
SIAM REVIEW
Voi. 21, No. 1, January 1979

() 1979 Society for Industrial and Applied Mathematics
0036-1445/79/2101-0001 $01.00/0

A USER’S VIEW OF SOLVING STIFF ORDINARY
DIFFERENTIAL EQUATIONS*

L. F. SHAMPINE" AND C. W. GEAR

Abstract. This paper aims to assist the person who needs to solve stiff ordinary differential equations.
First we identify the problem area and the basic difficulty by responding to some fundamental

questions: Why is it worthwhile to distinguish a special class of problems termed "stiff"? What are stiff
problems? Where do they arise? How can we recognize them?

Second we describe the characteristics shared by methods for the numerical solution of stiff problems.
These characteristics have important implications as to the convenience and efficiency of solution of even
routine problems. Understanding them is indispensable to [he assembling of codes for the very efficient
solution of special problems or for solving exceptionally large problems at all.

Third we shall briefly discuss what is meant by "solving" a differential equation numerically and what
might be reasonably expected in the case of stiff problems.

1. Introduction. The numerical solution of ordinary differential equations is an
old topic and, perhaps surprisingly, methods discovered around the turn of the century
arc still the basis of the most effective, widely used codes for this purpose [23]. Great
improvements in efficiency have been made, but it is probably fair to say that the most
significant achievements have been in reliability, convenience, and diagnostic capabil-
ities. The typical scientific problem can be solved by casual users of these codes both
easily and cheaply. Nevertheless, there are several kinds of problems which classical
methods do not handle very efficiently. The problems called "stiff" are too important
to ignore, and are too expensive to overpower. They are too important to ignore
because they occur in many physically important situations. They are too expensive to
overpower because of their size and the inherent difficulty they present to classical
methods, no matter how great an improvement in computer capacity becomes
available. Even if one can bear the expense, classical methods of solution require so
many steps that roundoff errors may invalidate the solution. It is all the more
frustrating that the solutions of stiff problems look like they should be particularly
easy to compute. After a few general remarks about solving differential equations, we
shall use some simple examples to show where the trouble originates and what might
be done about it. We shall mention a number of contexts in which stiffness was
recognized and dealt with by scientists through the use of special features of the
problem. Our attention here will be directed towards the phenomenon of stiffness and
towards general purpose procedures for the solution of stiff differential equations.
There are effective codes available based on these procedures, but it is necessary that
the user have some idea how they work in order to tale full advantage of them. Lastly
we discuss what are realistic goals when solving a stiff differential equation.

2. What are still problems? When solving the (vector) system of equations

(2.1) y’=/(x, y), y (0) f;iven,

we must consider the behavior of solutions near to the one we seek. This is because as
we step along from y,,-"y(x,,) to yn+l approximating y(x, +h) we make inevitable
errors causing us to move from the desired integral curve to a nearby one. If we make
no further errors, we follow this new curve so that the resulting error depends on the

* Received by the editors October 14, 1976, and in revised form May 12, 1977.
Numerical Mathematics Division 5122, Sandia Laboratories, Albuquerque, New Mexico 87115.
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois

61801.

2 L. F. SHAMPINE AND C. W. GEAR

relative behavior of the two solution curves. Let us consider the example of the single
equation

(2.2) y’ A(y -p(x))+p’(x), y(0)= v,

where A is a constant. The analytical solution is

(2.3) y(x) (v -p(0)) exp (Ax)+p(x).

If A is large and positive, the solution curves for the various v Ian out and we say the
problem is unstable. Such a problem obviously is difficult for any general numerical
method which proceeds in a step-by-step fashion. When A is small in magnitude, the
curves are more or less parallel and such neutrally stable problems are easily handled
by conventional means. When A is large and negative, the solution curves converge
very quickly. In aet, whatever the value y (0), the solution curve is virtually identical
to the particular solution p(x) after a short distance called an initial transient. This
super-stable situation is ideal for the propagation of error in the differential equation
but not, as. itturns out, for the propagation of error in a numerical scheme. The last
class of problems is called stiff.

Equation (2.2) is of more general significance than its special form suggests. The
behavior of solutions of (2.1) near a particular solution g(x) can be studied by a.Taylor
series expansion into

(2.4)
y’-" r(x, g(x))(y -g(x))+f(x, g(x))

=J(x, g(x))(y -g(x))+g’(x)

where the Jacobian matrix J has as its (i, j) entry the partial derivative of the ith
component of f with respect to the jth component of y. This approximation can be
justified in a limiting argument, but we are only going to use it qualitatively and will
not attempt rigor. We further suppose that J (x, g(x)) is slowly varying in x so that we
can approximate it locally by a constant matrix. After a principal axis transformation,
these equations are uncoupled into a set of equations each of the form (2.2). In this
general situation, A is an eigenvalue of the Jacobian; hence, it may be a complex
number. Thus, within the limits of the approximations made, a set of simultaneous
equations of the form (2.2) with complex numbers A are representative of the general
situation (2.1).

By a stiff problem we mean one for which no Solution component is unstable (no
eigenvalue has a real part which is at all large and positive) and at least some
component is very stable (at least one eigenvalue has a real part which is large and
negative). Further, we will not call a problem stiff unless its solution is slowly varying
with respect to the most negative real part of the eigenvalues. (Roughly, we mean that
the derivatives of the solution are small compared to the corresponding derivatives of
Axe The meaning will be qualified later in this section.) Consequently, a problem may

be stiff for some intervals of the independent variable and not for others.
If A is very negative and p(x) is slowly varying, equation (2.3) represents a stiff

problem after the transient eAx has died out (that is, eax is below the error tolerance
of interest) but it is not stiff in the transient region. If (2.1) is linear with a constant
Jacobian J, it will not be stiff in the initial tr/nsient, but will be stiff after the fastest
transient has died out.

Although the examples just discussed only exhibit one period of rapid change, the
general problem can exhibit several. One reason is that the approximations in equa-
tion (2.4) only apply locally. This may, or may not, be obvious from the equations

STIFF ORDINARY DIFFERENTIAL EQUATIONS 3

themselves. A case which is not obvious is the relaxation oscillation of the Van der Pol
equation famous in applied mechanics. One should suspect stiffness because the limit
curve is rapidly approached by all integral curves, and examination of the Jacobian
matrix does show that the integration has large negative eigenvalues in some regions,
although not in others. The limit solution has periodic changes which are so sharp as to
approach a discontinuity. (The equation is not stiff at such places by our definition.)
The methods of classical applied mathematics, namely, singular perturbation theory,
deal with this particular equation quite well.

