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Observer Design for Nonlinear Systems 
with Discrete-Time Measurements 

P. E. Moraal and J. W. Grizzle, Senior Member, ZEEE 

Abstract-This paper focuses on the development of asymp- 
totic observers for nonlinear discrete-time systems. It is argued 
that instead of trying to imitate the linear observer theory, 
the problem of constructing a nonlinear observer can be more 
fruitfully studied in the context of solving simultaneous nonlinear 
equations. In particular, it is shown that the discrete Newton 
method, properly interpreted, yields an asymptotic observer for a 
large class of discrete-time systems, while the continuous Newton 
method may be employed to obtain a global observer. Further- 
more, it is analyzed how the use of Broyden’s method in the 
observer structure affects the observer’s performance and its 
computational complexity. An example illustrates some aspects 
of the proposed methods; moreover, it serves to show that 
these methods apply equally well to discrete-time systems and 
to continuous-time systems with sampled outputs. 

I. INTRODUCTION 

A. General 
HE need to study state estimators T namical systems is, from a control 

(observers) for dy- 
point of view, well 

understood by now. For the class of finite-dimensional, time- 
invariant linear systems, a solution to the observer problem has 
been known since the mid 1960’s: the observer incorporates 
a copy of the system and uses output injection to achieve 
an exponentially decaying error dynamics. For the class of 
continuous-time nonlinear systems, the reader is referred to 
[38], [39] and the references therein for a summary of the 
theory up to 1986. More recent developments include the 
work of Krener et al. [23] on higher-order approximations for 
achieving a linearizable error dynamics. Tsinias in [37] has 
proposed (nonconstructive) existence theorems on nonlinear 
observers via Lyapunov techniques. Gauthier et al. [12] and 
Deza et al. [9] show how to construct high-gain, extended 
Luenberger- and Kalman-type observers for a class of non- 
linear continuous-time systems. Tomamb2 [36] and Nicosia et 
al. [31] have proposed a continuous-time version of Newton’s 
algorithm as a method for computing the inverse kinematics 
of robots; moreover, the latter paper also presents a symbiotic 
relationship in general between asymptotic observers and 
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nonlinear map inversion. Finally, Michalska and Mayne [27] 
have used a dual form of moving horizon control to construct 
observers for nonlinear systems. 

Less attention has been focused on the observer problem for 
discrete-time systems. It was shown in [6] that certain prop- 
erties, like observer error linearizability [22], are not inherited 
from the underlying continuous-time system. Moreover, the 
class of continuous-time systems that admit approximate solu- 
tions to the observer error linearization problem for their exact 
discretizations with sampling time T in an open interval is 
limited to the class of nonlinear systems that are approximately 
state-equivalent to a linear system and hence is very restricted 
[5]. These results motivated the search for a structurally 
more robust approach to the observer problem. In Section 
11, it is argued that instead of trying to imitate the linear 
observer theory, the nonlinear observer problem should be 
studied in the context of solving sets of simultaneous nonlinear 
equations. This viewpoint is supported by showing in Section 
I11 that the discrete Newton method, properly interpreted, 
yields an asymptotic observer for a large class of discrete-time 
systems. In Section IV, a relationship between this observer 
and the well-known extended Kalman filter is established. 
As an extension to the result from Section 111, it is shown 
in Section V, that the continuous Newton method may be 
used to obtain a global exponential observer. Section VI 
addresses an alternative to using Newton’s method in the 
observer design-namely, Broyden’s method-in the case that 
computational efficiency is an important issue. Finally, an 
example will illustrate the theory presented herein. 

Some of the results reported here have previously appeared 
in [16], [17], and [28]. Extensions to the case of singularly per- 
turbed discrete-time systems have been presented by Shouse 
and Taylor [33]. 

B.  Notation and Terminology 
Consider a continuous-time system 

where z E R”, U E E”, and y E Rp. Its sampled-data 
representation, obtained by holding the input constant over 
half open intervals [kT, (k + 1)T] and measuring the output 
at times kT, will be denoted 
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where x k  := x ( k T ) ,  Yk  := y ( k T ) ,  and 'thk := U ( k T ) .  The 
symbol ":=" means that the object on the left is defined to be 
equal to the object on the right; the reverse holds for "=:." 

It is worth noting that if (A,B,C,D)  are the matrices 
describing the Jacobian linearization of (1) around a given 
equilibrium point, then (exp(AT), Jz exp(A.r) BdT, C, 0) 
are the corresponding matrices for (2) about the same equi- 
librium point [14]. Consequently, if the linearization of (1) is 
controllable and/or observable, the same will be true of the 
linearization of (2) for "almost all" T [35]. 

A discrete-time system will be denoted as 

arises from a continuous-time system (l), (7) can be obtained 
directly from (1) by sampling the inputs and outputs N-times 
faster than the state; in other words, 2j := x ( j N T ) , f i i  = 
~ ( ( j  - 1)NT + iT), etc. More generally, one could sample 
the inputs and outputs at different rates, or even some input 
components at faster rates than others, but we will not pursue 
this here. Throughout this paper, the notation 11 will be used 
to denote both a vector norm and the corresponding induced 
operator norm. Finally, we recall that if g: R" + R" is 
at least once continuously differentiable, its rank at a point 
z o  E R" is the rank of its Jacobian matrix at 20, [4] that 
is, rank [%(zo)]. 

