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There are several methods for calculating derivatives:
© By hand
@ Symbolic differentiation
© Numerical differentiation

@ ‘Imaginary trick” in MATLAB
© Automatic differentiation

e Forward mode
o Adjoint (or backward or reverse) mode
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Calculating derivatives by hand

Time consuming & error prone
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Symbolic differentiation

We can obtain an expression of the derivatives we need with:
Mathematica, Maple, ...
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Symbolic differentiation

We can obtain an expression of the derivatives we need with:
Mathematica, Maple, ...

Often this results in a very long code which is expensive to

evaluate.
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Numerical differentiation 1/2

Consider a function f : R” — R

f(x + tp) — f(x)
t

Vix)Tp~

Really easy to implement.
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Numerical differentiation 1/2

Consider a function f : R” — R

f(x + tp) — f(x)

Vix)Tp~ ;

Really easy to implement.

Problem
How should we choose t?
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Numerical differentiation 2/2

Problem
How should we chose t?

A rule of thumb

Set t = /€, where € is set to machine precision or the precision of
f.

The accuracy of the derivative is approximately +/e.
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“Imaginary trick” in MATLAB

Consider an analytic function f : R” — R. Set t = 10719

Vf(X)Tp _ j(f(X:_ itp)) J

V£f(x)Tp can be calculated up to machine precision!
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Automatic differentiation

Consider a function f : R” — R defined by using m elementary
operations ¢;.

Function evaluation

Input: x3,x2,...,X,
Output: x,1m
fori=n+1ton+m

Xj < QS;(Xl, 500 ,X,'_1)
end for
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Automatic differentiation

Consider a function f : R” — R defined by using m elementary
operations ¢;.

Function evaluation

Input: x3,x2,...,X,
Output: x,1m
fori=n+1ton+m

Xj < (}5,‘(X1, 500 ,X,'_1)
end for

Example
f(x1,x2,x3) = sin(x1x2) + exp(x1x2x3)

Evaluation code (for m = 5 elementary operations):

X4 — X1X2; x5 < sin(xa); Xg < X4X3;
x7 < exp(xp) Xg < X5+ x7;
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Automatic differentiation: forward mode
Assume x(t) and f(x(t)).

.odx . df .
x=— f—E—Jf(X)X
Fori=1,....m
dnti _ ”*f Opni dxj
dt = Ox; dt
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Automatic differentiation: forward mode
Assume x(t) and f(x(t)).

d . df
X F

dt gt~ )
Fori=1,....m
dxnti _ *i Opnsi d;
dt ; Ox; dt
Jj=1
Forward automatic differentiation
Input: Xq, o, ..., X, and (and all partial derivatives %)
Xj
Output: x,+m
fori=1tom 96
e r]i—i—l n+i)-('
n+i j=1 8XJ i
end for )
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Automatic differentiation: reverse mode

Reverse automatic differentiation

9%i
&
Output: Xxi,...,X,
X1y.-3Xp <0
)_(n—l—m(_l
for j = n+ m down to n+1
foralli=1,2,...,j—1

Input: all

- = =9
Xi & Xj + Xj—=—
! ! I Ox;
end for
end for
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Automatic differentiation summar

f:R" =R

Cost of forward mode per directional derivative

cost(Vf T p) < 2 cost(f)
For full gradient Vf, need 2n cost(f) !
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Automatic differentiation summar

f:R" =R

Cost of forward mode per directional derivative

cost(Vf T p) < 2 cost(f)
For full gradient Vf, need 2n cost(f) !

Cost of reverse mode: full gradient

cost(Vf) < 3cost(f)

Independent of n!
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Automatic differentiation summar

f:R" =R

Cost of forward mode per directional derivative

cost(Vf T p) < 2 cost(f)
For full gradient Vf, need 2n cost(f) !

Cost of reverse mode: full gradient

cost(Vf) < 3cost(f)

Independent of n! Only drawback: large memory needed for all
intermediate values
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Automatic differentiation: summar

Automatic differentiation can be used for any f : R” — R,

Cost of forward mode for forward direction p € R”

cost(Jrp) < 2cost(f)
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Automatic differentiation: summar

Automatic differentiation can be used for any f : R” — R,

Cost of forward mode for forward direction p € R”

cost(Jrp) < 2cost(f)

Cost of reverse mode per reverse direction p € R™

cost(p' Jr) < 3 cost(f)
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Automatic differentiation: summar

Automatic differentiation can be used for any f : R” — R,

Cost of forward mode for forward direction p € R”

cost(Jrp) < 2cost(f)

Cost of reverse mode per reverse direction p € R™

cost(p' Jr) < 3 cost(f)

For computation of full Jacobian Jf¢, choice of best mode depends
on size of n and m.
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Derivation of Adjoint Mode 1/3

Regard function code as the computation of a vector which is
“growing” at every iteration

X1
X1 X1 X
X0 X2 Xi
=] x3 | =P1| [x3] | =
Xn
Xn+1 Xn
| Prr1(x1, X2, X3, ...y Xn) |
_ i -
X1 X1 X0
X2 X2 x3
Xm = X3 =o, X3 =
Xn+m—1
Xn+m Xn+m—1
_¢n+m(X17 X2, X35+ s Xngm—1) |
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Derivation of Adjoint Mode 2/3

Evaluation of f : R” — RY can then be written as

f(x) = QPm(Pm—1(. .. P2(P1(x))...))
with Q € R9*("+m) 3 0-1 matrix selecting the output variables,
eg forg=1
Q=100 0
Then the full Jacobian is given by
Jr(x) = Qo (%m)Jo,, 1 (Km-1) - - - Joy (X)

where the Jacobians of ®; are

0 1]

1 0 0 0
0 1 0 0
@ 0 0 0 1
8@bn—l—i a¢n+i aCbn—&—i a¢n+i
B 8x1 aXQ aX3 8Xn+,'_1_
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Derivation of Adjoint Mode 3/3

Forward mode:

Jp = Qlo,Jo, - -Jo.p
= Q(Jo,(Jo, ;- (Jo,p)))

Adjoint mode:

pTdr = p" Qs Jo, .- Jo
(((pTQ)J‘Dm)J(Dm—l) 200 J¢1

The adjoint mode corresponds just to the efficient evaluation of
the vector matrix product p’ Js |
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Software for Adjoint Derivatives

Generic Tools to Differentiate Code

@ ADOL-C for C/C++, using operator overloading (open
source)

e ADIC / ADIFOR for C/FORTRAN, using source code
transformation (open source)

e TAPENADE, CppAD (open source), ...

Differential Algebraic Equation Solvers with Adjoints
@ SUNDIALS Suite CVODES / IDAS (Sandia, open source)
o DAESOL-II (Uni Heidelberg)

@ ACADO Integrators (Leuven, open source)
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