A second reason is that the "driving" term--p(x) in equation (2.2)---may sud-
denly change. An example of this with transients expected on physical grounds is that
of chemical kinetic rate equations involving photo-dissociation such as those de-
scribing the behavior of atmospheric pollutants. When the sun .rises or sets
there are reactions which are extremely fast with respect to a. basic period of
a day. A. Hindmarsh has communicated to us a mockup of the behavior of the oxygen
singletm D(01D) which is a valuable test problem exhibiting the proper physical
behavior. It is

where

y ’(t) d by +aE(t)

a 10-18, b 108, c =4, d 10-19

2

e(t),E(t)= 1+
b sintot

and

exp (-cto/sin tot)
e(t)=

0
if sin tot > O,
otherwise

to r/43200.

Note that the Jacobian matrix is just the number -b which in this case says that the
equation is very stable. The time is in seconds and every 12 hours the solution (which
can be obtained analytically) exhibits a change which is almost discontinuous on a time
scale of days.

We should also note that the approximations developed for (2.1) lead to only one
limit solution, but that in practice there may be others. This originates in the fact that
the approximation is local about the solution beingstudied. The area of nonlinear
mechanics is a fertile source of examples with several possible limit curves. Later we
shall refer to one in the area of chemical engineering.

To expose the difficulty in solving stiff systems, let us integrate (2.2) by Euler’s
method when A is a large negative number and p(x) is slowly varying. This scheme
advances from y. to an approximation at x,, +h,,-Xn+l by y.+ y. +h,,f(x,,, y.)=
y. + h.y.’. Since these are the linear terms of a Taylor series expansion at x., the local
truncation error of the method is h Zy"(x,,)/2 +O(h3.,). A code which selects its step
size so that the local truncation error is approximately e (as most codes do) will choose
h so that e "-[h 2.y"(x.)/2 I. If the numerical solution is close to the true solution, we can
deduce the behavior of h from

y"(x) (v -p(O))A 2 exp (Ax +p"(x).

4. L. F. SHAMPINE AND C. W. GEAR

When x is small, it is clear that

h,, ----" (- 2e 1/2 2e 1/2]y"(x:)]) (l(v-/-))A2])
When x is large the exponential term disappears so that

(12 il)
1/2

;’(X
By assumption]A is large and]p"(x)] is small, so that we have quantified the statement
that the step size needed for accuracy must initially be small to resolve the rapid
change of the transient but eventually becomes large and independent of A.

This is not the whole story. There are two main factors affecting the size of the
step---accuracy and stability. Accuracy refers to smallness of the local error, that is,
the error introduced in a single step. Stability refers to errors not growing in sub-
sequent steps. We have seen for this example that accuracy is easily handled. Let us
now examine stability. Because this is a linear differential equation and a linear
method, it is easy to solve for the global error which is the difference between the
numerical solution at any point and the true solution. If we define the global error as

we find that

n yn -y(xn),

&,+--(1 +h,,A)8,, +[y(x,,)+h,y’(x,,)-y(x,,+l)].

This says that the global error after the n th step consists of the error propagated from
the previous point x plus the local truncation error in the nth step. This error is
amplified unless -2 <-_h,,A <-_0. Clearly this restriction dominates in the selection of
the step size once outside of the transient region. Note that a problem is not stiff in the
transient region because Ih,,AI must be small to control the local truncation error.

The essence of the matter is that for most problems the accuracy requirement
dictates the choice of step size, but for some, the stiff problems, the stability require-
ment does. In general we must discuss the stability of the difference scheme when A is
a complex number. Analyzing stability as we did with Euler’s method, we now find a
region in the left half complex plane, called the region of absolute stability, in which
h,,A must lie for the difference scheme to be stable. For Euler’s method this region is
the disc of radius 1 centered at (-1, 0). Though the approximations are crude, this
analysis does furnish a good qualitative understanding of the local behavior of the
difference schemes. The stability restriction takes the form that]h,,AI not be too large.
As a practical matter this is no restriction unless IA[is "large" and the accuracy
requirement is easy to meet.

One worry should be dispelled at once. When implemented properly, the
instability on encountering stillness of classical methods such as Euler’s is automati-
cally detected and handled by reducing the step size [24], [25]. Computer programs
suitable for nonstiff problems do not "blow up" in the presence of stiffness, they just
become inefficient. The reason for this is easy to see for methods like Euler’s.
Automatic codes estimate the local error by estimating a derivative of the solution.
The only way in which this can be done economically involves applying some form of
difference operator to the computed solution. With the Euler method, for example,
we could form the second difference of the solution to estimate the second derivative.
The second difference will consist of two parts, the second difference of the true

STIFF ORDINARY DIFFERENTIAL EQUATIONS

solution and the second difference of the global error. A simple calculation for our
example (2.2) with constant step size h shows that the latter is (hA)26"-1
h 3(Ay"(xn_)+ y’"(x’_)) plus higher order terms. If h A is large, this term dominates,
so the step control mechanism will reduce the step size accordingly.

The problem of instability for large step sizes when solving stiff equations is
common to all methods that are efficient for nonstiff equations. All methods give rise
to a global error equation of the form

tn + Sn n + En,

where e" is the local truncation error and S" is the error amplification matrix whose
size depends on the Jacobian of the differential equations and, in the case of multistep
methods, 6" is a vector containing the global errors in the numerical values of all past
values used in the computing of the next step. Methods for nonstiff problems are
chosen so as to make the local truncation error term e" small for best efficiency. When
stiff problems are to be solved, it is necessary to sacrifice some of the accuracy in order
to improve the stability. Methods suitable for stiff equations are such that S" is small
for Jacobians with large negative eigenvalues. The example of the backward Euler
method

y’+ =y" +hyn+ =y" +hf(x,,+, y,,+)

is informative because it is easy to analyze and yet typical of many methods for stiff
equations. When it is applied to equation (2.2), we get a global error equati6n of the
form

8,,+ =8,, +h’A 8n+1 +[y(x,,)-y(x,,+)+h’y’(x’+)]

or

5"+1 (1-hA)- 8" +(1-h"A)-h2y"(x")/2+O(h3).