U. OBSERVERS FOR SMOOTH 
where z E R", U E R", and y E Rp. It is convenient to 
let F"(z)  := F ( X , U )  and h"(x) := h(x ,u)  so that things 
like F ( F ( x , u ~ ) , u ~ )  and h ( F ( X , u l ) , u z )  can be written as 

DISCRETE-TIME NONLINEAR SYSTEMS 

A. General 
F"2 OF"' ( x )  and hUz OF"' ( x )  respectively, where ''0" denotes 
composition. Consider a discrete-time system on R" 

In the sequel, we will often be dealing with a set of N 
consecutive measurements or controls; these will be denoted 
as 

If N is fixed and clearly understood, then the abbreviations 
Y k  and will be employed, so that certain formulas will be 
easier to read. 

To a discrete-time system E, we associate an N-lifted 
system (see [ll]), E N ,  by block processing the measure- 
ments and controls over a window of N sampling instances. 
Specifically, fix N and let := Y N ~  = q N ( j - l ) + l , N i ] ,  

in terms of its vector components as Oj = col(iijl, . . . , iij") 
where 6: := U N ( j - l ) + i .  Let 

Oj := U N j  = U [ N ( j - l ) + l , N j ] ,  and 2j := X N j .  write Out uj 

@(2, O) := FGN o * * .  o FG1 ( 2 )  

and 

The N-lifted system is defined to be 

Note that its dynamics is nothing more than the dynamics of 
(3) iterated N-times. The state of (7) is the state of (3) at 
the beginning of each "window" of length N ,  and @ simply 
describes how the state evolves from window to window. The 
representation (7) can be termed "multirate" because, if (3) 

with Zk E R', some z 2 0, is an asymptotic observer [25] 
for (8) if it satisfies: A) V x 1  E R " , V U ~  E R", 3 z 1  E R' 

R", z 1  E B', limk,, Il?k - xk11 = 0. If the read-out map q 
in (9) is the identity, ?k = Zk,  then (9) is called an identity 
observer [25]; if the convergence of ? to x is exponential, then 
(9) is called an exponential observer. 

For later use, the observer (9) will be said to be dead-beat 

such that ?k = x k  for all k 2 2, and B) v x l  E Rn,vuk E 

Of order d, if, upon Writing r ( Z k , Y k , U k )  =: r Y k r u k ( Z k )  and 
q ( Z k , Y k , U k )  =: Q Y k r U k  ( z k  ), then 

independently of the particular observer initial condition 2 1 ,  

where z d  is the state of (8) at time d. It is remarked that 
dead-beat observers are of interest for stabilization problems, 
because, if Uk = ( . ( x k )  is a stabilizing feedback for (8), 
then Uk = a!(?k)  will always result in an internally stable 
closed-loop system whenever the observer (9) has the dead- 
beat property. This is one of the rare instances of a nonlinear 
separation principle. 

All the above has been stated in a global fashion. Let us note 
that there are at least two ways of localizing the concept of an 
observer. The first is essentially infinitesimal: one guarantees 
the existence of open neighborhoods 0, and 0, of the origin 
of (8) and (9), respectively, and an open neighborhood of 
controls 0, such that A) and B) hold as long as z E 0, 
and V k  2 1, U ] ,  E c?, and Xk E 0,. The work on observers 
with linearizable error dynamics [6], [20]-[24], for instance, 
falls into this category. A second way to localize the concept 

1 I 1 ,n I- 
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could be called (S, V)-quasilocal: one is given subsets S and 
U, of the state space of (8) and of its controls, respectively, 
having the property that, for every initial point x 1  E S, there 
exists an open subset O,(xl) of the state space of (9), such 
that A) and B) hold as long as z 1  E O,(x1) and V k  2 1, 
x k  E S, and Uk E V. In other words, for the case of identity 
observers, instead of guaranteeing the existence of an open set 
about the origin of the product state space R" x R" where 
everything works, one is assuring the existence of an open set 
about the diagonal of B" x R", whose projection onto the 
x-coordinate contains S. 

In the following, an approach to the construction of ob- 
servers for discrete-time systems is developed. The authors' 
perspective was influenced by the work of Aeyels [l], [2], 
Fitts [lo], Glad [13], and the multi-rate time sampling results 
of [14]. 

