estimate varies with different number of trees,
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variance estimate is computed for a vehicle at time point t = 0.2 and t = 0.8 for
the various numbers of the trees B. The result is presented in Fig. 6 showing that
the variance estimates, red and blue curves, converge to some non-zero positive.
Green and black lines are variances received using Greenwood formula, i.e.,
computed under an ideal classifier assumption. As it can be seen, the variance
estimate at time point t = 0.2, blue curve, is very close to the Greenwood
estimate. Variance estimate at time point t = 0.8, red curve, is biased with
respect to the Greenwood estimate which is suspected due to censoring.

It should be noticed that when the number of the trees in the forest is small,
around 100 trees, the IJ variance and bias estimates have significant variances
which make it possible that the IJ variance estimate can be negative due to
the additive bias and small value of variance of the predictor. For example,
when computing the IJ variance estimate at time point t = 0.8 for the case of
B = 100 trees, it is negative for a given model realization. A question may
arise what to do in this situation. For now, absolute value of the variance is
taken as an estimate of the true variance. It is possible to use some other value
in this case, for instance variance not defined, to show that we are uncertain
about the variance estimate. However, it is mentioned above that the negative
IJ variance estimate can happen not only due to the small number of trees in
the forest, but also when the true variance of a predictor is small. Therefore,
taking the absolute value of the variance estimate could give an idea about the
true variance and several experiments with the RSF model corroborates this.

As a conclusion, it is illustrated that IJ variance estimate is a good tool in
finding the true variance of a predictor and variance estimate gives more relevant
information about the model than the error rate.

6 Performance evaluation with several met-
rics

Every prognostic model should be evaluated such that their predictive perfor-
mance is known. As mentioned, this is problematic since the output from the
forest model is a survival or reliability function and there is no record of their
true values in the data set. In a pure classification or regression problem there
are established metrics to evaluate performance, however, this is not the case
for survival analysis. A metric to use in the case of the RSF framework is an
error rate based on the concordance index (Ishwaran et al., 2008). A question is
if this error rate is descriptive enough. For example, the authors in (Moradian
et al., 2016) conclude that it is possible that the error rate is not an appropriate
performance measure. The example given below supports this observation and
shows that with similar values of error rates models give significantly different
survival curves.

The example relies on simulated data similar to the one used in Section 5.
Degradation of the battery is controlled by the hazard rate h0 which corresponds
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Figure 5: Reliability with confidence bands. Theoretical values vs estimates from
the RSF. Magenta curve is the true reliability curve, green and blue curves are
the Kaplan-Meier estimate and 95% confidence bands with Gaussian assumption
computed using Greenwood formula, black and red curves are the RSF estimate
of the reliability and 95% confidence bands with Gaussian assumption estimated
using IJ technique.

to 10 years mean battery life. As in the previous example it is assumed that
there is one important variable v1 which influences hazard rate h0 such that
three classes of vehicles exist with different degradation profiles corresponding
to the new hazard rate h

h =


1 · h0, if v1 = 1

2 · h0, if v1 = 2

3 · h0, if v1 = 3

(32)

Two models with 2 and 100 noisy variables are considered where the censoring
rate is about 80% which is similar to the value from the example in Section 5.
RSF models are trained on 1000 vehicles with minimal node size chosen to be
200 and number of trees in the forest 1000. Fig. 7 shows the comparison of the
predicted survival curves from RSF model, dashed blue curves, with theoretical
values, red curves, for three randomly chosen vehicles that were not included
in the training sets. It is evident from the left plot in Fig. 7 that, as expected,
predictions for the model with only 2 noisy variables are significantly better
than for the model with 100 noisy variables, right plot in Fig. 7. However, values
of the error rate for the both models are 0.4097 and 0.4270 for two models
respectively. The error rates are close for both models, therefore, one would
expect that forest outputs would be similar as well, but this is clearly not the
case. Thus, new evaluation techniques are needed to be able to say more about
predictive performance of the model.



6. Performance evaluation with several metrics 109

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5
#10 -3

IJ
va

ri
an

ce

number of trees
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from the RSF. Green and black lines are the true variances, the Greenwood
estimates, at time point t = 0.2 and t = 0.8 respectively. Red and blue curves
are the IJ variance estimates at time point t = 0.2 and t = 0.8 respectively for
different number of trees B.
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Figure 7: RSF predictions for two models with different number of noisy variables.
Red curves are the theoretical reliabilities for three classes and blue dashed
curves are the outputs from the RSF model.

6.1 Performance analysis of predictive model for bat-
tery data

A vehicle used the same way should never leave its class of similar vehicles,
however, with year or mileage variables present in the database, the model might
be dominated by age effects which is not the intention and could possibly mask
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the effects of different vehicle usage. The problem of using accumulative variables
like age or mileage is addressed by the authors in (Frisk and Krysander, 2015).
It was suggested that instead of using accumulative variables directly it is better
to preprocess them first. For example, there are two accumulative variables in
the current data set, namely, age and mileage. First, a new variable mileage per
day is created and, then, two models are considered, namely, a model based on
all variables except the accumulative ones and another model where the variable
mileage per day has been added.
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Figure 8: Histograms of R̂V(tsurv) for the failed vehicles, red bins, and censored
vehicles, blue bins. Data set without mileage per day.

