Vehicle Propulsion Systems Lecture 2 Fuel Consumption Estimation & ICE

Lars Eriksson Professor

Vehicular Systems Linköping University

March 31, 2020

Outline

Repetition

Energy Consumption of a Driving Mission

Losses in the vehicle motion Energy Demand of Driving Mission

Energy demand

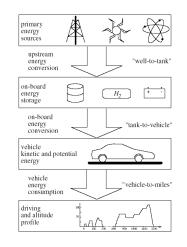
Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

C Engine Models Normalized Engine Variables

2 / 49

Energy System Overview



Primary sources

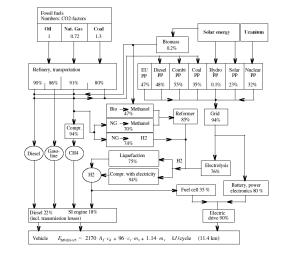
Different options for on-board energy storage

Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

W2M – Energy Paths



Outline

Repetition

Energy Consumption of a Driving Mission

The Vehicle Motion Equation Losses in the vehicle motion Energy Demand of Driving Missions

Energy demand

Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables Engine Efficiency

Energy Consumption of a Driving Mission

- Remember the partitioning
 - -Cut at the wheels.
- ▶ How large force is required at the wheels for driving the vehicle on a mission?

6 / 49

Repetition - Work, power and Newton's law

Translational system – Force, work and power:

$$W = \int F \, dx, \qquad P = rac{d}{dt}W = F \, v$$

Rotating system – Torque (T = F r), work and power:

$$W = \int T d\theta, \qquad P = T \omega$$

Newton's second law:

$$\begin{tabular}{|c|c|c|c|} \hline Translational & Rotational \\ \hline \hline m \frac{dv}{dt} = F_{driv} - F_{load} & J \frac{d\omega}{dt} = T_{driv} - T_{load} \\ \hline \end{tabular}$$

The Vehicle Motion Equation

Newton's second law for a vehicle

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

- \blacktriangleright F_t tractive force
- ► *F_a* aerodynamic drag force
- \blacktriangleright F_r rolling resistance force
- \triangleright F_g gravitational force
- \blacktriangleright F_d disturbance force

Aerodynamic Drag Force – Loss

Aerodynamic drag force depends on:

Frontal area A_f , drag coefficient c_d , air density ρ_a and vehicle velocity v(t)

$$F_{a}(t) = \frac{1}{2} \cdot \rho_{a} \cdot A_{f} \cdot c_{d} \cdot v(t)^{2}$$

Approximate contributions to F_a

- ► 65% car body.
- ▶ 20% wheel housings.
- ▶ 10% exterior mirrors, eave gutters, window housings, antennas, etc.
- ▶ 5% engine ventilation.

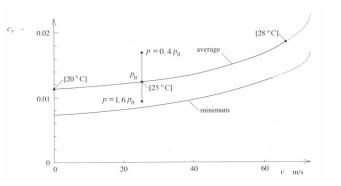
Rolling Resistance Losses

Rolling resistance depends on:

load and tire/road conditions

$$F_r(v, p_t, \text{surface}, \ldots) = c_r(v, p_t, \ldots) \cdot m_v \cdot g \cdot \cos(\alpha), \qquad v > 0$$

_



The velocity has small influence at low speeds.

Increases sharply for high speeds where resonance phenomena occur.

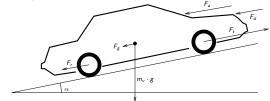
Assumption in book: c_r – constant

$$F_r = c_r \cdot m_v \cdot g$$

10 / 49

Gravitational Force

Gravitational load force Not a loss, storage of potential energy

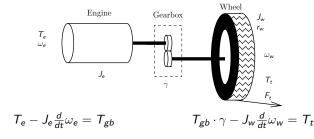


Up- and down-hill driving produces forces.

$$F_g = m_v g \sin(\alpha)$$

Flat road assumed $\alpha = 0$ if nothing else is stated (In the book).

Inertial forces – Reducing the Tractive Force



Variable substitution: $T_w = \gamma T_e$,

 $v = \omega_w r_w$

Tractive force:

$$F_t = \frac{1}{r_w} \left[\left(T_e - J_e \frac{d}{dt} \frac{v(t)}{r_w} \gamma \right) \cdot \gamma - J_w \frac{d}{dt} \frac{v(t)}{r_w} \right] = \frac{\gamma}{r_w} T_e - \left(\frac{\gamma^2}{r_w^2} J_e + \frac{1}{r_w^2} J_w \right) \frac{d}{dt} v(t)$$

 $\omega_w \gamma = \omega_e$,

The Vehicle Motion Equation:

$$\left[m_v + \frac{\gamma^2}{r_w^2}J_e + \frac{1}{r_w^2}J_w\right]\frac{d}{dt}v(t) = \frac{\gamma}{r_w}T_e - \left(F_a(t) + F_r(t) + F_g(t) + F_d(t)\right)$$

Vehicle Operating Modes

The Vehicle Motion Equation:

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

- $F_t > 0$ traction
- $F_t < 0$ braking
- \blacktriangleright $F_t = 0$ coasting

$$\frac{d}{dt}v(t) = -\frac{1}{2\,m_v}\rho_a A_f \, c_d \, v^2(t) - g \, c_r = -\alpha^2 \, v^2(t) - \beta^2$$

Coasting solution for v > 0

$$v(t) = \frac{\beta}{\alpha} \tan\left(\arctan\left(\frac{\alpha}{\beta}v(0)\right) - \alpha\beta t\right)$$

14 / 49

How to check a profile for traction?