The propagated error is damped whenever I1/(1 h’A)l <- 1---which includes the
whole left half plane. This is a marvelous improvement since an apparently mnor
change in the scheme has completely done away with a stability limitation. However,
the backward Euler scheme is implicit, meaning that a nonlinear equation must be
solved at each time step to determine y+l. This is characteristic of methods with very
good stability properties and we shall examine the cost later. For. now we just
comment that because the stability requirement is so much more stringent for the
forward Euler method than the accuracy requirement, the backward Euler method
permits orders of magnitude improvement in efficiency for typical stiff problems even
though each step is much more expensive.

The essence of stiffness is that one has a slowly varying solution which is such that
some perturbations to it are rapidly damped. Most physical systems of interest are
going to be stable; those which permit very rapid change are the ones which are
potentially stiff. Thus one should be alert to physical components with greatly
different time constants. For example, control systems are intended to provide stabili-
ty. When they very quickly correct a deviation from a desired slowly changing path,
the ditterential equations describing them will be stiff.

It is important to appreciate that stiffness depends on the behavior of all nearby
solutions, that is, on the differential equation rather than the behavior of the solution
itself. For example, the equation

y’ (v -p(O))A exp (Ax)+p’(x), y(0) given,

L.F. SHAMPINE AND C. W. GEAR

has exactly the same solution as (2.2) when both have the initial value v, but is not stiff
at all. For this quadrature problem the integral curves are parallel and the problem is
of neutral stability. Thus the presence of some components which change at a rate
much faster than others is not necessarily an indication of stiffness. Still, physical
systems are usually stable so this is a pretty reliable indication of stiffness in the proper
context. As examples, chemical reactions with large rate constants and nuclear reac-
tions with species decaying at rates varying widely typically lead to stiff equations.
Electrical circuitry involving fast elements such as high speed transistor models
ordinarily leads to stiff problems. A survey of such applications with examples can be
found in [3]. Rather than take up many examples, we shall look in some detail at the
use of semi-discretization to solve a simple partial differential equation. The resulting
stiff system of equations will illustrate a number of points we shall need later.

Suppose we want to solve the heat equation

c3y (X, t) c32y (X, t)
Ot

y(0, t)0, y(1, t)-=0, y(x, 0) given.

Let Ax 1/N and xi Ax for 0, 1, ..., N. Suppose that yi(t) is to approximate
y(x, t) where yi(t) arises from replacing the space derivative in the heat equation by a
centered difference:

dy (t) 1
dt (Ax)

2(y’+l(t)-2y’(t)+y’+l(t))’ 1, ,N- 1,

y0(t)--0, yN(t)---0, y(0)=y(xi, 0) foreachi.

One easily finds the constant Jacobian and that its eigenvalues are

AN_ _[sin (nrr_Ax/2)]
ax/2 J

from which we see that

-4 2A1-" Av "--
(ax)2,

_
,r

If Euler’s method is used to solve the set of ordinary differential equations with step
size At, we conclude that for stability Ih A 11--< 2 or

At 1
(Ax)2=2"

Here how stiff the problem is depends on how fine a spatial mesh we choose initially.
If N is small, one is well advised to use nonstiff methods, but for large N this is not
economic. Note that if we proceed in this way, we are using the classical (fully discrete)
forward difference scheme for solving the heat equation. The backward Euler method
corresponds to the classical backward difference scheme and, as is well known, there is
then no limitation on At for reasons of stability. Considerable experience on the part
of people interested solely in partial differential equations shows that it is much
cheaper to use the more stable method with the more expensive steps. Experience
applying general purpose codes for ordinary differential equations agrees with this and

STIFF ORDINARY, DIFFERENTIAL EQUATIONS 7

adds the observation that enhanced efficiency and reliability can be obtained by
variation of step size and formula.

It should be noted that the eigenvalues obtained in this example are not due
solely to the spatial discretization used. The original partial differential equation has
eigenvalues of -(kTr)2, k 1, 2,. , so the first eigenvalue of the discretized system is
approximately the first eigenvalue of the differential operator, and the others are
approximations to some of the larger ones. This points out that the stiffness is inherent
in the problem, not part of the method of solution. Either the problem (that is, the
model of the physical situation) must be changed, or stiffness must be faced in the
solution process.

In a number of areas, particularly chemical kinetics, problem, solvers have
removed stiffness by changing the model. The idea is that physical considerations
allow some components to be recognized as changing on time scales much shorter
than those of other components. Think, for example, of a chemical reaction taking
place in a moving medium or the rolling of a rocket as compared to its motion along its
trajectory. Quasi-static or pseudo steady-state approximations hold one set of com-
ponents fixed in value over suitable time periods either because they change so slowly
that changes can be neglected or because they change so rapidly that steady-state
values are achieved almost instantly. Such approximations lead to sets of algebraic
equations coupled to (hopefully nonstiff) sets of ordinary differential equations. In
some cases approaches of this kind have worked very well, but it is hard to relate the
solution of the modified model to that of the original model. We shall reconsider this
technique in the next section where it will be seen that the methods for stiff problems
do much the same thing automatically. Current codes for stiff differential equations
are sufficiently efficient that there is no need to consider such model changes for most
problems for reasons of cost, and there are excellent reasons of convenience and
theoretical support for not changing the model. To be sure, there are exceptions
because we are discussing general purpose codes. For specific problems one may be
able to break off groups of equations which can be solved easily, perhaps analytically,
and so reduce the difficulty or size of the tasks otherwise addressed by the code. On
the other hand, it is possible to get into trouble by such manipulations without
realizing it. In [20] an example from chemical engineering is discussed for which
assumptions of the kind described here were made and the scientists were led to the
wrong steady state solution.

The example of the partial differential equation shows how large systems can
arise. (Consider the situation with several space variables.) The heat equation, Van
der Pol’s equation, and the remarks we have made so far about steady-state approxi-
mations show that stiffness is not something unfamiliar; it has arisen, been studied,
and dealt with, in other contexts. The example also exhibits the limited coupling that is
usually present in large systems--here each equation involves only three unknowns or
fewer, regardless of the number of equations in the system. Exploitation of this
property will be mentioned in the fourth section. It is an important aspect of efficiency.