One way to evaluate performance of a predictor is to look at values of
R̂V(tsurv) survival/reliability curves at the time of either failure or censoring,
and see how predictions of the two classes of vehicles differ. First, the data set
is split into two parts, 2/3 of 30,000 vehicles are used for training and 1/3 for
validation. Only 30,000 vehicles are randomly chosen out of 56,163 for training
due to the limitations of computational resources. Then, the RSF model is grown
with 1,000 trees in the forest with minimal node size of 200 on the training set
while validation set is used for performance evaluation. Fig. 8 and Fig. 9 show
the histograms of reliabilities for failed, red color, and censored vehicles, blue
color, for the two models with and without the variable mileage per day. It is
seen that the histograms of the two classes of vehicles are different on the one
hand, however, have a big overlap on the other, therefore not much can be said
about the performance of the predictor.

Another approach for performance evaluation is to plot lifetime functions
B̂V(t; t0) where t0 = tsurv and observe how they differ between the two classes of
vehicles. Result of prediction for 100 randomly selected vehicles from failed and
censored classes is depicted in Fig. 10 and Fig. 11 where red curves correspond
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Figure 9: Histograms of R̂V(tsurv) for the failed vehicles, red bins, and censored
vehicles, blue bins. Mileage per day variable is included.

to the failed class and blue curves to the censored. What can be seen in the
figures is that on average predictions for both classes of vehicles are different.
However, overlap between two classes is big, therefore, it would be good to find
more informative measure of performance. Instead of considering predictions
of reliability and lifetime curves at time tsurv when vehicle is either censored or
failed, let us consider the cross section of the respective curves at some fixed
time point t which is similar for all vehicles.

Results of reliability histograms after 3 time units for the two classes of
vehicles and two models are shown in Fig. 12 and Fig. 13. This particular time
point was selected to allow the batteries to be in operation for some time, so
their different usage patterns influence the degradation and it is expected that
the predictions for the two classes should differ. It is seen that the difference
between the histograms of the two classes is more clear than in Fig. 8 and Fig. 9.
There is still an overlap between the two histograms and one would expect them
to be completely separated in the ideal case, however, it is possible that some
of the censored vehicles are really close to failure, but leave the study before
failure and the problem of the battery is not recorded. Therefore, left tails of the
censored histograms with small values of reliabilities could be not a mistake of
the algorithm, but a correct indication that a vehicle belongs to the failed class.
On the other hand, group of vehicles from the failed class with large values of
reliabilities, right tails of failed histograms, experience problem with battery
due to the reasons which are not present in the current data set. Thus, it is
impossible for the algorithm to see that the vehicle has potential problems with
a battery. One other thing to notice is that for the model that includes mileage
per day variable there is a peak in the failed histogram coinciding with the peak
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Figure 10: Lifetime functions B̂V(t; t0) computed for 100 randomly selected
vehicles from censored and failed classes on validation set. Data set without
mileage per day variable.

of censored histogram, see Fig. 13. For now, it is unclear what it represents,
however the results are affected by including or excluding the variable.

Histograms of the lifetime functions B̂V(t; t0) for two models at time point
t = tsurv + 1 time unit and t0 = tsurv are presented in Fig. 14 and Fig. 15. Our
industrial partner Scania CV is, say, interested in predictions up to 1 time unit
to be used in their maintenance planner, therefore, only a time point within
1 time unit in the future is selected. Separation between histograms for failed
and censored classes is not so distinctive as in the case of the reliability curves,
nevertheless, similar behavior is seen for the model with the mileage per day
variable where the peak of the histogram of the failed batteries coincides with
the peak of the censored one, see Fig. 15. In addition, the histogram of the
failed batteries for the model with mileage per day are skewed more to the right
than for the model without the variable.

6.2 Lifetime prognosis for vehicles with similar mileage

It is natural to do maintenance based on age and mileage where batteries which
reached the predefined period of their life or vehicle operated predefined amount
of miles considered as the ones to be replaced. To demonstrate that the RSF
framework partition vehicles into classes based on usage profiles and not simply
on age and mileage, vehicles with similar mileage are selected. The base value
of mileage m is selected and the interval plus-minus 5% from the base value
m is considered. From this set of vehicles with similar mileage, vehicles with
similar age is selected. There are 84 vehicles satisfying the stated requirement
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Table 1: Values of variables selected among 50 most important given by VIMP
for vehicle V1 with best prognosis, V2 with the worst prognosis for the model
excluding mileage per day and vehicle V3 with the worst prognosis for the model
including mileage per day

Variables V1 V2 V3

Country 0 1 2
Bed type 0 2 0

Ambient temperature bin 3 0 1.26 0.58
Atmospheric pressure bin 7 14.23 1 4.33
Atmospheric pressure bin 8 1 4.1 3.32

Battery SOC vs Poweroff 2d bin 17 40.84 18.43 1
Battery voltage bin 6 0 1.46 82.22
Battery voltage bin 7 0 1.88 0.37

Fuel consumption vs speed 2d bin 4 3.06 1.7 1
Fuel consumption vs speed 2d bin 5 4.2 1.82 1
Fuel consumption vs speed 2d bin 6 4.1 1.50 1
Fuel consumption vs speed 2d bin 7 4.41 1.46 1
Fuel consumption vs speed 2d bin 8 3.31 1.23 1
Fuel consumption vs speed 2d bin 15 1 5.79 15.17

