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There are several methods for calculating derivatives:

1 By hand

2 Symbolic differentiation

3 Numerical differentiation

4 “Imaginary trick” in MATLAB
5 Automatic differentiation

Forward mode
Adjoint (or backward or reverse) mode
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Calculating derivatives by hand

Time consuming & error prone
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Symbolic differentiation

We can obtain an expression of the derivatives we need with:
Mathematica, Maple, ...

Often this results in a very long code which is expensive to
evaluate.
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Numerical differentiation 1/2

Consider a function f : Rn → R

∇f (x)Tp ≈ f (x + tp)− f (x)

t

Really easy to implement.

Problem

How should we choose t?
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Numerical differentiation 2/2

Problem

How should we chose t?

A rule of thumb

Set t =
√
ε, where ε is set to machine precision or the precision of

f .

The accuracy of the derivative is approximately
√
ε.
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“Imaginary trick” in MATLAB

Consider an analytic function f : Rn → R. Set t = 10−100.

∇f (x)Tp =
I(f (x + itp))

t

∇f (x)Tp can be calculated up to machine precision!
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Automatic differentiation

Consider a function f : Rn → R defined by using m elementary
operations φi .

Function evaluation

Input: x1, x2, . . . , xn
Output: xn+m

for i = n + 1 to n + m
xi ← φi (x1, . . . , xi−1)

end for

Example

f (x1, x2, x3) = sin(x1x2) + exp(x1x2x3)

Evaluation code (for m = 5 elementary operations):

x4 ← x1x2; x5 ← sin(x4); x6 ← x4x3;
x7 ← exp(x6) x8 ← x5 + x7;
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Automatic differentiation: forward mode

Assume x(t) and f (x(t)).

ẋ =
dx

dt
ḟ =

df

dt
= Jf (x)ẋ

For i = 1, . . . ,m

dxn+i

dt
=

n+i−1∑
j=1

∂φn+i

∂xj

dxj
dt

Forward automatic differentiation

Input: ẋ1, ẋ2, . . . , ẋn and (and all partial derivatives
∂φn+i

∂xj
)

Output: ẋn+m

for i = 1 to m

ẋn+i ←
∑n+i−1

j=1

∂φn+i

∂xj
ẋj

end for
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Automatic differentiation: reverse mode

Reverse automatic differentiation

Input: all
∂φi
∂xj

Output: x̄1, . . . , x̄n
x̄1, . . . , x̄n ← 0
x̄n+m ← 1
for j = n + m down to n + 1

for all i = 1, 2, . . . , j − 1

x̄i ← x̄i + x̄j
∂φj
∂xi

end for
end for
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Automatic differentiation summary so far

f : Rn → R

Cost of forward mode per directional derivative

cost(∇f Tp) ≤ 2 cost(f )

For full gradient ∇f , need 2n cost(f ) !

Cost of reverse mode: full gradient

cost(∇f ) ≤ 3 cost(f )

Independent of n! Only drawback: large memory needed for all
intermediate values
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Automatic differentiation: summary

Automatic differentiation can be used for any f : Rn → Rm.

Cost of forward mode for forward direction p ∈ Rn

cost(Jf p) ≤ 2 cost(f )

Cost of reverse mode per reverse direction p ∈ Rm

cost(pT Jf ) ≤ 3 cost(f )

For computation of full Jacobian Jf , choice of best mode depends
on size of n and m.
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Derivation of Adjoint Mode 1/3

Regard function code as the computation of a vector which is
“growing” at every iteration

x̃1 =


x1

x2

x3

. . .
xn+1

 = Φ1



x1

x2

x3

. . .
xn


 =



x1

x2

x3

. . .
xn

φn+1(x1, x2, x3, . . . , xn)


. . .

x̃m =


x1

x2

x3

. . .
xn+m

 = Φm




x1

x2

x3

. . .
xn+m−1


 =



x1

x2

x3

. . .
xn+m−1

φn+m(x1, x2, x3, . . . , xn+m−1)


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Derivation of Adjoint Mode 2/3

Evaluation of f : Rn → Rq can then be written as

f (x) = QΦm(Φm−1(. . .Φ2(Φ1(x)) . . . ))

with Q ∈ Rq×(n+m) a 0-1 matrix selecting the output variables,
e.g. for q = 1

Q =
[
0 0 . . . 0 1

]
Then the full Jacobian is given by

Jf (x) = QJΦm(x̃m)JΦm−1(x̃m−1) . . . JΦ1(x)

where the Jacobians of Φi are

JΦi
=


1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

∂φn+i

∂x1

∂φn+i

∂x2

∂φn+i

∂x3
. . .

∂φn+i

∂xn+i−1


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Derivation of Adjoint Mode 3/3

Forward mode:

Jf p = QJΦmJΦm−1 . . . JΦ1p
= Q(JΦm(JΦm−1 . . . (JΦ1p)))

Adjoint mode:

pT Jf = pTQJΦmJΦm−1 . . . JΦ1

= (((pTQ)JΦm)JΦm−1) . . . JΦ1

The adjoint mode corresponds just to the efficient evaluation of
the vector matrix product pT Jf !
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Software for Adjoint Derivatives

Generic Tools to Differentiate Code

ADOL-C for C/C++, using operator overloading (open
source)

ADIC / ADIFOR for C/FORTRAN, using source code
transformation (open source)

TAPENADE, CppAD (open source), ...

Differential Algebraic Equation Solvers with Adjoints

SUNDIALS Suite CVODES / IDAS (Sandia, open source)

DAESOL-II (Uni Heidelberg)

ACADO Integrators (Leuven, open source)
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