We have touched on several ways of realizing stiffness is present. Before discuss-
ing solution methods let us summ’arize them. Often one has a considerable under-
standing of the qualitative behavior of solutions of (2.1) on physical grounds. If the
system is known to be very stable, it is likely to be stiff. If some variables are known to
change on time scales very different from others and the physical problem is well
posed, the governing equations are likely to be stiff. Analysis or experience with
similar or model problems is often very useful. A common sign of stiffness is that a
code aimed at nonstiff problems proves conspicuously inefficient for no obvious

8 L. F. SHAMPINE AND C. W. GEAR

reason (such as a severe lack of smoothness in the equation or the presence of
singularities). There are codes for nonstitI problems [25], [27] which rather reliably
diagnose stiffness automatically.

The integration during the transient has the step size limited by accuracy rather
than considerations of stability so this part of a differential equation problem is not
stiff. The distinction might be made more vivid by a little anecdote. The authors
recently participated in a conference on the solution of stiff differential equations
arising in models of lasers. One speaker discussed a refined physical model involving
some 250 energy levels which was consuming hours of computer time. Though simpler
models with these states aggregated into a smaller number of states were clearly stiff
(they could be solved with current stiff codes far more efficiently than with nonstiff
codes), his problem was being solved very inefficiently by codes aimed at stiff prob-
lems. Indeed, he found codes aimed at nonstiff problems to be conspicuously more
efficient. Each solution component had the same qualitative behavior. After a while
the level would become populated and the population would rapidly grow to a number
about which it varied slowly. The difficulty originates in the fact that the various levels
are populated successively and there are a great many of them. As far as the codes are
concerned, they are always on the transient for some energy level. Eventually, of
course, the whole system would get into a steady state and stiff methods would show
their worth, but the cost of reaching this was prohibitive and the scientist was not
particularly interested in the long-time behavior. The nonstitt methods perform better
in the transient because this is what they are designed to do. Besides illustrating the
role of transients, this example also points out that we do not have codes, or even
methods, capable of adequately solving all the problems of scientific interest in the
area of differential equations.

3. Characteristics o! solution methods. All of the methods used in general pur-
pose codes for the solution of stiff differential equations are implicit of necessity. This
means that an equation must be solved at each step to obtain the numerical approxi-
mation. For example, in the backward Euler method,

y,,+ y, +h,,f(x,,+, y,,+)

must be solved for yn+l. If the problem is linear (that is, if f is linear), then a linear
equation must be solved, but if the problem is nonlinear, a nonlinear equation must be
solved. Simple functional iteration is used in codes for nonstiff problems to solve such
equations"

(m)
,,+ y,, + h,,f(x,,+, y,+).

For the model problem (2.2) we easily find that the iteration error satisfies

(re+l) (m)
y.+ -y,,+ h,,A(y.+-y.+).

Once again we encounter the effects of stiffnessthis simple iteration will not con-
verge if we have a stiff problem (for which IhA[> 1). The usual procedure for stiff
problems is some variant of Newton’s method. This uses an approximate Jacobian J
and one solves repeatedly the linearized system

(re+l) (m) (re+l)

For the model problem (2.2) the iteration error satisfies
(re+l)(3.1))(y,+ y,,+1).

STIFF ORDINARY DIFFERENTIAL EQUATIONS 9

Any reasonable approximation J to A will cause this iteration to converge. If the
problem is not stiff so that ha A is small, all that matters is that h,/be small. If the
problem is stiff so that hA is large and negative, all that matters is that h,/be within
about 50% of h,A. For this example, and for any linear problem, the iteration
converges in one step if J is exactly A.

This analysis extends to systems, in which case the iteration (3.1) involves solving
a linear equation at each iterate. If the problem is linear, only one iteration is
necessary if we take J A. In fact, most codes do not.takeJ A so that iteration is
used even in the linear case. When iteration is used, as it must for nonlinear problems,
the starting approximation is very important because it must be good enough that the
process will converge and moreover good enough that only a few iterations are
necessary. Fortunately, the situation is such that a good starting approximation is
almost always available by use of an explicit integration formula, usually called a
predictor. Although a predictor is an integration formulae it does not have any of the
main costs associated with a formula suitable for stiff problems because it is really a
polynomial extrapolation process using information already known about the solu-
tion. For example, if the backward Euler formula is being used to solve stiff equations,
the forward Euler formula can be used as a predictor. The forward Euler formula uses
the function value y and the derivative y computed in the last step to estimate the
value of y+l to be used as the first iterate (0

y,+l. The accuracy of the predictor is as
good, and usually better than that of the actual integrator (called the corrector) for
stiff problems. The purpose of the corrector is to provide stability. When this tech-
nique is used along with a number of other.techniques to detect convergence quickly,
an average of less than 1.5 iterations of equation (3.1) are needed at each step in
typical problems. (Using a predictor has several other advantages. In particular, the
difference between the predictor and corrector provides a reasonable error estimator
for local truncation errorman important part of any code. See Gear [12].)

It is worth noting that convergence of a quasi-Newton method for the corrector
iteration is guaranteed for small enough step sizes because as the step size is reduced,
an iteration such as (3.1) becomes a contraction. In addition, the accuracy of the
predictor improves as h is reduced so that the initial approximation is more likely to
be in the region of convergence.

The linearity of a problem does little to reduce the solution time in current codes
for stiff problems. This could indicate a need for the development of better methods
for linear problems, but it seems more likely that the reason is that the effects of
nonlinearity are being handled very efficiently.

Returning now to the idea of pseudo steady-state approximations, we suppose
that the equations can be written in the form

(3.2) y’ f(x, y, z), ez’ g(x, y, z),

where the solution components are split into two groups y and z. Except in the
transient, or boundary layer as it is commonly termed in this context, the small
parameter e suggests one neglect the term. ez’ and solve instead the algebraic,
differential system

(3.3) y’= f(x, y, z), 0 g(x,.y, z).

In a number of significant physical applications this kind of approximation results in
an easy (that is, nonstiff) set of ordinary differential equations and a set of algebraic
equations. Even in this favorable situation it is not clear how to assess the errors which
arise. Most often one has to solve the algebraic system by numerical means. If a code

10 L. F. SHAMPINE AND C. W. GEAR

for stiff equations is applied to equations (3.2) directly, it effectively solves equations
(3.3) in the stiff region. This can be seen by considering the application of the
backward Euler method to the second of equations (3.2) when ez’ is small. We get

e--(z,,+-z.)=g(x.+, y.+, z.+)-’- O.
h.