Vehicle speed bin 0 4.14 4.07 1
Vehicle speed bin 1 1.96 1.05 1
Vehicle speed bin 2 3.05 1 1.76
Vehicle speed bin 6 1 6.45 8.06
Vehicle speed bin 7 1 12.15 38.75

Engine Load 2d bin 30 7.91 1 1.67
Engine Load 2d bin 31 15.8 1.4 1
Engine Load 2d bin 32 76 4 1
Engine Load 2d bin 41 4.71 6.58 1
Engine Load 2d bin 42 12.25 1 1.85
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Figure 11: Lifetime functions B̂V(t; t0) computed for 100 randomly selected
vehicles from censored and failed classes on validation set. Mileage per day
variable is included.

on mileage in the validation set. The lifetime function estimates B̂V(t; t0) with
t0 = tsurv for the selected vehicles are presented in Fig. 16 and Fig. 17 showing
the prediction for model with and without mileage per day variable respectively.
First notice that the difference between the best and the worst predictions is
significant which shows that how vehicles are used is important. Next, three
vehicles V1, V2 and V3 are selected from the set of the vehicles with similar
mileage. The vehicle V1 corresponds the best prognosis and is the same vehicle
for the both models, when vehicles V2 and V3 with the worst prognosis are
different for the two models. Age of batteries for the vehicles V1, V2 and V3 are
1.3, 0.83 and 0.98 time units respectively where the vehicle V1 with the best
prognosis lived the longest among three vehicles, therefore, vehicle usage pattern
plays a significant role.

Table 1 shows selected variables for three vehicles V1, V2 and V3 among 50
most important variables for the prediction obtained using VIMP (Ishwaran
et al., 2008), Variable IMPortance, with the most important variables at the
top. Only variables that have different values for three vehicles are left among
50 most important. VIMP is the framework integrated in the RSF method
and assigns importance value for every variable. First, vehicles operated in the
different countries that can explain the difference in the degradation profiles of
the batteries as climate, quality of roads can vary. Bin 3 of the ambient tem-
perature histogram appears important for the prediction. This bin corresponds
to operation of a vehicle under the low temperatures. Vehicles V2 and V3 have
operated more time under the low temperatures which corroborates the fact that
the vehicles have worse degradation prediction than the vehicle V1. Two bins of
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Figure 12: Histograms of R̂V(t) for the failed vehicles, red bins, and censored
vehicles, blue bins, at time point t = 3 time units. Data set without mileage per
day variable.

the atmospheric pressure histogram are important, namely, bins 7 and 8. Vehicle
V1 has much bigger value in the 7th bin compared to the values for the vehicles
V2 and V3, at the same time has much lower value in the 8th bin. Two bins
from the battery voltage histogram is also important. They correspond to the
operation of the battery under high voltage. It can be seen that vehicles with
worse prediction operated more under high voltage which can be considered as
counterintuitive at first. However, it is possible that the generator that charges
the battery has malfunctions that lead to overcharging and faster degradation
of the battery. Overall, there is a significant amount of the variables in Table 1
that indicate different usage of the vehicles. This fact gives positive signs for
using the RSF method as a predictive tool.

It can also be seen that predictions for two models are different, namely,
lifetime function estimates for the model with mileage per day variable are
comprised of two types of curves. One is convex and another is concave with a
joint point for both curves between 1 and 2 time units. Taking into account that
batteries by themselves are of age 1 to 2 time units, the joint point for lifetime
function estimates lie near the peak of distribution for the failed vehicles from
Fig. 1.

Now, consider the lifetime function estimates which correspond to the best,
worst and intermediate prediction for two models. They can be found in Fig. 18
and Fig. 19. The lifetime function estimates correspond to the solid lines in the
figures, and dashed curves are 95% confidence bands with Gaussian assumption
and IJ variance estimate from Section 4. It can be seen that confidence bands for
the model with mileage per day variable are wider than for the model without
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Figure 13: Histograms of R̂V(t) for the failed vehicles, red bins, and censored
vehicles, blue bins, at time point t = 3 time units. Mileage per day variable is
included.

which is a surprising result. Intuitively the more variables the better predictions,
however, the result shows opposite. It means that relying on usage profile rather
than on time related variables would give more accurate predictor for the given
data. More studies should be carried out to see if incorporation of time related
variables can give better performance.

As a conclusion, RSF model applied to the given data set gives on average
different predictions for failed and censored class of vehicles, results show that
vehicle usage profile is important for predicting the degradation of a battery
and that there are indication not to include accumulative variables into the
training RSF model as it increases uncertainty of the predictor. It is impossible
to determine and validate a failure time for a battery with the given data set,
because only one snapshot of data is available for every vehicle. However, it will
be done in the future when data set is augmented with several snapshots per
vehicle.

