Chapter 13 Optimization and Matching

Section 13.1

Definitions

weight wt(e), weighted graph, distance measure in graphs, shortest path, greedy algorithm

Algorithm

Dijkstra's Shortest-Path Algorithm

Exercises

1, 2, 5

Section 13.2

Definitions

optimal (minimal) spanning tree

Algorithms

Kruskal's AlgorithmTh 13.1 $O(|V|^2 \log_2(|V|))$ Prim's AlgorithmTh 13.2 $O(|V|^2)$

Exercises

1, 2, 5, 6

Section 11.3

Definitions

network (transport network), source, sink, capacity, flow, saturated, cut, value of the flow val(f), capacity of cut $c(P, \bar{P})$

Theorem

 $\begin{array}{ll} 13.3 & C = (P,\bar{P}) \text{ any cut. Then } c(P,\bar{P}) \geq val(f).\\ \text{C13.1} & \text{value of flow from the source} = \text{value of flow into the sink.}\\ 13.4 & \min c(P,\bar{P}) = val(f) \end{array}$

Exercises

1, 2, 4, 6, 7

Section 11.4

Definitions

assignment problem, matching, complete matching, maximal matching, perfect matching, deficiency of, deficiency of graph G, $\delta(G)$, permutation matrix, doubly stochastic

Theorem

G bipartite, partitioned as $X\cup Y.$

- 13.5
- C13.3
- Complete matching of X into Y $\Leftrightarrow \forall A \subseteq X : |A| \leq |\{y \in Y | \exists x \in A : x \text{ adjacent to } y\}|$ $\exists k \in \mathbb{Z}^+ \forall x \in X, y \in Y : deg(x) \geq k \geq deg(y) \Rightarrow \text{Complete matching of X into Y}.$ The maximum number of vertices in X that can be matched with those in Y is $|X| \delta(G)$. 13.6

Exercises

3, 5, 7, 13, 14Supplementary 2, 7, 8 (Birkhoff-von Neumann Theorem)