ELLIIT Ph.D. Course: Advanced Motion Planning and Control

Björn Olofsson

Division of Vehicular Systems Linköping University

January 12, 2021

Today's Meeting

- ► About the course.
- ► Introduction of participants.
- ► Course administration.
- ► Planning of next meeting.

About the Course

Introduction of Participants

Course Administration

Planning of Next Meeting

- Focus on advanced motion planning and control in a general context (robotics, autonomous cars, UAVs, etc.).
- ► Focus on understanding and practical use of different methods in these areas.
- ► Course history: Given at LiU in 2016 and at LU in 2017.
 - Foundation for TSFS12: Autonomous Vehicles—Planning, Control, and Learning Systems at LiU from 2019.
- Course relates to several ongoing research projects in the ELLIIT and WASP research programs.

About the Course (2/2)

Many methods developed within the robotics community during the last decades.

- Also applicable for wheeled vehicles and other mechanical systems after generalizations.
- Course will cover both motion *planning* and *control*.
- Course homepage: https://www.fs.isy.liu.se/Edu/Courses/MotionPlanning/
- ► Responsible for the course:
 - Björn Olofsson (bjorn.olofsson@liu.se)
 - Erik Frisk (erik.frisk@liu.se).

About the Course

Introduction of Participants

Course Administration

Planning of Next Meeting

Björn Olofsson (1/2)

- M.Sc. in Engineering Physics from Lund Univ. June 2010, Master's Thesis in the Robotics Lab on decoupled motion planning and path-following control.
- Ph.D. from Dept. Automatic Control, Lund Univ. September 2015.
 - Thesis: Machining with industrial robot manipulators and optimal motion control of vehicles and robots.
- Now affiliated with both LiU/Vehicular Systems and LU/Automatic Control.

Björn Olofsson (2/2)

- ▶ Part of the ELLIIT program since 2012, involved in several projects with collaboration between LiU and LU.
- Involved in two European robotics-research projects as a Ph.D. student, COMET and SMErobotics.
- ► Involved in WASP research as co-supervisor since 2016.
- Research interests in motion planning, autonomous vehicle and robot motion control, and related research in system identification and state estimation.

About the Course

Introduction of Participants

Course Administration

Planning of Next Meeting

Organization of the Course (1/2)

- ► Approximately one meeting per week, held in Zoom.
- ▶ Meetings nominally held on Tuesdays at 15.15–17.00 (exceptions may occur).
- Combination of lectures by the participants, guest lecturers, Erik Frisk, and Björn Olofsson.
- ▶ Project seminar tentatively to be held on May 21, 2021, at 13:15-15:00.
- ▶ Weekly reading assignments and (implementation) exercises during selected weeks.

Organization of the Course (2/2)

- ▶ For each meeting, one participant is assigned in advance to be responsible.
- The responsible person prepares a lecture (approx. 45 minutes) on the studied material.
- Joint discussion after the lecture on the algorithms and results of the exercises, led by the responsible person, Erik, and Björn.
- ► Varying background and previous courses taken among participants.
 - ► Assignments in the course will be adapted depending on if taken TSFS12 or not.
 - The important aspect is to learn new content in the course.

Weekly Assignments (1/2)

- Focus on implementation and practical evaluations of the methods on small examples in the exercises for learning and investigations of the studied material.
- Several interesting exercises available in the course literature (and on the internet).
- ► Assignments defined during the meeting for the following week.
 - Code base (Python and Matlab) from TSFS12 will be used in some of the assignments.
 - ▶ Possible to use software libraries from the internet (of course with reference).

Weekly Assignments (2/2)

- Material from the course TSFS12 available at https://gitlab.liu.se/vehsys/tsfs12.
 - Lecture videos only accessible within LiU.
 - Other participants can get access on request to Björn.
- ► Submit assignments to bjorn.olofsson@liu.se *before each meeting*.
- ► No extensive written reports required, files with commented code and accompanying plots (with conclusions from the results) are sufficient.
- ▶ Please be prepared to present your results in class/Zoom during the meeting.

