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Structural index

An important step in the procedure to transfer the model to C code is to
perform index reduction (and find consistent initial conditions). Index
reduction requires that you know the index of the model. As we know it is a
difficult problem in general to determine index; a method based on model
structure is typically used.

Structural index can be defined in many ways. One way, for the DAE

Aẋ + Bx = 0

the structural index is the index the DAE has for almost all A and B with
the same structure.

direct generalization to non-linear systems

can be computed with Pantelides algorithm, which will be used also for
other purposes
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Structural index - introductory example
Let x = (x1, x2) ∈ R2 and consider the index 1 model

ẋ1 = x1 + x2 + u

0 = −2x1 + x2

ẋ1 x2
e1 X X
e2 X

The highest differentiated variables are xhd = (ẋ1, x2)

DAE has index 1 for almost all coefficients in front of the x variables, only
when coefficients in front of ẋ1 in e1 or x2 in e2 is 0 we have a problem.

Conclusions: we can from the table on the right determine that this model
has (structural-)index 1.

F (ẋ1, x1, x2) = 0

has low index (locally) if

∂F (ẋ1, x1, x2)

∂xhd

∣∣∣∣
ẋ1=x

′,∗
1 ,x1=x∗1 ,x2=x∗2

has full rank
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Structural index - introductory example

Let x = (x1, x2, x3) ∈ R3

ẋ1 = x1 + x2 + x3 + u

0 = −2x1 + x2

0 = x1 + x2 + u

ẋ1 x2 x3
e1 X X X
e2 X
e3 X

From the table on the right we see that regardless of which coefficient we
have for the variables, the DAE has index > 1. The DAE has a unique
solution since

|λE − A| = λ+ 3 ̸= 0, (x1, x2, x3) = (−1

3
u,−2

3
u,−1

3
u̇)

Turns out you can determine structural index only by looking at the tables
on the right. This is also direct to automatically do for large scale models in
general purpose simulation environments.
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Structural index vs. the differential index

Let ν and νstr be the index and the structural index respectively for

F (t, y ′, y) = 0

Unfortunately, both the situations below are possible

ν < νstr , ν ≤ νstr

νstr < ν, νstr ≤ ν

What is the consequence of this for a method that relies on a structural
algorithm for index reduction?
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Now, what was the problem with initial conditions?

For an initial value problem for an ODE

ẋ = f (x , t), x(t0) = x0

there are no limitations (except domain for f ) for the initial condition x0.

For a DAE
F (t, y , ẏ) = 0

it is not sufficient that ẏ(t0) and y(t0) fulfills

F (t0, y0, ẏ(t0)) = 0
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Now, what was the problem with initial conditions?

For example, remember the DAE from the first DAE lecture

ẋ1 + x2 + x3 = f1

ẋ2 + x1 = f2

x2 = f3

x1(t) = f2(t)− ḟ3(t)

x2(t) = f3(t)

x3(t) = f1(t)− f3(t)− ḟ2(t) + f̈3(t)

Here, no freedom at all and the initial conditions has to satisfy

x1(t0) = f2(t0)− ḟ3(t0)

x2(t0) = f3(t0)

x3(t0) = f1(t0)− f3(t0)− ḟ2(t0) + f̈3(t0)

Problem

We do not want to solve the DAE to find initial conditions!
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Pantelides algorithm - consistent initial conditions

Finding a consistent initial condition (y(t0), ẏ(t0), t0) for a DAE

F (y , ẏ , t) = 0

with unknown index is a difficult problem in general. By differentiation we
can obtain “hidden” conditions on the initial condition.

Pantelides algorithm

Graph theoretical approach to find the conditions that has to be satisfied
and solved by a numerical equation solver.

Good because based on equation structure only, possible to make
automatic

Bad based on equation structure only, does not give analytical results

Can be used to compute differential index

Can be used for index reduction. Will come back to this.
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Pantelides algorithm
We know that given a DAE

F (ẏ , y , t) = 0

we can differentiate well chosen equation a suitable number of times to
obtain a model including all constraints for the initial condition.