7 Conclusion

It is shown in the paper that the RSF model can be applied to the static data,
i.e., one snapshot only per vehicle, in the data set. It is different from the data
sets being used in (Daigle and Goebel, 2011; Medjaher et al., 2012; Zhao et al.,
2015), and therefore a new approach is needed. The RSF model output is the
estimate of the reliability function which can be used to compute the lifetime
function estimate (2). The confidence bands of the lifetime function estimate (2)
are computed using the Infinitesimal Jackknife (IJ) variance estimate approach



7. Conclusion 117

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

pr
ob

ab
ili

ty

B̂V(t; tsurv)

Figure 14: Histograms of lifetime function estimates B̂V(t; tsurv) for the failed
vehicles, red bins, and censored vehicles, blue bins, at t = 1 time unit point in
future from tsurv. Data set without mileage per day variable.

and its properties are analyzed. First, confidence bands can be used for the
model selection, for example, it is shown that the prediction for the forest model
with 1000 trees is significantly better than for the model with 100 trees in terms
of confidence bands, however, in terms of the standard error rate, the two models
are similar. Second, IJ variance estimate starts to converge for forest with 1000
trees or larger which means that the variance estimate of the predictor with
1000 trees is appropriate. Models with and without accumulative variables give
different results and currently it seems that excluding accumulative variables
gives better results based on the fact that the confidence bands become narrower.
Performance evaluation is done and it has been shown that prediction for a
censored and failed vehicle is different. In general, the battery lifetime function
can be used to schedule and optimize the cost of the battery replacement which
leads to more flexible maintenance.
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Figure 15: Histograms of lifetime function estimates B̂V(t; tsurv) for the failed
vehicles, red bins, and censored vehicles, blue bins, at t = 1 time unit point in
future from tsurv. Mileage per day variable is included.
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Figure 16: Lifetime functions estimates B̂V(t; t0) for 84 vehicles which mileage
values are in plus-minus 5% interval around base mileage value m and age of
batteries are within 1 to 2 time unit interval. Model does not contain mileage
per day variable.
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Figure 17: Lifetime functions estimates B̂V(t; t0) for 84 vehicles which mileage
values are in plus-minus 5% interval around base mileage value m and age of
batteries are within 1 to 2 time unit interval. Model contains mileage per day
variable.
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Figure 18: Lifetime function estimates B̂V(t; t0) for the best, worst and interme-
diate predictions from Fig. 16, solid lines, together with 95% confidence bands
with Gaussian assumption and IJ variance estimate, dashed curves. Without
mileage per day model.
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Figure 19: Lifetime function estimates B̂V(t; t0) for the best, worst and inter-
mediate predictions from Fig. 17, solid lines, together with 95% confidence
bands with Gaussian assumption and IJ variance estimate, dashed curves. With
mileage per day model.
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Abstract

An interest for predictive maintenance of different systems raises due
to the possibility to reduce costs for maintenance and to eliminate
unexpected failures. In this work lead-acid battery failure prognostics
for heavy-duty trucks is considered with a predictive model being a
multilayer perceptron (MLP). Data available for the study contains
information about how vehicles are operated from the delivery date
to the client till the date when it comes to the workshop. The model
estimates the reliability function for a vehicle with data V that comes
to a workshop. First, this work demonstrates how heterogenous data
is handled, then the architecture of the MLP model is discussed. A
two stage predictive model, i.e. a combination of the classification and
survival stages, is suggested for estimating the reliability function of
a particular vehicle. A problem of imbalance in the given data set is
identified and different modifications to the neural network architecture
are discussed. Finally, the result of the prediction from the MLP model
is compared with prediction from the Random Survival Forest approach.
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1 Introduction

The amount of information obtained from various systems increases every year.
Data is logged in during the lifetime and may include operational characteristics
useful for predictive maintenance which allows to anticipate a probable problem
in a system and act in advance and thus avoiding failures and unplanned stops.
A prognostic model development is a key part of the predictive maintenance
approach as the model is used to predict the failure time.

Lead-acid starter batteries is an important part of the electrical power system
of a heavy-duty truck. The primary aim of the battery is to power the starter
motor to get the diesel engine running, however, it can be used for some auxiliary
purposes such as cabin heating and powering kitchen equipment. Battery failure
happens due to the its degradation caused by, for example sulfation, corrosion
or internal short. The various deviations from normal operation of the battery
may lead to the aforementioned battery problems and it is difficult to estimate,
for example a technician at a workshop, the state of the battery health without
proper battery diagnostics which is sometimes not possible to carry out due to
time restrictions or cost of the operation. Therefore, having a predictive system,
that can anticipate the failures in the battery, is a useful tool for techinicians
and truck manufactures.

Different approaches can be used for lifetime prognostics of systems compo-
nents. Two main directions are model-based and data-driven methods where one
of the directions is chosen based on the data and type of measurements which are
available to an engineer. Cornerstones of the model based methods are physical
laws and equations that describe degradation of the components. Data sets, that
are used in model based methods, contain time series of measurements from the
system or component directly related to its health. Examples of model-based
prognostics are given in (Daigle and Goebel, 2011; Hanachi et al., 2015; Saha
and Goebel, 2009). It is sometimes hard to develop an accurate degradation
models for a particular system, and then data-driven methods can be an alter-
native if reliability data is available. Authors in (Frisk et al., 2014) and (Prytz
et al., 2015) propose data-driven non-parametric methods for predicting failures
in components of heavy-duty trucks. Another example of a non-parametric
data-driven models is an artificial neural network (Cheng and Titerington, 1994).

The aim of this work is to apply multilayer perceptron to the problem of
battery failure prognostics. Different models are considered and compared giving
an idea how neural networks can be useful within the prognostics domain.