B.  Dead-Beat Observers 

a vector of N consecutive measurements 
Consider once again the system C (8) and let y l , N ~  denote 

=: H ( x ,  q l , , , )  

(11)  
C is said to be N-observable' [l], [32], [35] at a point 
1 E R n , N  2 1, if there exists an Ntuple of controls 
U [ ~ , N I  = col(u1,. . . , U N )  E (R")N such that Z is the unique 
solution of the set of equations 

h " 1  (x) 
h u 2  o F"'(x) 

h U N  0  FUN-^ 0 . . . 0 F"1 ( x )  

q I , N ]  = 

where 

The system is uniformly N-observable if the mapping 

H*: R" x ( R " ) N  + ( R P ) N  x ( R " ) N  (14) 

by (2, u [ l , N ] )  --t ( H ( x ,  U p , N , ) ,  Up,,]) is injective; it is 
locally uniformly N-observable with respect to 0 c R" and 
U C 

Whenever C is uniformly N-observable, the system of 
equations 

if H* restricted to 0 x U is injective. 

can be, for each N applied inputs U [ k - N + l , k ] ,  uniquely solved 
for x k - N + 1 ,  and the current state 21, obtained by 

xk = @ U [ k - N ' k - l l  ( x k - N + l ) .  (16) 

' N refers to the minimum number of measurements needed to recover the 
state. In [2], Aeyels shows that, "generically," N can be taken to be 2n + 1. 

This constitutes an order N dead-beat observer for E, [13]. 
Conversely, suppose that (9) is a dead-beat observer of order 
N .  Then 

for all z E R'; thus the left-hand side of (17) does not 
depend on z and is a solution to (15H16). This shows that 
constructing a dead-beat observer of order N is equivalent to 
left-inverting (15) and composing the result with the right-hand 
side of (16). In a similar vein, an asymptotic (nondead-beat) 
observer can be thought of as constructing a solution to 
(15H16) as N -+ 00. Clearly, for nonlinear systems, insisting 
that this can be done in closed-form is very restrictive. It 
is therefore natural to formulate an extended concept of an 
observer as a possibly implicitly defined dynamical system, 
involving successive approximation routines, logical variables 
and/or lookup tables to dynamically "estimate" the state of a 
deterministic nonlinear system 1161. This perspective will be 
further pursued in the next section where Newton's algorithm 
is interpreted as a nonlinear observer (9). 

Before doing so, however, let us first tie in the notion 
of a dead-beat observer with the observer error linearization 
approach [6], [20]-[24]. For simplicity of exposition, suppose 
that (8) does not have any inputs. One seeks a (locally defined) 
coordinate transformation 5 = T ( x )  in which (8) takes the 
form 

where the pair ( A , C )  is observable. This gives a family of 
infinitesimally-local observers 

Letting e k  := 5 k  - Zk yields 

(20) 

Choosing K to place the eigenvalues of ( A  - K C )  at zero 
makes f: into a dead-beat observer of order n. In other words, 
the ability to achieve a linear error dynamics (20) implies the 
explicit knowledge of a left-inverse to (12). 

e k + l  = ( A  - K C ) e k .  

111. NEWTON'S ALGORITHM AS AN OBSERVER 
Consider again the system E, (8). It is said to satisfy the N- 

observability rank condition with respect to O C R" and U C 
( E ~ ) ~  i f H * :  o x U + ( R P ) ~  x is an immersion 
[35]; that is, it has rank n+Nm at each point of 0 x U (recall 
that H* was defined in (14)). Note that C is N-observable 
and satisfies the N-observability rank condition with respect 
to 0 and U if, and only if, H*: 0 x U + (Rp)N x (Rm)N 
is an injective immersion;* this is in turn equivalent to: for 
each U[1,,] E U, H ( . , I ~ [ ~ , N I ) :  8 + (Rp)N is an injective 
immersion. 

'That is, an embedding [4]. 
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Newton's algorithm for 

q k - ~ + i , k ]  - H(xk-N+l, U[k-N+l,k]) = 

is 
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constants a, p, y, L, and C by 

where, for simplicity, it has been assumed that the set of (21) 
is square; in the case that there are more equations than states, 
the inverse in (22) should be replaced by a pseudo-inverse 
[26, p. 3091, [8, pp. 222-2241. The standard convergence 
theorem for this algorithm can be found in [26]. For the 
moment, assume that U [ k - ~ + ~ , k ]  is fixed, and let H ( z )  = 
H ( z ,  U p - ~ + ~ , k ] )  for this fixed value of U. 

Theorem 3.1 [26]: Suppose that H is twice differentiable 
and that ~ ~ ~ ( x ) ~ ~  5 K for 2 E R"; suppose there is 
a point e E R" such that Po := %(?) is invertible 
with IIP;lll I Po and IIP;'(Yk - H(<o))ll I qo. Under 
these conditions, if the constant h, = PoqoK < 1/2, then 
the sequence 9 generated by (22) exists for all i 2 0 and 
converges to a solution of (21). If instead l l ~ ( x ) l l  5 K 
only in a neighborhood B of to with radius 

then the successive approximations generated by Newton's 
algorithm remain within this neighborhood and converge to 
a solution of (21). 

The most interesting point is that Theorem 3.1 gives an 
estimate of how good the initial estimate of xk should be 
before a few iterations of (22) will generate better estimates. In 
this regard, the quantity 11 @(x)Il ,  which measures the degree 
of nonlinearity of (21), is seen to be of central importance. For 
a linear system, ll@(x)ll 0, and the initial estimate can be 
arbitrarily poor; when ~ ~ @ ( x ) ~ ~  is large, the initial estimate 
should, in general, be better. 

