Adjoint Derivative Computation

Moritz Diehl and Carlo Savorgnan

There are several methods for calculating derivatives:
(1) By hand
(2) Symbolic differentiation
(3) Numerical differentiation
(9) "Imaginary trick" in MATLAB
(0) Automatic differentiation

- Forward mode
- Adjoint (or backward or reverse) mode

Calculating derivatives by hand

Time consuming \& error prone

Symbolic differentiation

We can obtain an expression of the derivatives we need with: Mathematica, Maple, ...

Symbolic differentiation

We can obtain an expression of the derivatives we need with: Mathematica, Maple, ...

Often this results in a very long code which is expensive to evaluate.

Numerical differentiation $1 / 2$

Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\nabla f(x)^{T} p \approx \frac{f(x+t p)-f(x)}{t}
$$

Really easy to implement.

Numerical differentiation $1 / 2$

Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\nabla f(x)^{T} p \approx \frac{f(x+t p)-f(x)}{t}
$$

Really easy to implement.

Problem

How should we choose t ?

Numerical differentiation $2 / 2$

Problem

How should we chose t ?

A rule of thumb

Set $t=\sqrt{\epsilon}$, where ϵ is set to machine precision or the precision of f.

The accuracy of the derivative is approximately $\sqrt{\epsilon}$.

Consider an analytic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Set $t=10^{-100}$.

$$
\nabla f(x)^{T} p=\frac{\Im(f(x+i t p))}{t}
$$

$\nabla f(x)^{T} p$ can be calculated up to machine precision!

Automatic differentiation

Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by using m elementary operations ϕ_{i}.

Function evaluation

Input: $x_{1}, x_{2}, \ldots, x_{n}$
Output: x_{n+m}
for $i=n+1$ to $n+m$
$x_{i} \leftarrow \phi_{i}\left(x_{1}, \ldots, x_{i-1}\right)$
end for

Automatic differentiation

Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by using m elementary operations ϕ_{i}.

Function evaluation

Input: $x_{1}, x_{2}, \ldots, x_{n}$
Output: x_{n+m}
for $i=n+1$ to $n+m$

$$
x_{i} \leftarrow \phi_{i}\left(x_{1}, \ldots, x_{i-1}\right)
$$

end for

Example

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sin \left(x_{1} x_{2}\right)+\exp \left(x_{1} x_{2} x_{3}\right)
$$

Evaluation code (for $m=5$ elementary operations):

$$
\begin{array}{ll}
x_{4} \leftarrow x_{1} x_{2} ; & x_{5} \leftarrow \sin \left(x_{4}\right) ; \\
x_{7} \leftarrow \exp \left(x_{6}\right) & x_{8} \leftarrow x_{5}+x_{7} ;
\end{array}
$$

Automatic differentiation: forward mode

Assume $x(t)$ and $f(x(t))$.

$$
\dot{x}=\frac{d x}{d t} \quad \dot{f}=\frac{d f}{d t}=J_{f}(x) \dot{x}
$$

For $i=1, \ldots, m$

$$
\frac{d x_{n+i}}{d t}=\sum_{j=1}^{n+i-1} \frac{\partial \phi_{n+i}}{\partial x_{j}} \frac{d x_{j}}{d t}
$$

Automatic differentiation: forward mode

Assume $x(t)$ and $f(x(t))$.

$$
\dot{x}=\frac{d x}{d t} \quad \dot{f}=\frac{d f}{d t}=J_{f}(x) \dot{x}
$$

For $i=1, \ldots, m$

$$
\frac{d x_{n+i}}{d t}=\sum_{j=1}^{n+i-1} \frac{\partial \phi_{n+i}}{\partial x_{j}} \frac{d x_{j}}{d t}
$$

Forward automatic differentiation

Input: $\dot{x}_{1}, \dot{x}_{2}, \ldots, \dot{x}_{n}$ and (and all partial derivatives $\frac{\partial \phi_{n+i}}{\partial x_{j}}$)
Output: \dot{x}_{n+m}
for $i=1$ to m

$$
\dot{x}_{n+i} \leftarrow \sum_{j=1}^{n+i-1} \frac{\partial \phi_{n+i}}{\partial x_{j}} \dot{x}_{j}
$$

end for

Automatic differentiation: reverse mode

Reverse automatic differentiation

Input: all $\frac{\partial \phi_{i}}{\partial x_{j}}$
Output: $\bar{x}_{1}, \ldots, \bar{x}_{n}$

$$
\bar{x}_{1}, \ldots, \bar{x}_{n} \leftarrow 0
$$

$\bar{x}_{n+m} \leftarrow 1$
for $j=n+m$ down to $n+1$
for all $i=1,2, \ldots, j-1$

$$
\bar{x}_{i} \leftarrow \bar{x}_{i}+\bar{x}_{j} \frac{\partial \phi_{j}}{\partial x_{i}}
$$

end for
end for

Automatic differentiation summary so far

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Cost of forward mode per directional derivative

$$
\operatorname{cost}\left(\nabla f^{T} p\right) \leq 2 \operatorname{cost}(f)
$$

For full gradient ∇f, need $2 n \operatorname{cost}(f)$!