Literature

- The planning part is based on the book: LaValle, S. M., *Planning Algorithms*, Cambridge University Press, Cambridge, UK, 2006.
 - Available for free download at the homepage of the author: http://lavalle.pl/planning/.
- Selected chapters from B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics will also be used as literature.
- ► The control part will be based on selected book chapters.
- The books will be complemented by several articles and papers (announced during each meeting for the following week).

Guest Lectures

- Guest lectures will be given by invited speakers during the course.
- ▶ Will give focused lectures on specific topics related to their own research.
- Speakers and exact times will be announced well in advance (might be outside of nominal schedule though).

Projects

- ► The final part of the course will be devoted to individually performed projects.
- Extended theoretical and simulation-based study of selected algorithm(s) or implementation of a method on a suitable hardware platform.
- Experiments can, e.g., be performed using the Robot Operating System (ROS), the PythonRobotics Toolbox, or the Open Motion Planning Library (OMPL).
- ▶ Preferably related to own research (possible conference paper).

Suggestions for Projects (1/3)

- Implement a complete motion-planning algorithm from the course on an appropriate hardware platform (e.g., ground vehicle or aerial vehicle), either with stationary or time-varying obstacles.
- Explore how motion planning and control could be combined with learning (for example, trade-off between exploration and utilization of already acquired information in reinforcement learning). Study articles and do evaluations in simulation or experiments.

Suggestions for Projects (2/3)

- Study motion planning under uncertainty and sensor-based inputs (see Part III in the book by LaValle). Evaluate a few algorithms in simulation.
- Explore methods for structured and efficient decomposition of, and subsequent search, in the free configuration space (see Chapter 6 in the book by LaValle on combinatorial methods).

Suggestions for Projects (3/3)

- Select a certain class of motion-planning algorithms and study the latest articles within the field to define state-of-the-art. Implement and evaluate some of the algorithms in simulation or experiments.
- ► Your own project ideas.
- Project idea from your own research.

Examination

In order to receive course credits, the participant is required to:

- ► Attend the weekly meetings and actively take part in the discussions.
- Submit the hand-in assignments prior to each meeting where it is requested (primarily implementation code or scripts with comments and conclusions from the results, no extensive written reports required).
- Prepare one lecture during the course.
- Complete a final project, give an oral presentation at the project seminar, and submit a written report.
- Course nominally 6+3 hp (where the first part primarily comprises the planning part).

Examiner for the course is Björn Olofsson.

Tentative Week Plan (1/2)

- Week 3: Introduction to motion planning and control & discrete graph search (Responsible: Björn)
- Week 4: Motion planning fundamentals
- ▶ Week 5: Rapidly-exploring random trees (RRTs) and extensions
- Week 6: Motion primitives and lattice planning
- ▶ Week 7: Feedback-based planning and artificial potential fields
- Week 9: Invariant-set motion planning (Responsible: guest lecturer)

Tentative Week Plan (2/2)

- ▶ Week 10: Trajectory optimization for planning and control
- Week 14: Path and trajectory-following control
- ▶ Week 15: Model predictive control for planning and control
- ▶ Week 16: Motion prediction for planning and control
- Week 17: Planning and control architectures (Responsible: Björn, Erik, and guest lecturer)
- Week 21: Project seminar (Responsible: Björn)

About the Course

Introduction of Participants

Course Administration

Planning of Next Meeting

Assignments for Meeting on Jan. 19, 2021 (1/2)

- ► Send your preferences for lecture responsibility before the weekend to Björn.
 - Schedule will be sent via mail and presented during meeting next week.
- Read Chapters 1–2 in LaValle, S. M., *Planning Algorithms*, Cambridge University Press, Cambridge, UK, 2006.
- Read the survey paper B. Paden et al., "A survey of motion planning and control techniques for self-driving urban vehicles". IEEE Transactions on Intelligent Vehicles 1.1, 33–55, 2016.

Assignments for Meeting on Jan. 19, 2021 (2/2)

- Read the paper M. Likhachev et al., "ARA*: Anytime A* with provable bounds on sub-optimality", Advances in Neural Information Processing Systems, 16, 767–774, 2003.
- Do Hand-in Exercise 1 from TSFS12 (discrete graph search). Those that have taken TSFS12 extend towards real-time graph search with replanning, such as ARA*.
- ▶ Next meeting: Tuesday January 19, 2021, at 15:15 in Zoom.