2 Problem formulation

This work is done in cooperation with an industrial parter Scania CV and they
would like to design a flexible maintenance planner which takes into account the
state of the vehicle’s components. A candidate model in such a maintenance
planner is the conditional probability function BV(t; t0) defined as
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BV(t; t0) = P (T > t+ t0 | T ≥ t0, V) (1)

where T is a random variable of battery failure, t0 is the time when a vehicle
comes to the workshop and V is the data retrieved from the vehicles at the
workshop.

The function BV(t; t0) is the probability of the survival for a battery given
data V from the vehicle t time units into the future from the time point t0 when
the vehicle visits a workshop. The function (1) is used as a target predictive
function in the previous works by Frisk et al. (2014) and Frisk and Krysander
(2015) where a Random Survival Forest method is incorporated to estimate
BV(t; t0). The conditional probability function can be expressed in terms of the
reliability or survivor functions ST (t), (Cox and Oakes, 1984), as

BV(t; t0) =
SV
T (t+ t0)

SV
T (t0)

(2)

where reliability function SV
T (t) = P (T ≥ t | V) is defined as probability of

the battery to survive more than t time units. Although the final aim is to
estimate the conditional probability function BV(t; t0), this work focuses on the
estimation of the reliability function SV

T (t) with the help of multilayer perceptron
(MLP).

3 Data description

A vehicle fleet database is provided by an industrial partner Scania CV and
includes variables that describe the specification of each vehicle and how it is
operated during its lifetime till the date when a workshop is visited. A record
in the database logged from a vehicle at the workshop is called a snapshot.
Each snapshot contains static and varying variables that correspond to the
variables which do not change and vary with time respectively. For example,
static data includes variables such as an engine type, battery position, if there
is kitchen equipment or not in the truck etc. The aforementioned variables are
discrete valued, for instance, the battery position variable can take three possible
values such as left, right mounting positions and rear frame position. Non-static
variables are numeric valued and mostly represent data in the form of histograms.
For example, there exists a temperature histogram with 10 bins in the data set
which shows what percentage of time a vehicle has been operated in a particular
temperature range and that corresponds to one bin of the histogram.

There is a variable in the data set that indicates if a vehicle has had problems
with a battery. If a vehicle leaves the study without experiencing a battery
problem, it is called censored. More than 90 per cent of the vehicles are censored
in the data set, meaning that a battery failed only for a small fraction of them.

Missing data is an essential attribute of many real life data sources and the
missing data rate for the data set under study is between 30 and 40 percent
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which means that some variables has no record in a specific snapshot. A main
reason for missing data in the data set is due to the fact that variables introduced
for one type of vehicles are no longer present for another type of a vehicle.

Main characteristics of the data set are outlined bellow:

• 33603 vehicles from 5 EU markets

• 284 variables stored for each vehicle snapshot

• A single snapshot per vehicle

• Heterogeneous data, i.e., it is a mixture of categorical and numerical data

• Availability of histogram variables

• Censoring rate more than 90 percent

• Significant missing rate

• No measurements directely related to battery health

It should be noticed that there are no time series for a vehicle and it means
that it is impossible to track the health of the battery during the vehicle’s
lifetime. Therefore, what is needed from the model is to find groups of vehicles
based on similar usage profiles and, then use the group of vehicles to estimate
the reliability function SV

T (t).

4 MLP models

Neural network with several hidden layers and hidden nodes is called a multilayer
perceptron (MLP). All models analyzed in the paper, as well as their configura-
tions, are presented in this section. There are three different models presented in
the paper: 1) a single survival MLP, 2) a two-staged classification-survival MLP
and 3) categorical/numerical data MLP. The network models are implemented
in Python with the help of the Keras library (Chollet, 2015). Before going to
the description of the neural network architectures, adaptation of the data set
to the MLP model is presented.

4.1 Arranging data for MLP model

This subsection demonstrates how variables from the data set are preprocessed
before submission into the neural network. Discrete or categorical data is
transformed into one-hot vectors. For example, if possible values of variable v1
are {A,B,C}, then new values to be submitted into the MLP model look like

A → (0 0 1)
B → (0 1 0)
C → (1 0 0).

(3)
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Numerical valued variables are scaled in such way that they take values within
interval [0, 1]. Every histogram bin is treated as one variable. Therefore, if a
histogram consists of 10 bins, then the histogram contributes with 10 variables
to the data set.

The reliability function SV
T (t) is estimated by the output layer in an MLP

model. A procedure similar to (Chi et al., 2007) is used to assign a reliability
function to a particular vehicle. The prediction for lifetime of the vehicle’s
battery is done for 5 time units with a time step of 0.25 time unit. This means
that the output layer of an MLP model should have 20 nodes, each one showing
probability of battery to survive another 0.25 time units. For the failed batteries
the following approach is used. If battery lived 3 time units, all 12 first nodes in
the output layer are 1s and 0s afterwards. The result will look like

3 time units → (1 1 . . . 1︸ ︷︷ ︸
12 nodes

0 0 . . . 0︸ ︷︷ ︸
rest of the nodes

). (4)

In the case of a censored vehicle/battery the procedure is a bit different.
Nodes in the output layer that correspond to the time when a vehicle is under
study are assigned with 1 values. Remaining part of the reliability function
is estimated with a Kaplan-Meier estimate, see (Cox and Oakes, 1984), where
two approaches are applied. First, only vehicles after censoring time are used
in the Kaplan-Meier estimator. The second approach is to use all vehicles to
compute an estimate and then only the part of the curve which corresponds
to the interval of interest is assigned to the remaining nodes of the reliability
function. Reliability function for a vehicle censored after 3.75 time units could
be as

3.75 time units →
(1 1 . . . 1︸ ︷︷ ︸

15 nodes

0.86 0.76 0.623 0.256 0). (5)

Missing values in the variables are treated in the following way. The mean of
each column which corresponds to the values of a variable is computed and used
instead of missing values.