Newton's algorithm is now interpreted as a quasilocal 
exponential observer. Suppose that N has been fixed; for 
notational ease, let Yk = q k - N + l , k ~  be the vector of the 
last N measurements and similarly let uk = U [ k - ~ + ~ , k ]  = 
C O ~ ( U ~ - N + ~ , . . . , U ~ )  be the vector of the last N controls. 
Define 

and let ( Q Y k , U k ) ( d ) ( J )  represent Oyk*uk (5) composed with 
itself d-times. 

Let 0 be a subset of R", V a subset of R", N 2 1 a given 
integer and E > 0 a positive constant. Denote the complement 
of 0 by -0 and define dist(o, - 0) = inf{ llx-yll: y E- O}, 
and 0 4 2  = {x E 0:dist(z,- 0)  2 ~/2}.  Finally, define 

2 E 0 6 / 2 ,  U E V N  . 1 
Theorem 3.2: Suppose that the following conditions hold: 
1) F and h in (8) are at least three times differentiable 

with respect to x; 
2) there exist a bounded subset 0 c R" and a compact 

subset V c R" such that for each z E 0 there exists 
U E V such that F ( x , u )  E 0 (i.e., 0 is controlled- 
invariant with respect to V); moreover, the controls are 
always applied so that F ( x , u )  E 0; 

3) there exists an integer 1 I N I n such that the set of 
equations (1  1) is 
a) square, 
b) uniformly N-observable with respect to 0 and V N ;  
c) satisfies the N-observability rank condition with 

Then, for every E > 0, the constants a, p, y, L, and C are 
finite; moreover, whenever 

1 

respect to 0 and V N .  

- L} (25) { [L, 4yb(a)2L' 8 i a L '  2CL 
S I min - 

and 

d 2 max{l,log210g24L}, d E IV (26) 

~ k + l  = ( O Y k ' U k ) ( d ) ( F ( ~ k ,  u ~ - N ) )  (27) 
then 

= FUk-1 o Fuk-' o . * .  o F U k - N ( ~ k )  (28) 

is a quasilocal, exponential observer for (8) in the sense that: 
A ) i f q E O a n d z N + 1 = x 1 , t h e n P ~ = s ~ f o r a l l k 2 N + l  
and B), if z1 E 0,llzN+1 - x111 < S and for all k 2 0, 
dist(xk, - 0) 2 6 ,  then Il&+l - xk+lII I 311fk - xkll. 

The proof may be found in [ 171; the basic idea is to view the 
observer problem as one of solving a sequence of nonlinear 
inversion problems, each described by (12). Since the set 0 
is relatively compact and controlled invariant with a compact 
set of controls, Newton's algorithm can be shown to have a 
uniform rate of convergence over the entire sequence of prob- 
lems. The idea then is to iterate long enough on each problem 
(the parameter d)  so that F applied to the solution of the kth 
problem is a very good initial guess for the (k + 1)st problem. 

The set 0 is assumed to be bounded, but not necessarily 
small; if it is not controlled-invariant, then only finite time 
estimates are possible; the same is true of the observer error 
linearization approach of [20]-[24] (for discrete-time systems, 
see [6]). 

1 I '  1 ' 1  
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The observer (27)-(28) is coordinate dependent. It is inter- 
esting to note that the coordinate transformation approaches, in 
general, would only favor convergence of (21) if they reduce 
I I 9 (z , U) I I. In particular, eliminating low-order polynomial 
terms in favor of high-order terms will not always accomplish 
this task. 

Remark 3.3: 
a) In Theorem 3.2, one may take d = 1 if, in (25), & is 

replaced by &. 
b) Once again, assumption 3-a), that (11) is square, is 

NOT essential. One could try eliminating certain rows 
of (1 1) while still preserving the rank condition 3-c), 
but this would, more-than-likely, invalidate 3-b). The 
better alternative is to replace the inverse in (24) with a 
pseudo-inverse, as in [26, p. 3091 or [8, pp. 222-2241. 

c) The observer (27)-(28) bears some resemblance to the 
iterated extended Kalman filter of [7]. This will formally 
be established in the next section. 

d) By modifying the step-size in Newton’s algorithm, 
“globally convergent” versions of the algorithm can 
be shown to exist. Chapter 6 of [8] presents this very 
nicely from a numerical analytic viewpoint. A different 
way of “globalizing” the algorithm is to systematically 
produce a good point at which to initialize it. This is 
discussed in [15], [16]. In Section V, the continuous 
Newton method will be shown to yield a global version 
of the above observer. 

e) It is often pointed out, and in [29] shown to be a 
valid practical concern, that the evaluation of the Ja- 
cobian z, be it explicitly or using finite difference 
approximations, may be computationally very expensive 
or even prohibitive. Modified Newton methods have 
been proposed, in which the Jacobian is not explicitly 
evaluated at every step, but updated iteratively without 
requiring additional function evaluations. Section VI 
explores the consequences of using Broyden’s method 
instead of Newton’s in the observer (27)-(28). 