F (ẏ , y , t) = 0

d

dt
F (ẏ , y , t) = 0

d2

dt2
F (ẏ , y , t) = 0

...

d j

dt j
F (ẏ , y , t) = 0

Two questions:

which equations?
differentiate how many times?
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The small example again

e1 : ẋ1 + x2 + x3 = f1

e2 : ẋ2 + x1 = f2

e3 : x2 = f3

Differentiate e2 once and e3 twice and collect the equations. These 6
equations can be solved for the 6 variables
(x1(0), ẋ1(0), x2(0), ẋ2(0), ẍ2(0), x3(0)) for a consistent initial condition

e1 : ẋ1 + x2 + x3 = f1

e2 : ẋ2 + x1 = f2

ė2 : ẍ2 + ẋ1 = ḟ2

e3 : x2 = f3

ė3 : ẋ2 = ḟ3

ë3 : ẍ2 = f̈3

The new DAE (e1, ė2, ë3) is index 1 (see next slide) and we had to
differentiate e3 twice. This is no coincidence.
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The small example again

e1 : ẋ1 + x2 + x3 = f1

ė2 : ẍ2 + ẋ1 = ḟ2

ë3 : ẍ2 = f̈3

⇒

ë3 : ẍ2 = f̈3

ė2 : ẋ1 = ḟ2 − f̈3

e1 : x3 = f1 − ẋ1 + x2 = f1 − ḟ2 − f̈3 + x2
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Initial condition, example

For the model (1-DOF)

e1 : ẋ1 + ẋ2 = a(t), e2 : x1 + x22 = b(t)

we can differentiate equation e2 to obtain the constraint

ė2 : ẋ1 + 2x2ẋ2 = b′(t)

and we are done since (ẋ1, ẋ2) can be solved for in (e1, ė2) (if 1 ̸= 2ax2).

The initial condition is therefore obtained by solving

ẋ1(t0) + ẋ2(t0) = a(t0)

x1(t0) + x22 (t0) = b(t0)

ẋ1(t0) + 2x2(t0)ẋ2(t0) = ḃ(t0)

for (x1(t0), x2(t0), ẋ1(t0), ẋ2(t0)). With 4 unknowns and three equations,
1-DOF which we kind of knew.
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Initial condition, example, cont.

For the model
ẋ1 = x1 + x2, 0 = x1 + 2x2 + a

we can not obtain any new constraints on the initial condition by
differentiating the equations.

For every new differentiation, we get a new variable. Differentiation gives

ẍ1 = ẋ1 + ẋ2

0 = ẋ1 + 2ẋ2 + ȧ

These can always be satisfied by choosing a suitable value for ẍ1(t0) and
ẋ2(t0).

From this you can conclude that it is sufficient to solve the original
equations for (x1(t0), ẋ1(t0), x2(t0)). (This we already knew since the DAE
is index 1)
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New constraints, when?

What does the situation look like when we can, and cannot, obtain new
constraints by differentiating? What separates the two examples?

ẋ1 + ẋ2 = a(t)

x1 + x22 = b(t)

New constraints exists

ẋ1 = x1 + x2

0 = x1 + 2x2 + a

No new constraints

Difference is the index of the DAE:s

A sufficient condition for a DAE to have at most index 1 is that it is
possible to solve for highest differentiated variables.

For semi-explicit DAE:s it is also a necessary condition
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Differentiation a set of equations

Assume a DAE

f (x , ẋ , y , t) = 0, f : Rn × Rn × Rm × R → Rn+m

The highest differentiated variables are interesting, let z = (ẋ , y) be a
vector with the highest derivatives

f (x , z , t) = 0

Find a subset with k equations

f̄ (x̄ , z̄ , t) = 0, x̄ ∈ Rq, z̄ ∈ Rl

k - number of equations in f̄

l - number of highest derivatives in f̄

Assume a well-formed model, e.g., no dependent set of equations.
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Differentiation a set of equations, cont.

Differentiate the set of equations f̄ w.r.t. t

f̄x̄ ˙̄x + f̄z̄ ˙̄z + f̄t = 0

The number r of “new” highest derivatives ˙̄z appearing in the differentiated
equation is determined by rank f̄z̄ .

r ≤ min(k , l) = min(#eq. in f̄ ,#z in f̄ )

k - number of new equations from differentiation

r - number of new highest derivatives

The conclusion so far is then:

we get k − r additional equations/constraints in the existing variables
when differentiating f̄ .

all subsets of equations where k > r are therefore useful to obtain such
“hidden” constraints
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Differentiation a set of equations, cont.