4.2 MLP architectures

The first model, called a survival MLP, that is tested has the following layout.
The input layer is the union of the one-hot vectors, which represent the discrete or
categorical data, with scaled numerical valued data, as described in Subsection
4.1. The output layer consists of 20 nodes where each node has a sigmoid
activation function and estimates the reliability function for a given vehicle. The
sigmoid activation function is selected due to the fact that all nodes should
have values in the interval [0, 1] which should correspond to the values of the
reliability function. There are two hidden layers in the model where each node
has a rectified linear activation function. The first hidden layer has 120 nodes
and the second consists of 60 nodes. The dropout value is chosen to be 0.5 and
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Figure 1: Model of MLP with two hidden layers with rectified linear activation
function. Output layer has 20 nodes each with sigmoid activation function.

the objective function is chosen to be a mean square error (MSE). The stochastic
gradient descent (SGD) method is selected as an optimizer for training the MLP.
An illustration of the survival MLP can be found in Fig. 1.

The idea behind the choice of the MSE objective function is to allow the
network to learn/estimate the mean survival function of each class, failed or
censored, vehicles. However, the results, Section 5, show that the initial idea
gave bad performance which led to the introduction of a two staged MLP model.

Another model used is a classification-survival MLP, see Fig. 2. It consists
of the two stages or two MLPs, namely, a classification MLP and a survival
MLP. The first step is to build a classification MLP where each vehicle should
be classified either to a failed or a censored class of vehicles. This step assigns
the vehicle either to the risk class, failed vehicles, or healthy class, censored
vehicles. The structure of the network is similar to the survival MLP except of
the last layer which now has two nodes with a softmax activation function and
categorical crossentropy as an objective. The second step is to train a survival
MLP model as described above on two classes of the vehicles, failed and censored,
separately. To make a prediction for a unseen vehicle that comes to a workshop
the following procedure is applied: a) classify the vehicle as a failed or censored,
b) estimate the reliability function of the vehicle based on a survival MLP.

A third architecture of the neural network is illustrated in Fig. 3. The two
types of variables, discrete and numerical, are separated from each other into
two branches. The interaction between the two branches is organized through
the Merge layer in Keras, see (Chollet, 2015). An idea of this approach is to
see how different merging of heterogenous data influences the prediction. The
results of applying the models described in the current section can be found in
Section 5.
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Figure 3: MLP model with separate branches for discrete and continuous valued
variables.
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5 Analysis and results

Now the three models introduced in Section 4 are analyzed together with results
of their predictions. The prognostics domain does not have one established
metric that would allow us to evaluate the performance of the model, therefore, it
is not straightforward which approach to use here. The following two approaches
were selected as candidates for validation of the results. First, predicted mean
reliability functions for the failed and censored vehicles are plotted together with
their reference values, i.e., reference functions from the training set of vehicles.
Predictions from the model for every vehicle in the validation set are received,
the reliability functions, then predictions for the failed and censored vehicles are
grouped together and mean values of the predicted reliability functions for each
class are computed. It is not known in advance how average reliability functions
should look like due to the absence of knowledge of the true degradation profiles
in the data set, but it is expected that the predictions should differ on average for
the two classes of vehicles. Second plot chosen for the validation is the histogram
of reliability values for both classes of vehicles at a particular time point, in this
case time point is t = 3. The given time point corresponds somewhere near the
half of the study time. This type of plot shows how the values of the reliability
function are scattered around the mean value at the given time point.

5.1 Survival MLP with imbalanced data

First, the survival MLP is applied to the data set. The setup of the survival MLP
is described in Section 4. The objective function is the MSE and a stochastic
gradient descent is used as optimizer. The data set is split into the training set,
corresponding to 2/3 of the whole data, and the validation set, corresponding
to 1/3 of the whole data set. The idea of the survival MLP is to allow the
network to learn the differences between two classes of vehicles through the
training procedure. It was expected to receive two different average reliability
funtions for failed and censored vehicles. However, the results do not support
the expectation.

The results, a plot with the average realibity functions and a histogram of
reliabilities for a particular time point, for the survival MLP model are presented
in Fig. 4 and Fig. 5. In Fig. 4 the red dotted curve corresponds to the average
reliability function for the censored vehicles and the blue dotted curve to the
average reliability function for the failed vehicles. The latest is not visible in
Fig. 4, because the average predictions for the failed and censored vehicles are
almost identical. This fact can be confirmed by looking at the histogram of
reliability values in Fig. 5 which is quite similar for both classes of vehicles. These
results indicate that the model does not make any distinction when making
prediction for the censored and failed vehicles. Another thing to notice is that
the prediction from the model follow reference reliability function for the class of
censored vehicles. Thinking about the structure of the data, one can recall that
our data is imbalanced, only less than 10% of the vehicles have problems with
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Figure 4: Average reliability functions for the initial model with imbalanced
data on validation set. Blue and red dotted curves are the predictions for failed
and censored vehicles respectively (blue curve is not seen because it is almost
identical to red one). Green and black solid curves are actual survival curves
based on validation data for censored and failed vehicles respectively.

the battery. Therefore, the next step was to see how balancing of data would
influence the results.