IV. RELATION BETWEEN K A L m  
FILTERS AND NEWTON OBSERVERS 

To show how the Newton observer is related to the extended 
Kalman filter, we will consider an invertible, autonomous 
discrete-time system 

xk+l = F ( z k ) ,  xk E R“ 
Y k  = h(zk ) ,  y k  E Rp (29) 

in which we replace the output map h by the extended output 
map H ,  defined in the following manner 

(30) 
Assume that the above system satisfies the N-observability 

rank condition and is N-observable; furthermore, assume that 
H is a square map, i.e., H :  R” * E”. A common way 

to construct an observer for system (29)-(30) is to apply the 
extended Kalman filter to the associated noisy system, i.e., the 
system with added artificial noise processes 

z k + l  = F(Zk) + Nwk 
[k = H(Zk) Rvk (31) 

where V k  and W k  are assumed to be jointly Gaussian and 
mutually independent random processes with zero mean and 
unit variance. The extended Kalman filter for this system is 
given by the following equations: 
measurement update 

2 k  = 2; -k Kk(& - H ( i i ) ) ,  
Q i l  = ( & i ) - l +  HZ(RRT)-’Hk 

time update 

2i++l = F(Pk),  
= AkQkAZ -I- NNT 

where 

and N ,  R, and QO are the design parameters. Let us choose 
N = p I  and R = &I, and consider the equations for the error 
covariance QC and the observer gain Kk 

= &2Ak(&2(&i ) -1  + HrHk) - ’A:  + p21 

Kk = QiH:(HkQLHF + E~I) - ’ .  

Given any positive definite Q ; ,  the update equation for Q ;  
in the limit as E + 0 is given by 

Qi+l = p21-  

Substituting this in the equation for Kk and letting E + 0 gives 

Kk = p2HF(Hkp2H;)-l  
= HZ(HkHF)-l  
= HF1 

which is valid since, given the observability conditions, Hk 
is invertible. The extended Kalman filter equations are then 
given by 

(32) 
F(&) (33) 

= 2,  + HF1(Yk - H ( 2 ; ) )  
A -  

x k + l  = 

which is exactly the Newton observer for system (29) with 
one Newton iteration per time step. 

In [3], it was recently shown that the measurement update 
equations for 2 k  in the iterated extended Kalman filter are 
exactly those arising from the minimization problem 
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when a Gauss-Newton method (an approximate Newton 
method) is used with 2; as initial guess. This shows that 
the covariance matrices R and Qh may be interpreted as 
weights on the norms in the output space and state space, 
respectively. It remains presently unclear, however, how the 
update equations for the covariance matrix Q; in the Kalman 
filter can be given a meaningful interpretation in terms of 
updating the weighting matrix in the above minimization 
problem after every iteration. 

It must be pointed out that the extended Kalman filter, 
although commonly used as a nonlinear observer, had 
not been actually proven to be a convergent asymptotic 
nonlinear observer until recently. In [34], it is shown that, 
under suitable observability conditions, if the state evolves 
in a compact set and the Kalman filter is initialized close 
enough to the true state, then the error covariance matrices 
&I, and (Qk)-l remain bounded, and the observer error 
goes to zero exponentially. A proof of convergence for the 
continuous Kalman filter with a special choice for the initial 
error covariance matrix is given in [9]. 

v. CONTINUOUS NEWTON METHOD AS A GLOBAL OBSERVER 
In the remaining sections, we will, for notational simplicity 

and without loss of generality, restrict ourselves to invertible 
and autonomous systems. The results that are obtained can 
without any difficulty be extended to noninvertible systems 
and/or systems with inputs (see example section). Consider 
once again the discrete-time system 

kk+i = F(xk), xk E R" 
Yk  = h(xlc), Yk E Rp (35) 

with the extended output map H, defined in the following 
manner 

(36) 
Assume that H is a square map.3 The discrete Newton method 
with step size hi for solving Yk - H(x)  = 0 is 

.z;" = Zd + hiJ(z;)-l(Yk - H(Z;) )  (37) 

where J ( z )  := % ( Z ) .  If we consider this equation with 
an infinitesimally small step size, we obtain the following 
differential equation 

which is referred to as the continuous Newton method; the- 
right hand side of (38) is commonly referred to as (gradient) 
Newton flow [19]. The stability of Newton flows has been 
studied extensively (see [ 191, [40] and references therein). 

We now construct a global asymptotic high-gain hybrid ob- 
server for the system (35), by interpreting (38) as an observer 

3 ~ i s  seems to be a crucial assumption. 

for that system. Assume that the time interval between xk and 
Z k + l  is T, i.e., xk = x ( k T ) .  We thus obtain the following 
hybrid system-observer 

where K is a positive scalar, to be determined later. 
Theorem 5.1 : Assume that (35) is uniformly N-observable 

and satisfies the N-observability rank condition with respect 
to R". Suppose that 

If K 2 *log(2La@), then (39) is a global asymptotic 
observer for (35). 