The fact that a code for stiff equations is automatically doing much the same thing as
an analyst might, indicates the power of the kind of schemes we are discussing and
shows how well-conceived and well-executed software can provide the casual problem
solver with great assistance.

4, Codes for stiff problems. The backward Euler method, and similar methods
such as the trapezoidal rule, were the first discovered which could handle stiff prob-
lems reasonably well so they became widely used. Because the large codes written to
facilitate specific application areas such as simulation, chemical kinetics, circuit analy-
sis, and the like are very slow to change, these methods are still seen in practice. More
efficient methods are now available as a result of researches into higher order
methods. The initial transients alone represent difficult nonstiff problems and the
great success of high order methods for nonstiff problems has encouraged., such
investigations. There has been no lack of ideas for high order procedures with
excellent stability but improvements have not been won easily because each seems to
raise some new difficulty. Relatively few ideas have been implemented as software of
sufficiently high quality to merit general consideration. We shall mention a few such
ideas in order to allude to some of the difficulties later. Also, we shall mention specific
codes because there are so few general purpose codes for stiff problems which are
widely available. Because in some cases we do not have experience with the codes we
are not necessarily endorsing them; we do have reason to believe that all are serious
attempts at providing mathematical software for this problem so we hope that learning
of them will prove useful to the reader.

Using the general idea of extrapolation [19] there is a code of Schryer [22] which
does repeated extrapolation of the backward Euler formula. In doing this one adapts
the order to the requirements of the problem. Lindberg [21] has written a code which
extrapolates the midpoint rule a single time to generate a method of order four. The
popular Runge-Kutta methods furnish methods suitable for stiff equations if one
considers implicit methods. Hulme [18] has written a code which provides an arsenal
of implicit Runge-Kutta methods; there are two families of methods each with a large
range of orders. Though a fixed formula is used for the integration, the code can select
an appropriate one automatically. The most popular formulas being used in general
purpose codes are the backward differentiation formulas (see Gear [9]). Like their
relatives the Adams formulas, these formulas are usually implemented so as to
automatically choose the step size and the order. An early code is that of Gear [11]. It
has been often reprogrammed and various improvements made; a generally available
and widely used version is that of Hindmarsh [14]. Extensions which are reported to
improve the efficiency of the methods are given by Skeel and Kong [28]. These
extensions "blend" the backward differentiation formulas with Adams formulas in a
ratio determined by the size of the Jacobian, so that they look like Adams formulas for
nonstiff problems and backward differentiation formulas for stiff problems. A
different form of extension appears in Hindmarsh and Byrne [16], where a different
step changing formula believed to lead to better behavior in problems with multiple
transient regions is used. Bickart, Tendler, and Picel have developed codes for two

STIFF ORDINARY DIFFERENTIAL EQUATIONS

subsets of composite multistep methodsmmethods invoking a set of multistep for-
mulas solved simultaneously for a set of solution points. The cyclic methods imple-
mented in [29] may be thought of as generalizations of the backward differentiation
formulas and the one-step methods in [2] as generalizations of the Runge-Kutta
methods.

The backward differentiation formulas illustrate an important point about codes
for stiff problems. As the stability plots in [10] show, if the Jacobian has eigenvalues
near the imaginary axis, the higher order formulas will be unstable. The unstable
region increases as the order does to the point that formulas of order greater than six
are not stable at all. Most codes do not use the sixth order formula because of this
limitation though it is stable in most of the left half plane. The formulas of order five
and lower do not have much of a limitation of this kind but occasionally one notices it
with a real problem. Just because one has a good code implementing a good method
does not mean that he will not encounter difficulties with stiffness. One needs some
understanding of the characteristics of his code and it is best to have a repertoire of
methods on which to draw.

The implicit Runge-Kutta methods avoid the problems associated with the high-
order backward differentiation formulas because they can be stable in the whole left
half plane. However, there is a price associated with this additional stability. The
system of equations which must be solved is two or more times larger, implying a large
increase in storage for large systems. When these methods are effective, it is because
they can use a much longer step than methods based on backward differentiation.
Sometimes, however, the solution will change character as we move from a smooth
stiff region back into a rapidly varying transient within one long step which is then
wasted. To some degree the composite multistep formulas share this difficulty though
they have some compensating factors. The difficulty is even more pronounced with
extrapolation methods which gain their speed from a very long basic step.

A good code selects its step size, and hence xn, automatically. If the user is
prepared to accept output at only the points xn, there is no impact on the efficiency of
the integration. If, however, the user must compute the solution at many other points,
the cost can become prohibitive. If there are a sufficient number of integration points
that the desired accuracy can be achieved by interpolation, the cost is small and there
is no effect on the integrator. In fact, most codes based on the backward differen-
tiation formulas have scaled derivatives or divided differences available so that the
interpolation cost is minimal; the better codes provide interpolation subroutines for
the user. If, on the other hand, the code must be asked to compute intermediate points
by integration, the cost can be high, particularly in codes which use long steps such as
implicit Runge-Kutta and especially in extrapolation.

We see that the solution of stiff problems is practical provided we are prepared to
solve at each step a linear system based on the Jacobian. This can have serious
consequences. The function f has N components but in general its Jacobian has N2

components. For a general problem of even moderate size, providing the Jacobian
analytically can be burdensome for the programmer and it can be very difficult to be
sure that the partial derivatives have been obtained correctly. For these reasons,
automatic generation of a Jacobian by numerical differencing is an indispensable part
of a general purpose code.

The evaluation of Jacobians is a relatively expensive part of the solution process
even though good codes try to do this as infrequently as possible. The key to reducing
this cost is to take advantage of special structure of the problem. Ordinarily, medium
to large systems have weak coupling so that most partial derivatives are zero; linear

12 L. F. SHAMPINE AND C. W. GEAR

terms in the equations giving rise to immediately available partial derivatives are fairly
common; and often the functions are rather simple in form, especially for very large
systems. It is easier to take advantage of these possibilities with analytic differentiation
than numerical differentiation with the consequence that although the former may be
more trouble to set up, it will prove very much cheaper. Those concerned with
application packages should be especially alert to this possibility because of the
restriction to a special class of equations in their area. An example is the package [5]
in which the user describes his chemical kinetics problem in a manner natural to him
as a chemist. The package sets up the differential equations and forms the (easy)
Jacobian analytically on its own. At some computing installations symbol manipula-
tion languages furnish a quite practical tool for the generation of Jacobians. Depend-
ing on the problem and the efficiency of the code generated by the symbolic processor,
the analytical derivatives may, or may not, be evaluated more cheaply than by
differencing.