5.2 Survival MLP with balanced data

There are different approaches available when it comes to the question how to
balance the classes in the data set. Some of them can be found in (He and Ma,
2013) where the undersampling technique is chosen here. The amount of vehicles
in the failed class is left unchanged, however, the amount of censored vehicles
is reduced to the same amount of failed ones by sampling uniformly from the
censored class. This procedure substantially reduce number of training samples
(about 1500 vehicles compared to 21000 in the case of the imbalanced data
set), but increasing number of epochs and decreasing batch size when compiling
model in Keras helps to mitigate the problem.

Results for the given set up can be seen in Fig. 6 and Fig. 7. It is still the
case that average predictions for failed and censored classes are very similar,
Fig. 6. However, predictions are not biased to any of the reference reliability
functions. Here, the results achieved in Subsections 5.1 and 5.2 are surprising.
It was expected that the average predictions for the two classes of vehicles will
be different and the idea is that the hidden units should learn the difference in
degradation depending on class of the vehicle. The results show that it is not
the case which requires additional thinking on the reasons for this behavior.
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Figure 5: Histogram of reliabilities at time unit 3 for the initial model with
imbalanced data. Green bars correspond to failed vehicles and purple to censored
ones.

0 1 2 3 4 5
time units

0.0

0.2

0.4

0.6

0.8

1.0

re
lia

bi
lit

y

Model predictions on validation data

Figure 6: Average reliability functions for the initial model with balanced data
on validation set. Blue and red dotted curves are the predictions for failed
and censored vehicles respectively (blue curve is not seen because it is almost
identical to red one). Green and black solid curves are actual survival curves
based on validation data for censored and failed vehicles respectively.
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Figure 7: Histogram of reliabilities at time unit 3 for the initial model with
balanced data. Green bars correspond to failed vehicles and purple to censored
ones.

5.3 Classification-survival MLP

One conclusion from the experiments in Subsections 5.1 and 5.2 is that the
models fail to capture different degradation profiles for failed and censored
vehicles. However, it seems that the model with the MSE objective function can
follow the referene average survival curve of a particular class of the vehicles
if it is trained only on the representatives from that class. Therefore, a two
staged classification-survival MLP model is developed as described in Section 4.
First, a model learns how to classify the vehicles as failed or censored, i.e., a
classification problem is considered. Then, two survival MLP models are trained
separately for failed and censored vehicles with network output as the reliability
functions.

The results of this approach on the validation data set are presented in
Fig. 8 and Fig. 9. As evident from Fig. 8 the situation is different compared
to the previous cases. The average reliability functions differ from each other
and the histogram of reliabilities is separated for the two classes of vehicles.
Here, the conclusion that the reliability functions are different is based on a
visual inspection. Predicted reliability functions, dotted lines in Fig. 8, do not
follow precisely the reference reliability functions, shown as solid lines, due to
the missclassification which happens in the classification MLP. This can also
be confirmed by looking at Fig. 9 where some censored vehicles falls into the
category of failed ones, receiving a lower prediction of reliability than they should
have and the opposite is true for the failed vehicles.
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Figure 8: Average reliability functions for two staged neural network model on
validation data. Blue and red dotted curves are the predictions for failed and
censored vehicles respectively. Green and black solid curves are actual survival
curves based on validation data for censored and failed vehicles respectively.
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Figure 9: Histogram of reliabilities at time unit 3 for two staged neural network
model. Green bars correspond to failed vehicles and purple to censored ones.
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Model predictions on validation data

Figure 10: Average reliability functions for the two staged neural network model
applied to validation data. Columns with a missing data more than 40% are
neglected. Blue and red dotted curves are the predictions for failed and censored
vehicles respectively. Green and black solid curves are actual survival curves
based on validation data for censored and failed vehicles respectively.

5.4 Modifying survival prediction within classification-
survival MLP

This subsection contains the results of modifications applied to the survival
prediction MLP within classification-survival model from Subsection 5.3. The
results are collected into one subsection because they are quite similar.

The first modification is to remove variables with a rate of missing values
larger than 40% from the study and training process. The idea is to see how the
results change when variables with a high degree of distorted/lost information
are removed.

The results of this approach can be seen in Fig. 10 and Fig. 11. One can see
that the results are similar to ones from Fig. 8 and Fig. 9. One conclusion is that
adding columns with a lot of missing data do not make the average prediction
of the model worse. If only these two plots are used for judging the performance
of the method, it is reasonable to choose the model with reduced number of
variables, because it will take less time to build the model and make a prediction
for an unseen vehicle.