The proof for this and the next resul: can be found in [28]. 
In general, the quantities Ilgll, 1 1 ~ 1 1 ,  and IlEll will not 
be uniformly bounded on R", nor will the system (35) be 
globally observable. For these cases, we can still obtain a 
nonlocal convergence result for the observer (40). 

Proposition 5.2: Suppose the following conditions hold: 

1) F and h are at least once continuously differentiable; 
2) 3 compact 0 c R" such that: 

a) (35) is N-observable with respect to 0; 
b) (35) satisfies the N-observability rank condition 

3) 3 , ~  > 0 such that 0, := {x E 0 I inf , ,p\o llx-y[l > 

Then, if K 2 log(2LaP), if xo E 0 p  and if Ilzo(0) -x011 < e, it follows that limk+m - xkll  = 0. 
Remark5.3: If no a priori information is known about 

the initial state of the system, one may, for lack of a better 
alternative, initialize the observer at the origin. Suppose 0 
contains the closed ball centered at the origin, with radius R, 
B(0, R). Then the previous analysis showed that convergence 
can be guaranteed if 1120 -x011 = llx0II 5 & or, what may 
provide a more practical estimate, if IIH(0) -YN--1II I 6. 
Most global modifications of the discrete Newton method are 
based on choosing a proper stepsize (e.g., Armijo stepsize 
procedures) and/or search direction (e.g., trust region updates), 
[8], [30], such as to assure a decrease in the term IIYk-H(Zi)ll 
in the ith step of the algorithm. Obviously, in terms of 
a connected region of convergence, one cannot do better 
than allowing an infinite number of iterations, each taking 
infinitesimally small steps in a guaranteed descent direction, 
i.e., the continuous Newton method. 

with respect to 0; 

p }  is F-invariant and nonempty. 

I I I 'II T I  - 
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VI. BROYDEN'S METHOD 
In the previous section, it was seen that a large region of 

convergence of the Newton-observer could be guaranteed if 
one used the hybrid form presented in (39). To implement the 
hybrid Newton-observer, however, a closed-form expression 
for the inverse of the Jacobian matrix would be necessary; 
this does not seem very realistic. Moreover-as mentioned 
in Section III-even in the discrete Newton algorithm, the 
computational complexity of repeated Jacobian evaluations 
might prove prohibitive in practice. This provides sufficient 
motivation to pursue methods for approximating the Jaco- 
bian and the investigation of the associated convergence 
properties. Here, we will look at Broyden's method, as it 
is among the most popular of such approximation schemes 

Broyden's method for solving a system of nonlinear equa- 
tions P ( z )  = 0 is a modified Newton method in which the 
Jacobian is not calculated exactly at each step, but rather 
iteratively approximated using secant updates. In contrast to, 
for example, finite difference approximations, no additional 
function evaluations are required. Define J ( z )  = %(E). 
Broyden's method for solving P ( x )  = 0 is [8]: Given xo, 
the initial guess for 3, where P(3)  = 0, and A', the initial 
approximation for the Jacobian of P at zo 

(424 
(42b) 
(42c) 

[81, [301. 

solve Aisi = -P(xi)  for si 
xi+l := + si 

v i  := P(,i+l) - P ( 2 )  

The update Ai for the Jacobian has the property of bounded 
deterioration: even though it may not converge to J ( z ) ,  it 
deteriorates slowly enough for one to still be able to prove 
convergence of (2) to 3. 

Conditions for convergence are the same as those of 
Newton's method, with the additional requirement that, with 
P(3)  = 0, not only the initial guess z' be sufficiently close 
to 3, but that also A' be sufficiently close to J ( 3 ) .  For 
Broyden's method, local superlinear convergence can be 
proven. Newton's method, on the other hand, exibits local 
quadratic convergence. 

In the following we will show that, in general, Broyden's 
method alone cannot successfully be used in the Newton- 
observer; occasional recalculation of the exact Jacobian seems 
to remain necessary, basically because the property of bounded 
deterioration no longer holds when Broyden's method is 
applied to a sequence of problems: Pk(x) = 0. For the class 
of slow-varying or weakly nonlinear systems, however, this 
approach can substantially reduce the computational complex- 
ity. 

In the observer problem, at each step k we want to solve 

Pk(~k) := H ( z ~ )  - Yk = 0. (43) 

Note that this sequence of equations has a special structure: 
- ax and their solutions are related by x k + l  = F(zk ) .  

Assume for simplicity of exposition that H: R" -, R". Let 
apk+l - apk 
ax 

0 be a subset of R" such that the following quantities are 
finite 

d F  

d H  

L : =  sup - x) < 00 

p : =  sup - x)  < 00 

ZEO ll ax ( /I 
XEO I/ ax ( I1 

a := sup I) (E(%)) -Ij/ < 00 

I/ 8x2 (x)ll < O0. 