Since r (number of new highest derivatives) can not be larger than l
(number of highest derivatives in f̄ ), a sufficient condition for k > r is

l < k

The above property implies that the set of equations f̄ contains fewer
highest ordered derivatives than equations.

Set of equations is overdetermined with respect to the highest ordered
differentiated variables.
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New constraints, when? Revisited!

What does the situation look like when we can, and cannot, obtain new
constraints by differentiating? What separates the two examples?

e1 : ẋ1 + ẋ2 = a(t)

e2 : x1 + x22 = b(t)

New constraints exists, equation
e2 contains none of the highest
ordered differentiated variables ẋ1
or ẋ2.

With f̄ equal to e2 then k = 1
and l = r = 0 ⇒
k − r = 1− 0 = 1 new
constraints.

e1 : ẋ1 = x1 + x2

e2 : 0 = x1 + 2x2 + a

No new constraints. Both e1 and
e2 each contain one of the highest
ordered differentiated variables ẋ1
and x2 respectively.

With f̄ equal to e1 or e2 then
k = 1 and l = r = 1 ⇒
k − r = 1− 1 = 0 new
constraints.
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Sketch of Pantelides algorithm
Sketch of the basic principles for Pantelides algorithm for a DAE
f (ẋ , x , y , t) = 0.

1 Define z = (ẋ , y)
2 Find all subsets of equations where l < k , i.e., overdetermined w.r.t.

the highest ordered derivatives. If none exists, exit.
3 Differentiate these equations and extend the model with the new

equations. Go to step 1.

There are many possible, very many, subsets. This has to be done in a
smart way to not run into complexity problems.

Solvable!

Pantelides algorithm

A graph theoretical algorithm that do the above efficiently for large systems
with no symbolic computations.

An implementation of the algorithm, courtesy Mattias Krysander, can be
downloaded from the course website, can come in handy when solving some
of the exercises.
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Matching - a useful graph theoretical concept

f1(x1, x2, x3, y) = 0

f2(x1, x2, y) = 0

f3(x2, x3, y) = 0

x1 x2 x3
e1 X X X
e2 X X
e3 X X

Implicit function theorem gives that there exists a local solution for x in the
equation f (x , y) = c at x = x0 if

∂f

∂x

∣∣∣∣
x=x0

=

⋆ ⋆ ⋆
⋆ ⋆ 0
0 ⋆ ⋆

∣∣∣∣∣∣
x=x0

has full column rank.

Matching

(here) A pairing of equations with variables
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Matching and structural rank

A matrix is said to have full structural rank if all variables can be matched.
x1 x2 x3

e1 X X X
e2 X X
e3 X X

x1 x2 x3
e1 X X X
e2 X
e3 X

If there exists a complete matching with respect to x in the structure
for a function f (x , y), the Jacobian fx(x , y) has full rank for almost all
f with the same structure.

Can be computed in Matlab using the srank command.
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Example: Matching condition for semi-explicit index 1

In a semi-explicit DAE

ẋ = f (x , y)

0 = g(x , y)

the highest differentiated variables z = (ẋ , y). DAE has (local) index 0/1 if

∂

∂z

(
f (x , y)
g(x , y)

)∣∣∣∣
z=z0

has full column rank.

Convince yourselves that the DAE has structural index 0/1 if the structure
of the DAE has a complete matching with respect to the variables z .
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Pantelides on an index 3 DAE

Step 1

e1 : ẋ = f (x , y)

e2 : ẏ = g(x , y , z)

e3 : 0 = h(x)

Highest differentiated variables: (ẋ , ẏ , z)

ẋ ẏ z

e1 X
e2 X X
e3

Step 2

e1 : ẋ = f (x , y)

e2 : ẏ = g(x , y , z)

ė3 : 0 =
d

dt
h(x)

Highest differentiated variables: (ẋ , ẏ , z)
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Pantelides on an index 3 DAE, cont.