One of the reasons for preferring analytical Jacobians is that scaling difficulties in
differencing can lead to poor numerical Jacobians. Good differencing algorithms try to
cope with this sort of trouble and, of course, the codes will work with poor Jacobians
anyway, but the net effect is that scaling troubles increase the cost and decrease the
reliability of differencing as compared to analytical Jacobians.

An intermediate procedure is for the user to provide structure information which
the code then uses to construct Jacobians by differencing. A trick discovered by
Curtis, Powell and Reid [4] may achieve substantial reductions in the cost of
differencing because of known structure. A particularly simple and quite common case
is that of a banded system. We say the system is banded, with half bandwidth m, if for
each i, the jth equation does not involve the variables y. for j-i] >rn. For such a
system the Jacobian has nonzero elements only within a band about the main diagon-
al, whence the name. As it turns out, a Jacobian of half bandwidth m can be formed by
differencing in only 2m + 1 extra evaluations of regardless of the size of the system of
equations. Clearly this leads to large reductions in machine time even when m is not
particularly small compared to N.

Storage can be a limiting factor in the solution of large stiff problems because one
must store the Jacobian or a closely related matrix for which one must solve a linear
system of equations. A major disadvantage of most implicit Runge-Kutta schemes is
that the size of the nonlinear system to be solved at each step is a multiple of the
number of equations, the higher the order, the bigger the multiple. Because the
Jacobian grows like the square of the number of unknowns, for even moderate sized
systems the order in the code COLODE [18] has to be restricted severely to hold the
program in rapid memory.

When solving nonstitt systems of equations, one is accustomed to ignoring all
costs except that of evaluating the equation. With stiff systems this cannot be done
because the cost of repeatedly solving linear systems often represents a substantial
fraction of the total cost. We shall examine the efficient solution of these systems, but
first we note that methods behave differently with respect to the size and number of
systems which must be solved. The origin of the difficulty is in the fact that the
iteration matrix depends explicitly on the step size and so must be treated afresh if the
step size is significantly altered. Because of this certain algorithms must spend an
unusually large portion of their effort on solving linear systems. For example, in
extrapolation procedures, assuming that the approximate Jacobian will serve for a
whole step, one repeatedly advances a method such as the backward Euler method
through this interval with successively smaller fractions of the basic step size, and
combines these results at the end of the basic step. Each sweep involves a different

STIFF ORDINARY DIFFERENTIAL EQUATIONS 13

linear system which must be solved repeatedly at each fractional step of the sweep.
Other examples for which the cost of the linear algebra is prominent for similar
reasons include the composite multistep methods, implicit Runge-Kutta methods,
methods based on averaging various implicit solutions at each step, and the use of step
halving to estimate local errors. This situation has been the object of intensive
research and the recent papers of Enright [8] and Bickart [1] show that progress is
being made.

For small to moderate sized systems one can use elimination to factor the matrix
and then use these factors to do the necessary iterations efficiently. To solve medium
to large problems we must again resort to structural information. Band structure is the
easiest to accommodate. Because the factors of a band matrix are also of band form it
is possible to compute and store only those elements known to be potentially nonzero.
If the band width is relatively small, m << N, one greatly reduces the storage and
greatly increases the efficiency of the solution of the linear system by taking advantage
of the band form. More generally a matrix is said to be sparse if most of its elements
are zero. This is typical of many very large stiff problems. There are schemes for
storing only the nonzero elements of sparse matrices and for doing elimination in such
a way as to introduce relatively few nonzero elements. Some storage is required for
the schemes themselves and some extra effort in the elimination, so they do not begin
to pay off in either storage or speed until only a few percent of the entries in the
matrices are nonzeros. Fortunately this is often the case. Problems have been solved
which are so large that iterative methods had to be used for the linear systems because
such methods require less storage than a factorization. This is an active field of
research at the present and we may well see iterative techniques being used for less
special problems.

Exploitation of structural information has been incorporated in a number of
codes, but they are not as widely available or as easy to use as those codes cited at the
beginning of this section. An exception is the code of Hindmarsh [17] which is a
version of the code [14] modified to use a band structured Jacobian. It uses the
differencing scheme and the special solution of banded systems which we have
described. One of the earliest such codes is the sparse tableau approach. This is
described in Hachtel, et al. 13], and is apparently part of an IBM proprietary software
package for electronic circuit design.

Since it is often true that evaluation of the function and even the Jacobian are not
particularly expensive for large problems, the extensive linear algebra and data
transfers are often a large fraction of the total cost. FORTRAN does not take full
advantage of the overlapping of data transfers and computation and of hardware
possibilities of pipeline and vector machines. FORTRAN callable assembly language
modules are becoming available which allow more efficient handling of basic tasks
than are possible in the FORTRAN codes being widely disseminated. The report [15
gives some codes and timing comparisons on a CDC 7600 of routines for the LU
decomposition of a matrix and the forward and backward substitution process for
solving a linear system. For only three equations, the FORTRAN programs are slightly
faster because of some additional overhead in the linear algebra modules, but the
more specialized routines quickly pull ahead and show an improvement of a factor of
about three for 200 equations. (The solving routine benefits a little more than the
decomposition routine.) For large problems there are clearly important cost savings
which can be achieved on some machines in this manner.

Many problems lead to implicit sets of differential equations such as

(4.1) My’= Ky +p(x),

14 L. F. SHAMPINE AND C. W. GEAR

where the matrices M and K may depend on y, x, and even y’. It is not necessary, nor
even desirable, to invert these to the explicit form

(4.2) y’= M-[Ky +p(x)],

when a quasi-Newton iteration is used for the corrector. If, for example, the backward
Euler method is used as an integrator, it can be substituted in

(4.3) F(y, y’, x) =0

at x x,/l to eliminate Y’/I and get

(Y"+-Y"-----)F Y,,+l,
h Xn+l 0

which is to be solved for yn/l. Dealing with the implicit equation (4.3) directly can
save arithmetic and storage in large sparse problems. This is clear from equations (4.1)
and (4.2) when M and K are constant. Whereas the Jacobian of (4.1) will be K -M/h,
which will be sparse, the Jacobian of (4.2) is M-1 K-l/h, which will normally be
dense.