Fig. 12 and Fig. 13 show the results for the case when the part of the
reliability function after the censoring time for the vehicles without battery
problems is approximated with the corresponding part of the Kaplan-Meier
estimate computed using all vehicles. For example, to estimate the reliability
function for a battery that is censored after 3 time units, first, the Kaplan-Meier
estimate is computed which is based on all vehicles, then its part corresponding
to time interval from 3 to 5 time units is assigned to the respective part of
reliability function of the vehicle. In this case it can be seen that the predicted
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Figure 11: Histogram of reliabilities at time unit 3 for the two staged neural
network model. Columns with a missing data more than 40% are neglected.
Green bars correspond to failed vehicles and purple to censored ones.

average reliability function for the censored vehicles in some parts of the curve
follows the reference function better than the same curve in Subsection 5.3, see
Fig. 12. However, the prediction for the failed vehicles follows the reference
function worse than for the previous model. Therefore, it is not possible to say
that the results with this setup differ significantly from the model in Subsection
5.3.

The last modification to the classification-survival MLP model architecture is
that the multilayer perceptron with two branches, a separate branch for numeric
and a separate branch for categorical data, is considered. The two branches
are concatenated with the help of the Merge layer in Keras, Fig. 3. The idea is
to see how the results will change if one-hot vectors that represent categorical
data are separated from the numerical data by means of the two branches. It
seems that the average predictions are not affected, see Fig. 14. However, the
histogram of the reliability functions at time point t = 3 is different from the
previous models, see Fig 15. It can be seen that the bars of the failed vehicles
are higher than the bars of the censored which is not the case for the model
from Subsection 5.3, shown in Fig 9. Therefore, one conclusion is that different
merging of data can lead to different predictions from the model. It is left for
future research to answer the question if this change in the prediction improves
or degrades performance.

5.5 Comparing MLP and RSF models

This subsection compares the MLP model with the Random Survival Forest
(RSF) model, which is used in (Frisk et al., 2014) and (Frisk and Krysander,
2015) for estimating conditional probability function. Similar plots as for the
MLP models are shown for the RSF model. A fair comparison is difficult to
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Model predictions on validation data

Figure 12: Average reliability functions for two staged neural network model
on validation data where missing parts of survival curves for censored vehicles
are approximated with Kaplan-Meier estimator common for the whole data.
Blue and red dotted curves are the predictions for failed and censored vehicles
respectively. Green and black solid curves are actual survival curves based on
validation data for censored and failed vehicles respectively.
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Figure 13: Histogram of reliabilities at time unit 3 for two staged neural
network model where missing parts of survival curves for censored vehicles
are approximated with Kaplan-Meier estimator common for the whole data.
Green bars correspond to failed vehicles and purple to censored ones.
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Figure 14: Average reliability functions for two staged neural network model
on validation data for the case when discrete and continuous data are split
into separate branches in neural network. Blue and red dotted curves are the
predictions for failed and censored vehicles respectively. Green and black solid
curves are actual survival curves based on validation data for censored and failed
vehicles respectively.
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Figure 15: Histogram of reliabilities at time unit 3 for two staged neural network
model for the case when discrete and continuous data are split into separate
branches in neural network. Green bars correspond to failed vehicles and purple
to censored ones.
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Figure 16: Average reliability functions for censored vehicles, blue solid line,
and failed vehicles, red solid line, computed on validation set. Random Survival
Forest (RSF) model is used with 1000 trees and minimal node size 200.

perform at this moment, because methods for the reliability function prediction
differ. Nonetheless, some trends can be noticed. The same dataset and the same
split between validation/training sets are used for building the RSF model as
for MLP one. The forest has 1000 trees with minimal node size of 200, which
is used in (Frisk et al., 2014) and (Frisk and Krysander, 2015). The average
reliability functions for both classes of vehicles are shown in Fig. 16. Up to time
unit 1.5 both curves are quite similar after that they start to diverge. In the
case of the MLP model, curves are similar up to 1 time unit and then start
to diverge. As was discussed above we can not compare results directly, but
one thing that can be said is that both methods give on average a prediction
that is different for the failed and censored vehicles which is something that one
expects to happen. The histogram of the reliabilities for vehicles at the same
time point as for MLP, namely, 3 time units is presented in Fig. 17. One can
see that the figure is significantly different from the one in Fig. 9. This happens
due to the fact that in the MLP model classification step is performed first.
Therefore, we expect a large separation between the histograms for the failed
and censored vehicles. However, when forest is being built, data is grouped into
classes where the vehicles are used in a similar manner, therfore, one can say
that a classification problem is hidden within construction of the forest, but the
number of those classes are significantly bigger than for the MLP case and the
difference between them in terms of vehicle usage profile is not as distinctive as
for the case of only failed and censored classes. This explains a larger overlapping
area between the two histograms in Fig. 17.
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Figure 17: Histogram of reliabilities at time unit 3 for RSF model. Blue bars
correspond to failed vehicles and orange to censored ones.

6 Conclusions

The problem of battery lifetime prediction with a multilayer perceptron as the
predictive model is considered in the given work. The model estimates the
reliability function for a vehicle with data V that comes to a workshop. A
first contribution is an adaptation of the multilayer perceptron model to the
data set under study, i.e., to the mixture of categorical and numerical data.
The problem of imbalance in the data set is identified and addressed with
undersampling technique which results in an improved prediction. Training
a multilayer perceptron with a mean square error objective function gives
unacceptable results, since the average prediction for failed and censored vehicles
is almost identical, and it is expected that they are different. Therefore, a two
stage approach with the first step as a classification problem and, then, a survival
prediction at the second stage leads to improved results. Comparing the result
of the prediction with the random survival forest and the multilayer perceptron
models indicates that the model which is based on a neural network approach is
an alternative direction for the battery lifetime prediction.
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