XEU 

a2 H 
y : =  sup - 

Given the dth iterate in the kth problem, x$ and Ai ,  being 
approximations for Xk and J ( x k ) ,  respectively, the initial 
guess for the (k + 1)st problem is taken as xi+l = F ( x f ) .  In 
terms of (42a)-(42d), this defines S"k and i j k ,  and hence A:+l, 
the initial approximation for the Jacobian at as 

where 

3k = F ( $ t )  - xi 
v k  = Pk+l(x:+i) - Pk+l(X$) 

(Mb) 
(Mc) 

= F ( z f ) .  (444 

Note that this update is the same as in Broyden's method, 
(42d), except that s; is determined by (Mb), which is a 
consequence of switching from the kth to the(lc+l)-st problem 
in the sequence {Pk(x) = 0) .  

To develop bounds on the approximation error, we will need 
the following lemma from [8]. 

Lemma 6.1 (Bounded Deterioration): Let D C R" be 
open and convex; xi,xi+l E D,xi # 3. Let A2 E Rnxn 
and let Ai+l be defined by (42a)-(42d). Assume that J is 
such that 3y < 00 verifying 

(45) l l J ( ~ )  - J(3)ll 5 yllx - 511 VX E D. 

Then, for either the Frobenius or the 12-matrix norm 

1 + ZY(/~Z"+' - 211~ + llxi - 3112). (46) 

To begin with, let Xk and zk+1 be such that Pk(xk) = 
H(zk)  - yk = 0 and Pk+l(xk+l) = H(xk+i)  - yk+i = 0. 
Let A i  and xi be given and determine Ai+, and xi+, by 
(44aH44d). Furthermore, define EL := AL - J ( x k )  and 
e; := zh - Xk. A bound on the error IIE;+,II can then be 
derived to be 

llE,O+lIl I llE;Il+ 7112k - xk+lll 
1 + p l l e i I I  + 11~i+111 + lIZk+l - Qll) 

1 3 

From Lemma 6.1 we get the following 

I IIE:ll + p ( 1  + L) l l4  + ZYIIxk  - xk+lll. (47) 

. /  d \ 

7 1 1 'I 
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From the superlinear convergence of Broyden’s method, it 
follows that, with 11EE11 sufficiently small, for any o < c < 1, 
the following holds: provided that 11.: 1) is sufficiently small 

lle~+lll I c11ei11 vi 2 0. (49) 

Now we can write (48) as 

and (47) becomes 

where ,Bf is the Lipschitz constant for f on some given set. 
Slower sampling means more time in between samples for 
calculating Xk given Yk. However, (52) indicates also that 
the error in IIAO,+, - J(zk+l)ll grows faster as T increases, 
hence the Jacobian has to be recalculated more often too. 
On the other hand, as T + 0, the approximation to the 
Jacobian will deteriorate more and more slowly. It should 
be pointed out though, that for very small T, the problem 
of solving Yk - H ( i k )  = 0 becomes ill-conditioned, since 
consecutive measurements will differ only slightly from each 
other. From a numerical analytic point of view, the system 
becomes practically unobservable. Thus, as is usual, there are 
trade-offs to be made. 

VII. EXAMPLE: MIXED-CULTURE BIO REACTOR 
WITH COMPETITION AND EXTERNAL INHIBITION 

In this section, we will illustrate the Newton observer and 

conceming a mixed-culture bioreactor. An application of the 
Broyden observer to an automotive problem can be found in 
in [291- 

The system under consideration describes the growth of two 
species in a continuously stirred bioreactor, which compete for 
a single rate-limiting substrate. In addition, an extemal agent 
is added which inhibits the growth of one species, while being 
deactivated by the second species. The measured quantity 
is the total cell mass of the two species. The example is 
taken from [18], where the system was shown to be globally 
feedback linearizable, provided that full state information is 
available. 

Here, it will be shown first that, assuming noise-free mea- 
surements and dynamics, a discrete Newton observer may fail 
to converge if not properly initialized. The (global) continuous 
Newton observer is then implemented and shown to converge 
for a wide range of operating conditions irrespective of the 

errOrS are present. 

1 l + c -  2cd+l +?( 1-c  

The above inequality actually provides an upper bound the continuous Newton Observer by Of an 
on the worst-case deterioration of the approximation to the 
Jacobian after d iterates and a switch from the ICth to the 
(IC + 1)st problem. There are two special cases of interest: 

1) H is linear, hence y = 0, and we then obtain uniform 
superlinear convergence of the sequence of problems 
{Pk(zk) = 0}, which is essentially reduced to one 
single problem to which Broyden’s method is applied. 
This yields an asymptotic observer different from the 
classical Luenberger observer. 