Step 3

ė1 : ẍ =
d

dt
f (x , y)

e2 : ẏ = g(x , y , z)

ë3 : 0 =
d2

dt2
h(x)

Highest differentiated vars: (ẍ , ẏ , z)

ẍ ẏ z

ė1 X X
e2 X X
ë3 X

Resulting system of equations (6 equations in 6 unknowns)

e1 : ẋ = f (x , y)

ė1 : ẍ = d/dt f (x , y)

e2 : ẏ = g(x , y , z)

e3 : 0 = h(x)

ė3 : 0 = d/dt h(x)

ë3 : 0 = d2/dt2 h(x)

x ẋ ẍ y ẏ z

e1 X X X

ė1 X X X X X

e2 X X X X

e3 X

ė3 X X

ë3 X X X

28 / 51



Pantelides on an index 3 DAE, cont.

Step 3

ė1 : ẍ =
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d

dt
f (x , y)
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ė1 X X

e2 X X

ë3 X

Resulting system of equations (6 equations in 6 unknowns)
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ė1 X X X X X

e2 X X X X

e3 X
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Example: Pendulum equations

m ẍ = Tx

m ÿ = Ty −mg

0 = x2 + y2 − L2

⇒

ẋ = w

ẏ = z

m ẇ = Tx

m ż = Ty −mg

0 = x2 + y2 − L2

Highest differentiated variables are (ẋ , ẏ , ẇ , ż ,T )

T ẋ ẇ ẏ ż

e1 X
e2 X
e3 X X
e4 X X
e5
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Differentiate e5 and extend the model

e1 : ẋ = w e′5 : 0 = 2xẋ + 2y ẏ

e2 : ẏ = z

e3 : m ẇ = Tx

e4 : m ż = Ty −mg

e5 : 0 = x2 + y2 − L2

Highest differentiated variables are (ẋ , ẏ , ẇ , ż ,T )

T ẋ ẇ ẏ ż
e1 X
e2 X
e3 X X
e4 X X
ė5 X X
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Differentiate e1, e2, and ė5

e1 : ẋ = w e4 : m ż = Ty −mg

ė1 : ẍ = ẇ e5 : 0 = x2 + y2 − L2

e2 : ẏ = z ė5 : 0 = 2xẋ + 2y ẏ

ė2 : ÿ = ż ë5 : 0 = 2ẋ2 + 2xẍ + 2ẏ2 + 2y ÿ

e3 : m ẇ = Tx

T ẇ ż ẍ ÿ

ė1 X X
ė2 X X
e3 X X
e4 X X
ë5 X X

ν = (1, 1, 0, 0, 2)

11 variables and 9 equations, i.e., 2 degrees of freedom. Makes sense (≈
position and velocity)
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ė1 X X
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Structural index

Can be computed by Pantelides algorithm. Determine how in exercise 2.13.
(an error in the book by P. Fritzon so you will have to solve it by yourselves)

Remember the non-trivial relationship between index ν and structural index
νstr .

ν = νstr , ν < νstr , ν > νstr

All is possible!
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Index reduction

Differentiate to the underlying ODE is often a not satisfactory solution

due to that the underlying ODE has a larger solution set

requires stabilization/projection techniques to avoid violating algebraic
constraints

Objective is then to do index reduction while keeping solution set

To save all differentiated equations, and not only the underlying ODE,
is one such way. The result is a overdetermined index-1 DAE.
Consistency etc. is typically violated at discretization, projection etc. is
needed.

Dummy derivatives is a method that solves such problems.
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Small example that shows the principle
Index-1 system

e1 : ẋ1 + ẋ2 = a(t)

e2 : x1 + x22 = b(t)

Differentiate e2 once gives the overdetermined system of equations

e1 : ẋ1 + ẋ2 = a(t)

e2 : x1 + x22 = b(t)

ė2 : ẋ1 + 2 x2 ẋ2 = ḃ(t)

Replace ẋ1 for a new algebraic variable x ′1

e1 : x
′
1 + ẋ2 = a(t)

x1 = b(t)− x22

e2 : x1 + x22 = b(t)

⇒ ẋ2 =
ḃ(t)− a(t)

2x2 − 1

ė2 : x
′
1 + 2 x2 ẋ2 = ḃ(t)

and solve for (x1, x
′
1, x2). Can be proven to have the same solution set as

the original equations.
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Index reduction with dummy derivatives, principle

F (ẋ , x , t) = 0

...

d j

dt j
F (ẋ , x , t) = 0

If only j is large enough (index) the
equations are an index-1 DAE with
the exact same solution set as the
original DAE. Problem: system is
(violently) overdetermined.