A very important part of any code for solving differential equations, whether stiff
or nonstiff, is automatic control of the step size and order of method used. While the
basic strategy is straightforward--the two are chosen to try and minimize the amount
of work done to integrate over the interval--the implementation is not. The problem
lies in the fact that there is not yet an adequate theory to tell us how to choose these
parameters, so the choice is based on the extension of existing theory to situations in
which it probably does not apply, coupled with a lot of testing and tuning of codes to
make them as reliable as possible. Because of this, it is possible for a person to
implement a set of formulas into a code and use the same basic step and order control
strategy as another code, and yet have a code that is orders of magnitude slower on
some difficult problems. (This is illustrated in [23] which compares a number of codes
for nonstiff problems, including four based on Adams methods and rather similar step
and order control strategies.) The lesson to be learned from this is that, whenever
possible, an existing piece of well tested and well documented software should be
used, and if possible, it should be used without change.

Variable order codes adapt the formula used to the observed characteristics of
the solution and have proved very efficient in general use. One should appreciate that
such codes are relatively inefficient during the initial stages of the computation while
they find an appropriate order. Ordinarily this is an unimportant part of the overall
expense, but there are exceptions. We have seen examples in flame chemistry where
one has partial differential equations describing the gas flow coupled to ordinary
differential equations describing reactions taking place in the flow. A pseudo steady-
state approximation is made in which one holds the gas flow parameters constant for a
time period during which one integrates the ordinary differential equations. Using
these values one re-solves the partial differential equations for the time zone or
advances into the next time zonegthe details do not matter here. The point is that at
the end of each zone, the ordinary differential equations change. Codes based on
backward differentiation formulas prove very inefficient because they must be
restarted at each zone. Things do not change much from zone to zone (else they would
be shortened) so that the last step size used in one zone would be reasonable in the
next if one retained the same formula. Fixed order methods appear to offer consider-
able advantage in this situation and the limited experience agrees. To some degree,
extrapolation methods which permit high orders must also be at a disadvantage

STIFF ORDINARY DIFFERENTIAL EQUATIONS 15

because the order and the length of the step will be held back by the length of the
zone. A low order and small step size can be obtained more cheaply by a code with
fixed order.

There is one situation in which automatic, step and order control may not be
desirable; that is, when a problem is to be repeatedly integrated to study, for example,
effects of parameters. Here it is desirable to use the same sequence of steps and
formulas in each integration. If that is done, the numerical solution depends more
smoothly on the parameter values than if not. However, even in this case, it is
desirable to choose a step and formula sequence automatically for the first integration
and either perform the other integrations in parallel (and possibly use the same
Jacobian and its decomposition) or save the sequence for subsequent integrations.

5. Solving a dilterential equation. There are a number of meanings of "solving" a
differential equation numerically. Sometimes one wants an approximate solution at a
single point. More often a solution is desired on a set of points so as to get a table of
the solution. Other times one wants either a continuous approximate solution curve or
a table so dense as to be equivalent. It is important to realize that where and how
frequently one wants output points can have a serious effect on the cost. The most
efficient action depends on the method implemented, the principal factor being how
far, relatively speaking, the code steps before producing an approximate solution. For
example, high order implicit Runge-Kutta schemes and extrapolation schemes
advance very much further in a step than does a code based on the backward
differentiation formulas. The former produce output at a given point by stepping so as
to actually hit the point. Requesting output more frequently than the natural step size
chosen by the code will severely degrade the efficiency of such methods for a variety of
reasons. If one seeks an answer at only a few points, especially if he is willing to accept
the natural output points, output is not a problem. Some methods, like the backward
differentiation formulas, provide continuous polynomial solutions which can be
evaluated at negligible cost. Not all codes implement this equally well. In this matter
one needs to consider what is required in the way of output and how it impacts the
repertoire of codes.

The user’s meaning of accuracy can affect the results considerably. One common
scheme is to measure the error relative to the maximum (absolute) value of the
solution component seen so far in the integration. Another common scheme is a
mixture of absolute error and error relative to the solution magnitude. It is important
to be able to specify error tolerances for each component of the solution because
scaling of components often differs radically for stiff problems. Stiff problems almost
always involve transients during which the solution changes sharply. In the survey [26]
about half the users required the accurate solution of these transients as well as that of
the slowly varying portions. To do this one must use a suitable error control and the
net effect is that in the transient, accuracy dominates the choice of step size rather than
stability. As a result the transients become a relatively expensive part of the inte-
gration for most codes. Even if the user is interested only in the long term behavior of
the solution, a resolution of the transient may be necessary to assure that the proper
equilibrium solution is picked up and to assure reliability of the basic algorithms. If
one knows that all errors will be heavily damped and is interested only in equilibrium
behavior, one can economize by computing the transient crudely.

An extremely common misuse of codes is to seek a solution accurate in a relative
sense when the solution vanishes initially or tends to zero rapidly later in the inte-
gration. The attempt can prove exceedingly expensive and is rarely meaningful. By far

16 L. F. SHAMPINE AND C. W. GEAR

the most common situation is that, when a quantity drops below a certain level, the
user of the code is no longer interested in this quantity and so should not waste time
trying to compute it accurately. A proper choice of error criterion will accomplish this.
Of course, it may happen that nonphysical values get computed in this way, for
example, a negative concentration. Ordinarily this is unimportant, but it can happen
that the differential equations become unstable if such a value should be generated.
Discussion of this difficulty in the context of mass action kinetics and an example can be
found in [6].