Automatic differentiation summary so far

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Cost of forward mode per directional derivative

$$
\operatorname{cost}\left(\nabla f^{T} p\right) \leq 2 \operatorname{cost}(f)
$$

For full gradient ∇f, need $2 n \operatorname{cost}(f)$!
Cost of reverse mode: full gradient

$$
\operatorname{cost}(\nabla f) \leq 3 \operatorname{cost}(f)
$$

Independent of $n!$

Automatic differentiation summary so far

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Cost of forward mode per directional derivative

$$
\operatorname{cost}\left(\nabla f^{T} p\right) \leq 2 \operatorname{cost}(f)
$$

For full gradient ∇f, need $2 n \operatorname{cost}(f)$!

Cost of reverse mode: full gradient

$$
\operatorname{cost}(\nabla f) \leq 3 \operatorname{cost}(f)
$$

Independent of n ! Only drawback: large memory needed for all intermediate values

Automatic differentiation: summary

Automatic differentiation can be used for any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Cost of forward mode for forward direction $p \in \mathbb{R}^{n}$

$$
\operatorname{cost}\left(J_{f} p\right) \leq 2 \operatorname{cost}(f)
$$

Automatic differentiation: summary

Automatic differentiation can be used for any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Cost of forward mode for forward direction $p \in \mathbb{R}^{n}$

$$
\operatorname{cost}\left(J_{f} p\right) \leq 2 \operatorname{cost}(f)
$$

Cost of reverse mode per reverse direction $p \in \mathbb{R}^{m}$

$$
\operatorname{cost}\left(p^{T} J_{f}\right) \leq 3 \operatorname{cost}(f)
$$

Automatic differentiation: summary

Automatic differentiation can be used for any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Cost of forward mode for forward direction $p \in \mathbb{R}^{n}$

$$
\operatorname{cost}\left(J_{f} p\right) \leq 2 \operatorname{cost}(f)
$$

Cost of reverse mode per reverse direction $p \in \mathbb{R}^{m}$

$$
\operatorname{cost}\left(p^{T} J_{f}\right) \leq 3 \operatorname{cost}(f)
$$

For computation of full Jacobian J_{f}, choice of best mode depends on size of n and m.

Derivation of Adjoint Mode $1 / 3$

Regard function code as the computation of a vector which is "growing" at every iteration

$$
\tilde{x}_{1}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdots \\
x_{n+1}
\end{array}\right]=\Phi_{1}\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdots \\
x_{n}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdots \\
x_{n} \\
\phi_{n+1}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
\end{array}\right]
$$

$$
\tilde{x}_{m}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdots \\
x_{n+m}
\end{array}\right]=\Phi_{m}\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdots \\
x_{n+m-1}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\cdots \\
x_{n+m-1} \\
\phi_{n+m}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n+m-1)}\right.
\end{array}\right]
$$

Derivation of Adjoint Mode $2 / 3$

Evaluation of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$ can then be written as

$$
f(x)=Q \Phi_{m}\left(\Phi_{m-1}\left(\ldots \Phi_{2}\left(\Phi_{1}(x)\right) \ldots\right)\right)
$$

with $Q \in \mathbb{R}^{q \times(n+m)}$ a 0-1 matrix selecting the output variables, e.g. for $q=1$

$$
Q=\left[\begin{array}{lllll}
0 & 0 & \ldots & 0 & 1
\end{array}\right]
$$

Then the full Jacobian is given by

$$
J_{f}(x)=Q J_{\Phi_{m}}\left(\tilde{x}_{m}\right) J_{\Phi_{m-1}}\left(\tilde{x}_{m-1}\right) \ldots J_{\Phi_{1}}(x)
$$

where the Jacobians of Φ_{i} are

$$
J_{\Phi_{i}}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1 \\
\frac{\partial \phi_{n+i}}{\partial x_{1}} & \frac{\partial \phi_{n+i}}{\partial x_{2}} & \frac{\partial \phi_{n+i}}{\partial x_{3}} & \cdots & \frac{\partial \phi_{n+i}}{\partial x_{n+i-1}}
\end{array}\right]
$$

Derivation of Adjoint Mode $3 / 3$

Forward mode:

$$
\begin{aligned}
J_{f} p & =Q J_{\Phi_{m}} J_{\Phi_{m-1}} \ldots J_{\Phi_{1}} p \\
& =Q\left(J_{\Phi_{m}}\left(J_{\Phi_{m-1}} \ldots\left(J_{\Phi_{1}} p\right)\right)\right)
\end{aligned}
$$

Adjoint mode:

$$
\begin{aligned}
p^{T} J_{f} & =p^{T} Q J_{\Phi_{m}} J_{\Phi_{m-1}} \ldots J_{\Phi_{1}} \\
& =\left(\left(\left(p^{T} Q\right) J_{\Phi_{m}}\right) J_{\Phi_{m-1}}\right) \ldots J_{\Phi_{1}}
\end{aligned}
$$

The adjoint mode corresponds just to the efficient evaluation of the vector matrix product $p^{T} J_{f}$!

Software for Adjoint Derivatives

Generic Tools to Differentiate Code

- ADOL-C for $\mathrm{C} / \mathrm{C}++$, using operator overloading (open source)
- ADIC / ADIFOR for C/FORTRAN, using source code transformation (open source)
- TAPENADE, CppAD (open source), ...

Differential Algebraic Equation Solvers with Adjoints

- SUNDIALS Suite CVODES / IDAS (Sandia, open source)
- DAESOL-II (Uni Heidelberg)
- ACADO Integrators (Leuven, open source)