Principle for index reduction

1 Let Pantelides algorithm determine the number of times to differentiate

2 Differentiate equations according to Pantelides, collect all equations

3 Simplified: For each differentiated equation, introduce an algebraic
variable such that the system becomes exactly determined

4 Result: exactly determined index 1 DAE with the same solution set as
the original DAE
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Example - a DAE with index 3

(a) : ẋ = y

(b) : ẏ = z

(c) : x = f (t)

x(t) = f (t)

y(t) = ḟ (t)

z(t) = f̈ (t)

Pantelides states that we should differentiate (c) twice and (a) once.
Collecting the equations

(c) : x = f (t)

(ċ) : ẋ = ḟ (t)

(c̈) : ẍ = f̈ (t)

(a) : ẋ = y

(ȧ) : ẍ = ẏ

(b) : ẏ = z
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Example, cont.
The differentiated model is overdetermined (3 unknowns, 6 equations).
Introduce an algebraic variable for each differentiated equation

x ′ = ẋ , x ′′ = ẍ , y ′ = ẏ

Important!! Variables x ′, x ′′, y ′ is here algebraic variables.

(c) : x = f (t)

(ċ) : x ′ = ḟ (t)

(c̈) : x ′′ = f̈ (t)

(a) : x ′ = y

(ȧ) : x ′′ = y ′

(b) : y ′ = z

Exactly determined, index 1 DAE (6 unknowns, 6 equations)

Somewhat extreme example where the system turns into a purely algebraic
system of equations, but it illustrates a simple case.
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Principle for index reduction

1 Let Pantelides algorithm determine the number of times to differentiate

2 Differentiate equations according to Pantelides, collect all equations

3 Simplified: For each differentiated equation, introduce an algebraic
variable such that the system becomes exactly determined

4 Result: exactly determined index 1 DAE with the same solution set as
the original DAE

Step 3 need to be clarified.
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Structure of the differentiated system

Simple if

Pantelides algorithm only differentiates 1 time and only one new
variable is introduced

How should the situation where equations are differentiated more than
once and multiple new variables are introduced simultaneously?
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Structure of the differentiated system

take the differentiated system, by permutations of equations and variables
you can always get a Block Lower Triangle (BLT) form w.r.t. the most
differentiated variables

E
q

u
at

io
n

s

Most differentiated variables Remaining variables

Consider one block at a time.

41 / 51



Example - a system of index 2

(a) : x1 + x2 + u1 = 0

(b) : x1 + x2 + x3 + u2 = 0

(c) : x1 + ẋ3 + x4 + u3 = 0

(d) : 2ẍ1 + ẍ2 + ẍ3 + ẋ4 + u4 = 0

Pantelides gives ν = (2, 2, 1, 0) and the differentiated system Gx = 0 is:

(ä) : ẍ1 + ẍ2 + ü1 = 0

(b̈) : ẍ1 + ẍ2 + ẍ3 + ü2 = 0

(ċ) : ẋ1 + ẍ3 + ẋ4 + u̇3 = 0

(d) : 2ẍ1 + ẍ2 + ẍ3 + ẋ4 + u4 = 0

We have introduced 2+2+1=5 equations, i.e., we need to introduce 5
dummy variables. Which ones? Not as easy as in the first example where
there was a one-to-one relation between differentiated equation and new
variable. Candidates are (ẋ1, ẍ1, ẋ2, ẍ2, ẋ3, ẍ3, ẋ4), which 5 to choose?
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Example - a system of index 2, cont.
The differentiated system Gx = 0 is not of the type with one-to-one relation
between differentiated equation and variable.