2) The system is operated near an equilibrium point, in 
which case the term 11zk+1 - zkl )  is small, or H is 
weakly nonlinear, in which case y is small. In either 
case, 11Eg11 will remain sufficiently small over a number 
of problems. 

terms in (51)7 the sequence 

Hence, for some IC, 
{ 11 A: - J ( ~ k ) l l }  will not be uniformly bOUmkd from above- 

J ( z k ) ,  which, in practice, may be indicated by slow decrease, 
or even increase, of the term l l yk  - H(xi)>ll ,  or by ill- 
conditioning of the matrix A i .  In an actual implementation 
of Broyden’s method, one will, for reasons of computational 
complexity, typically update the QR-factorization of A i ,  

for to avoid numerical instabilities [8]. For the iterates to 
converge throughout the sequence of problems, J(x:) will 
have to be recalculated occasionally. Although one might be 
able to obtain a tighter bound than (51), the term IIzk+l -2k11 
will remain. This term represents in a sense the “distance” 
between two subsequent problems, which is prescribed by the 
system’s dynamics and, in general, cannot be made smaller 
such as to coerce uniform convergence of {x;}, unless the 
observer is being used in a closed-loop situation and the state 
is being regulated to a fixed value, for example. 

cretization with sampling time T of an underlying continuous- 
time system: x = f(.)* Then the term 1I2k+1 - Zkll in (5l) 
can be estimated by 

In general9 due to the last 

no longer be to observer initialization, i.e., even when large initial observer 

The system dynamics are given by 

. 

x.2 = 2 2  - u1x2 

2 3  = -0.52123 - ‘U123 -k U1U2 

0.4S(z17 2 2 )  21 - u121 

O.OlS(Z~,  2 2 )  

2 1  = 
0.05 + S(21, 2 2 )  

(0.05 + S(Z~, 22))(0.02 + 23) 
rather than Ai  itself, and ill-conditioning will be checked 

(53) 

where S(z l ,z2)  = 2 - 5x1 - 6.66722, time is expressed in 
hours. 

xl: cell density of inhibitor resistant species 
x2: cell density of inhibitor sensitive species 
x3:  inhibitor concentration in fermentation medium 
ul: dilution rate 
ug: inlet concentration of the inhibitor. 

Suppose the discrete-time system (35) is the exact dis- Following the notation of the previous section, let xk := (xk, 
xi, xi)‘, uk := (U; ,  U:)‘, and yk denote the states, inputs, 
and outputs, respectively, evaluated at time kT, with T being 
the sampling time with which the system (53) is discretized. 

112k+1 - zkll = Ilx((IC + 1)T) - o(ICT))I 5 ,BfT (52) let yk := (Yk-2,Yk-1,%)’ and uk := 

I I 1 ’ 1  I 1  - 
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-1.5 - 
0 2 4 6 8 10 

Time (hours) 

Fig. 1. 

when u l ( t )  = 0.3 and uz( t )  = 0.0067. 

Discrete-Newton observer: relative observer error e = ( e l ,  e2, e 3 ) ,  
where e .  - 7, z’-z’ for 2 = (0.2,0.02,0.005) and 2 = (0.02,0.2, 0.015) 

I -  

A discretization of the above system with sampling time T 
may then be expressed as 

xk+l = FgL (xk)  
Y k  = h(xk) (54) 

and the state-to-measurement map is given by 

. ,  
Computing the rank of at a number of different points in 
the state space showed that the N-observability rank condition 
is indeed satisfied for N = 3. It was also found, however, that 
system (54) is poorly observable, indicated by ill-conditioning 
of z: ratio of its largest to smallest singular value for a 
sampling time of T = 1 (i.e., one hour) is on the order of 
500. A typical response for the Newton observer is shown in 
Fig. 1, simulations showed however, that the Newton observer 
fails to converge if it is not initialized closely enough to the 
actual states, e.g., when 

x =  f : i 2  ) a n d ? =  (0.2 ) .  0.02 

0.005 0.015 

Given the time scale-sampling times in the order of 
minutes or even hours-there is virtually no restriction to 
available CPU time in the observer design. We therefore 
simulated the continuous Newton observer as well. It is given 
by 

z k  = F”k-2(Z,(kT))  
pk  = F”k-1 

( z k ) -  

As expected, this observer did converge for all physically 
feasible initial values. Responses are shown in Fig. 2 for four 
values of the observer gain K. The plot confirms our finding 
that the observer may fail to converge if K is too small. 

- 6 ~ ~ ” ’ “ ’ ” ” ” ~ ’ ” ”  
0 2 4 6 8 1 0  

nme (in hours) 

Fig. 2. 
is the relative observer error for z2, when u l ( t )  E 0.3 and u Z ( t )  

Continuous Newton observer with different observer gains IC; shown 
0.0067. 

VIII. CONCLUDING REMARKS 
In this paper, we have provided a new observer design 

method for nonlinear systems with discrete measurements. 
The method relies on asymptotically inverting the state-to- 
measurement map, which is constructed by relating the sys- 
tem’s state at a given time to a (predetermined) number of 
consecutive measurements. By using a continuous Newton 
method for the map inversion, the observer error was shown 
to converge to zero, globally and exponentially. If, instead, 
a computationally less expensive discrete Newton method 
is used, the observer shows quasilocal exponential conver- 
gence. Even more computational advantage may be gained by 
employing Broyden’s method, whose effect on the observer 
performance was also investigated. The theory was illustrated 
on an example. Results on using this observer in a closed-loop 
setting have been reported in [ 171. 
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