Newton Type Constrained Optimization in a Nutshell

Moritz Diehl

Optimization in Engineering Center (OPTEC) K.U. Leuven

Overview

- Equality Constrained Optimization
- Optimality Conditions and Multipliers
- Newton's Method = SQP
- Inequality Constraints
- Constrained Gauss Newton Method
- Relation to Optimal Control

General Nonlinear Program (NLP)

In direct methods, we have to solve the discretized optimal control problem, which is a Nonlinear Program (NLP)

$$\min_{w} F(w) \text{ s.t. } \begin{cases} G(w) = 0, \\ H(w) \ge 0. \end{cases}$$

We first treat the case without inequalities.

$$\min_w F(w) \quad \text{s.t.} \quad G(w) = 0,$$

Lagrange Function and Optimality Conditions

Introduce Lagrangian function

$$\mathcal{L}(w,\lambda) = F(w) - \lambda^T G(w)$$

Then for an optimal solution w^* exist multipliers λ^* such that

$$\begin{aligned} \nabla_w \mathcal{L}(w^*, \lambda^*) &= 0, \\ G(w^*) &= 0, \end{aligned}$$

Newton's Method on Optimality Conditions

How to solve nonlinear equations

$$\nabla_w \mathcal{L}(w^*, \lambda^*) = 0,$$

$$G(w^*) = 0,$$
?

Linearize!

$$\nabla_{w} \mathcal{L}(w^{k}, \lambda^{k}) + \nabla_{w}^{2} \mathcal{L}(w^{k}, \lambda^{k}) \Delta w - \nabla_{w} G(w^{k}) \Delta \lambda = 0,$$

$$G(w^{k}) + \nabla_{w} G(w^{k})^{T} \Delta w = 0,$$

This is equivalent, due to $\nabla \mathcal{L}(w^k, \lambda^k) = \nabla F(w^k) - \nabla G(w^k)\lambda^k$, with the shorthand $\lambda^+ = \lambda^k + \Delta \lambda$, to

$$\begin{aligned} \nabla_w F(w^k) &+ \nabla_w^2 \mathcal{L}(w^k, \lambda^k) \Delta w &- \nabla_w G(w^k) \lambda^+ &= 0, \\ G(w^k) &+ \nabla_w G(w^k)^T \Delta w &= 0, \end{aligned}$$

Newton Step = Quadratic Program

Conditions

$$\begin{aligned} \nabla_w F(w^k) &+ \nabla_w^2 \mathcal{L}(w^k, \lambda^k) \Delta w &- \nabla_w G(w^k) \lambda^+ &= 0, \\ G(w^k) &+ \nabla_w G(w^k)^T \Delta w &= 0, \end{aligned}$$

are optimality conditions of a quadratic program (QP), namely:

$$\min_{\Delta w} \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \quad \text{s.t.} \quad G(w^k) + \nabla G(w^k)^T \Delta w = 0,$$
 with

$$A^k = \nabla^2_w \mathcal{L}(w^k, \lambda^k)$$

Newton's Method

The full step Newton's Method iterates by solving in each iteration the Quadratic Progam

$$\min_{\Delta w} \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \quad \text{s.t.} \quad G(w^k) + \nabla G(w^k)^T \Delta w = 0,$$

with $A^k = \nabla_w^2 \mathcal{L}(w^k, \lambda^k)$. This obtains as solution the step Δw^k and the new multiplier $\lambda_{\text{QP}}^+ = \lambda^k + \Delta \lambda^k$. Then we iterate:

$$w^{k+1} = w^k + \Delta w^k$$
$$\lambda^{k+1} = \lambda^k + \Delta \lambda^k = \lambda_{\rm QP}^+$$

This Newton's method is also called "Sequential Quadratic Programming (SQP) for equality constrained optimization" (with "exact Hessian" and "full steps")

NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

$$\min_{w} F(w) \text{ s.t. } \begin{cases} G(w) = 0, \\ H(w) \ge 0. \end{cases}$$

Introduce Lagrangian function

$$\mathcal{L}(w,\lambda,\mu) = F(w) - \lambda^T G(w) - \mu^T H(w)$$

Optimality Conditions with Inequalities

THEOREM(Karush-Kuhn-Tucker (KKT) conditions) For an optimal solution w^* exist multipliers λ^* and μ^* such that

$$abla_w \mathcal{L}(w^*, \lambda^*, \mu^*) = 0, \ G(w^*) = 0, \ H(w^*) \ge 0, \ \mu^* \ge 0, \ H(w^*)^T \mu^* = 0,
onumber$$

These contain nonsmooth conditions (the last three) which are called "complementarity conditions". This system cannot be solved by Newton's Method. But still with SQP...

Sequential Quadratic Programming (SQP)

By Linearizing all functions within the KKT Conditions, and setting $\lambda^+ = \lambda^k + \Delta\lambda$ and $\mu^+ = \mu^k + \Delta\mu$, we obtain the KKT conditions of a Quadratic Program (QP) (we omit these conditions). This QP is

$$\min_{\Delta w} \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \text{ s.t. } \begin{cases} G(w^k) + \nabla G(w^k)^T \Delta w = 0, \\ H(w^k) + \nabla H(w^k)^T \Delta w \ge 0, \end{cases}$$

with

$$A^k = \nabla^2_w \mathcal{L}(w^k, \lambda^k, \mu^k)$$

and its solution delivers

$$\Delta w^k, \quad \lambda_{\rm QP}^+, \quad \mu_{\rm QP}^+$$

Constrained Gauss-Newton Method

In special case of least squares objectives

$$F(w) = \frac{1}{2} \|R(w)\|_2^2$$

can approximate Hessian $\nabla^2_w \mathcal{L}(w^k,\lambda^k,\mu^k)$ by much cheaper

 $A^k = \nabla R(w) \nabla R(w)^T.$

Need no multipliers to compute A^k ! QP= linear least squares:

$$\min_{\Delta w} \frac{1}{2} \|R(w^k) + \nabla R(w^k)^T \Delta w\|_2^2 \text{ s.t. } \begin{cases} G(w^k) + \nabla G(w^k)^T \Delta w &= 0, \\ H(w^k) + \nabla H(w^k)^T \Delta w &\ge 0, \end{cases}$$

Convergence: linear (better if $||R(w^*)||$ small)

Discrete Time Optimal Control Problem

$$\underset{s,q}{\mathsf{minimize}} \qquad \sum_{i=0}^{N-1} l_i(s_i,q_i) + E(s_N)$$

subject to

$$s_0 - x_0 = 0, \qquad \text{(initial value)}$$

$$s_{i+1} - f_i(s_i, q_i) = 0, \quad i = 0, \dots, N - 1, \quad \text{(discrete system)}$$

$$h_i(s_i, q_i) \ge 0, \quad i = 0, \dots, N, \qquad \text{(path constraints)}$$

$$r(s_N) \ge 0. \qquad \text{(terminal constraints)}$$

Can arise also from direct multiple shooting parameterization of continous optimal control problem. This NLP can be solved by SQP or Constrained Gauss-Newton method.

Summary

- Nonlinear Programs (NLP) have nonlinear but differentiable problem functions.
- Sequential Quadratic Programming (SQP) is a Newton type method to solve NLPs that
 - solves in each iteration a Quadratic Program (QP)
 - obtains this QP by linearizing all nonlinear problem functions
- an important SQP variant is the Constrained Gauss-Newton Method
- SQP can be generalized to Sequential Convex Programming (SCP)
- Discrete time optimal control problems are a special case of NLPs.

Literature

J. Nocedal and S. Wright: Numerical Optimization, Springer, 2006 (2nd edition)