The highest differentiated variables are (ẍ1, ẍ2, ẍ3, ẋ4) and G consists of a
block g1, w.r.t. the highest differentiated variables z1

∂g1
∂z1

=


1 1 0 0
1 1 1 0
0 0 1 1
2 1 1 1


In these, the three first equations are differentiated; get that part

H1 =

1 1 0 0
1 1 1 0
0 0 1 1


Choice of variables should be such that index ≤ 1 is retained, i.e., all
highest differentiated variables should still be matched. We must choose
variables such that the corresponding sub-matrix of H1 has full rank.
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Example - a system of index 2, cont.

We can choose (ẍ1, ẍ3, ẋ4) or (ẍ2, ẍ3, ẋ4). Choose

ẑ [1] = (ẍ1, ẍ3, ẋ4)

these variables will be introduced as dummy variables in the final DAE. We
are not done since we yet only have define 3 dummy variables, we must
have 5.

Now look at the differentiated equations, with one less differentiation (these
also are part of the system)

(ȧ) : ẋ1 + ẋ2 + u̇1 = 0

(ḃ) : ẋ1 + ẋ2 + ẋ3 + u̇2 = 0

(c) : x1 + ẋ3 + x4 + u3 = 0

Candidates for new dummy variables are (ẋ1, ẋ3, x4). Analyze this
sub-model in the same way as before.
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Example - a system of index 2, cont.

Extract the differentiated equations

(ȧ) : ẋ1 + ẋ2 + u̇1 = 0

(ḃ) : ẋ1 + ẋ2 + ẋ3 + u̇2 = 0

Highest derivatives are z1 = (ẋ1, ẋ3, x4). Differentiate w.r.t. z1 to obtain

H
[2]
1 =

(
1 0 0
1 1 0

)
and here we must choose

ẑ
[2]
1 = (ẋ1, ẋ3)

as dummy variables and then we have selected our 5 and are done!
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Example - a system of index 2, cont.
The final index 1 DAE is then

(a) : x1 + x2 + u1 = 0

(ȧ) : x ′1 + ẋ2 + u̇1 = 0

(ä) : x ′′1 + ẍ2 + ü1 = 0

(b) : x1 + x2 + x3 + u2 = 0

(ḃ) : x ′1 + ẋ2 + x ′3 + u̇2 = 0

(b̈) : x ′′1 + ẍ2 + x ′′3 + ü2 = 0

(c) : x1 + x ′3 + x4 + u3 = 0

(ċ) : x ′1 + x ′′3 + x ′4 + u̇3 = 0

(d) : 2x ′′1 + ẍ2 + x ′′3 + x ′4 + u4 = 0

which has the same solution set as the original index 2 DAE.

The 9 unknown variables are(x1, x
′
1, x

′′
1 , x2, x3, x

′
3, x

′′
3 , x4, x

′
4) out of which all

are algebraic except x2 which appears differentiated of order 2.
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Example - a system of index 2, cont.

It is possible to get a simpler solution. Pantelides differentiated for an ODE,
it is really sufficient to differentiate until an index 1 DAE.

Rather straightforward changes to the basic principle gives the somewhat
simpler system

(a) : x1 + x2 + u1 = 0

(ȧ) : x ′1 + ẋ2 + u̇1 = 0

(b) : x1 + x2 + x3 + u2 = 0

(ḃ) : x ′1 + ẋ2 + x ′3 + u̇2 = 0

(c) : x1 + x ′3 + x4 + u3 = 0

(d) : 2ẋ ′1 + ẍ2 + ẋ ′3 + ẋ4 + u4 = 0
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Dummy derivatives summary

Pantelides algorithm plus a procedure to introduce algebraic variables
gives a low-index system with the same solution set as the original DAE

Is all index related issues thereby solved?

Pros/cons

Structural and analytical steps
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Outline

Structural index - introduction and definition

Consistent initial conditions

Pantelides algorithm – initial conditions and structural index

Index reduction with dummy derivatives

Summary
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Summary

Three problems have been discussed:

consistent initial conditions
determining index
index reduction

Pantelides algorithm: a graph theoretical algorithm to find the system
of equations to solve for consistent initial conditions given a DAE of
arbitrary index

Pantelides algorithm is a cornerstone for solving all three problems

Well suited for implementation in a general purpose DAE simulator

Structural results, not analytical!
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