Stiff problems are relatively expensive to solve and the expense depends much
more strongly on the tolerance than is true of the best codes for nonstiff problems. The
physical origin of stiff problems rarely makes high accuracy meaningful because
fundamental quantities are known inaccurately. The case of semi-discretization of
partial differential equations is an easily understood and important case in point. If the
spatial discretization is crude, it makes no sense to solve the ordinary differential
equations very accurately at all. In the survey [26] accuracies of one or two digits were
by far the most common requests. An accuracy of five digits was considered stringent.
Apparently experience says that accuracies in this general area represent a bearable
expense with our currently available codes and machines. At this point we should
remind the reader that the codes control their local truncation errors, not the global
errors which interest the user of the code. The present state of the art is such that for
some problems one can get reasonable looking numbers which are not close to the
desired solution. This difficulty can arise in a number of ways, including a step control
routine that makes the step so large that an active region of the solution is missed
entirely, and a formula that is stable for unstable problems and completely ignores an
increasing component of the solution. A conservative choice of tolerance, alertness to
scaling considerations in the error criterion and differencing of Jacobians, experimen-
tation, and a thoughtful examination of the numerical results are indispensable for
solving stiff differential equations.

Acknowledgment. We would like to acknowledge the valuable comments and
suggestions of the referees.

REFERENCES

[1] T. A. BICKART, An efficient solution process]’or implicit Runge-Kutta methods. SIAM J. Numer.
Anal., to appear.

[2] T. A. BICKART AND Z. PICEL, High order stiffly stable composite multistep methods]’or numerical
integration o]: stiff differential equations, BIT, 13 (1973), pp. 272-286.

[3] G. BJUREL, G. DAHLQUIST, B. LINDBERG, S. LINDE AND L. ODEN, Survey o]: stiff ordinary

differential equations, Rep. NA 70.11, Dept. of Information Processing, Royal Institute of Tech-
nology, Stockholm, 1970.

[4] A. R. CURTIS, M. J. D. POWELL AND J. K. REID, On the estimation o[sparse Jacobian matrices, J.
Inst. Math. Appl., 13 (1974), pp. 117-119.

[5] L. EDSBERG, Integration package]:or chemical kinetics, Stiff Differential Systems, R. A. Willoughby,
ed., Plenum Press, New York, 1974, pp. 81-94.

[6], Numerical methods [or mass action kinetics, Numerical Methods for Differential Systems, L.
Lapidus and W. E. Schiesser, eds., Academic Press, New York, 1976, pp. 181-195.

[7] W. H. ENRIGHT, T. E. HULL AND B. LINDBERG, Comparing numerical methods [or stiff systems of
ODEs, BIT, 15 (1975), pp. 10-48.

[8] W. n. ENRIGHT, Improving the efficiency o]: matrix operations in the numerical solution of stiff ODEs,
Rep. no. 98, Dept. of Computer Science, University of Toronto, Toronto, Canada, 1976.

[9] C. W. GEAR, The automatic integration o]: stiff ordinary differential equations, Information Processing,
1969, pp. 187-193.

STIFF ORDINARY DIFFERENTIAL EQUATIONS 17

[10]------, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1969.

11 -----, Algorithm 407: DIFSUB]:or solution of ordinary differential equations [D2], Comm. ACM, 14
(1971), pp. 185-190.

12],Estimation of errors and derivatives in ordinary differential equations, Information Processing, 3
(1974), pp. 447-451, 1974.

[13] G. D. HACHTEL, R. K. BRArON AND F. G. GUSTAVSON, The sparse tableau approach to network
analysis and design, IEEE Trans. Circuit Theory, CT- 18 (1971), pp. 101-113.

[14] A. C. HINDMARSH, GEAR: Ordinary differential equation solver, Rep. no. UCID-30001, rev. 3,
Lawrence Livermore Laboratory, Livermore, CA, 1974.

[15] A. C. HINDMARSH, L. J. SLOAN, K. W. FONG AND G. H. RODRIQUE,DEC Solution o]’dense
systems o[linear algebraic equations, Rep. UCID-30137, Lawrence Livermore Laboratory,
Livermore, CA, 1976.

16] A. C. HINDMARSH ANn G. D. BYRNE, EPISODE: An experimental package for the integration o]"
ordinary differential equations, Rep. no. UCID-30112, Lawrence Livermore Laboratory, Liver-
more, CA, 1975.

17] A. C. HINDMARSH, GEARB: Solution of ordinary differential equations having banded Jacobian,
Rep. no. UCID-30059, rev. 1, Lawrence Livermore Laboratory, Livermore, CA, 1975..

18] B. L. HULME, COLODE: A colocation subroutine .for ordinary differential equations, Rep. SAND74-
0380, Sandia Laboratories, Albuquerque, NM, 1974.

[19] D. C. JOYCE, Survey of extrapolation processes in numerical analysis, this Review, 13 (1971), pp.
435-488.

[20] L. LAPIDUS, R. C. AIKEN AND Y. A. LIU, The occurrence and numerical solution of physical and
chemical systems having widely varying time constants, Stiff Differential Systems, R. A. Willough-
by, ed., Plenum Press, NY, pp. 187-200, 1974.

[21] B. LINDBERG, A stiff system package based on the implicit midpoint method with smoothing and
extrapolation, Ibid., pp. 201-215.

[22] N. L. SCHRVER, An extrapolation step size monitor for solving ordinary differential equations, Proc.
ACM, 1974, pp. 140-148.

[23] L. F. SHAMPINE, H. A. WATTS AND S. M. DAVENPORT, Solving nonstiff ordinary differential
equationswThe state of the art, this Review, 18 (1976), pp. 376-411.

[24] L. F. SHAMPINE, Stiffness and non-stiff differential equation solvers, Numerische Behandlung
Differentialgleichungen, L. Collatz, ed., ISNM 27, Birkh/iuser Verlag, Basel, Switzerland, 1975,
pp. 287-301.

[25] L. F. SHAMPINE AND M. K. GORDON, Computer Solution of Ordinary Differential Equations: The
Initial Value Problem, W. H. Freeman, San Francisco, CA, 1975.

[26], Typical problems for stiff differential equations, SIGNUM Newsletter, 10 (1975), p. 41.
[27] L. F. SHAMPINE, Stiffrless and non-stiff differential equation solvers II detecting stiffness with Runge-

Kutta methods, ACM Trans. Math. Software, 3 (1977), pp. 44-53.
[28] R. D. SKEEL AND A. K. KONG, Blended linear multistep methods, UIUCDCS-R-76-800, Dept. of

Computer Science, University of Illinois, Urbana, IL, 1976.
[29] J. M. TENDLER, T. A. BICKART AND Z. PICEL, A stiffly stable integration process using cyclic

composite methods, to appear.