The Vehicle Motion Equation:

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$
(1)

- Traction conditions: $F_t > 0$ traction, $F_t < 0$ braking, $F_t = 0$ coasting
- Method 1: Compare the profile with the coasting solution over a time step

$$v_{coast}(t_{i+1}) = \frac{\beta}{\alpha} \tan\left(\arctan\left(\frac{\alpha}{\beta} v(t_i)\right) - \alpha \beta (t_{i+1} - t_i)\right)$$

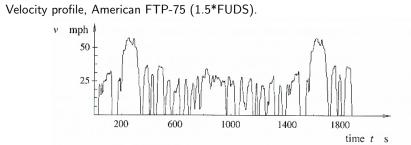
• Method 2: Solve (1) for F_t

$$F_t(t) = m_v \frac{d}{dt}v(t) + (F_a(t) + F_r(t) + F_g(t) + F_d(t))$$

Numerically differentiate the profile v(t) to get $\frac{d}{dt}v(t)$. Compare with Traction condition ($F_t > 0$).

15 / 49

Driving profiles

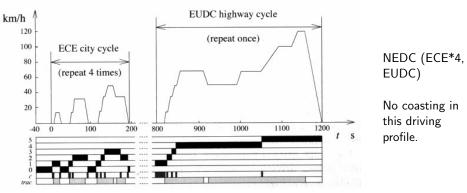


Driving profiles in general

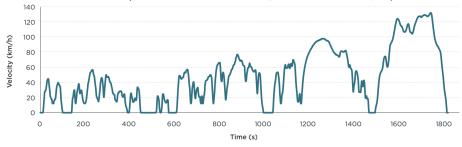
- ▶ First used for pollutant control now also for fuel consumption.
- Important that all use the same cycle when comparing.
- Different cycles have different energy demands.

Driving profiles – Another example

Velocity profile, European MVEG-95



Driving profiles – A third example



Velocity profile, WLTC (Worldwide Harmonized Light Vehicles Test Cycle)

Adopted for new vehicles in 2017 in EU. More demanding than NEDC.

Mechanical Energy Demand of a Cycle

Only the demand from the cycle

► The mean tractive force during a cycle

$$\bar{F}_{trac} = \frac{1}{x_{tot}} \int_0^{x_{tot}} \max(F(x), 0) \, dx = \frac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) dt$$

where
$$x_{tot} = \int_0^{t_{max}} v(t) dt$$
.

▶ Note $t \in trac$ in definition.

Only traction.

Idling not a demand from the cycle.

19 / 49

Evaluating the integral

Discretized velocity profile used to evaluate

$$\bar{F}_{trac} = \frac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) dt$$

here $v_i = v(t_i)$, $t_i = i \cdot h$, i = 1, ..., n. Approximating the quantites

 $ar{v}_i(t)pproxrac{v_i+v_{i-1}}{2}, \qquad t\in[t_{i-1},t_i) \ ar{a}_i(t)pproxrac{v_i-v_{i-1}}{h}, \qquad t\in[t_{i-1},t_i) \ egin{array}{lll}$

Traction approximation

$$ar{F}_{trac} pprox rac{1}{x_{tot}} \sum_{i \in trac} ar{F}_{trac,i} \, ar{v}_i \, h$$

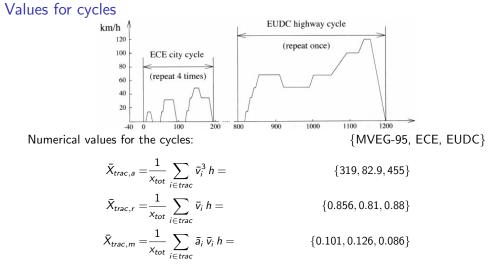
Evaluating the integral

Tractive force from The Vehicle Motion Equation

$$F_{trac} = \frac{1}{2} \rho_a A_f c_d v^2(t) + m_v g c_r + m_v a(t)$$
$$\bar{F}_{trac} = \bar{F}_{trac,a} + \bar{F}_{trac,r} + \bar{F}_{trac,m}$$

Resulting in these sums

$$\bar{F}_{trac,a} = \frac{1}{x_{tot}} \frac{1}{2} \rho_a A_f c_d \sum_{i \in trac} \bar{v}_i^3 h$$
$$\bar{F}_{trac,r} = \frac{1}{x_{tot}} m_v g c_r \sum_{i \in trac} \bar{v}_i h$$
$$\bar{F}_{trac,m} = \frac{1}{x_{tot}} m_v \sum_{i \in trac} \bar{a}_i \bar{v}_i h$$



22 / 49

Values for cycles

$$\bar{X}_{trac,a} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 h = \{319, 82.9, 455\}$$

$$\bar{X}_{trac,r} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i h = \{0.856, 0.81, 0.88\}$$

$$\bar{X}_{trac,m} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \, \bar{v}_i \, h = \{0.101, 0.126, 0.086\}$$

Adopting appropriate units and packaging the results as an Equation

$$\bar{E}_{\text{MVEG-95}} \approx A_f c_d \, 1.9 \cdot 10^4 + m_v c_r \, 8.4 \cdot 10^2 + m_v \, 10 \qquad kJ/100 \, km$$

Tasks in Hand-in assignment

23 / 49

Approximate car data

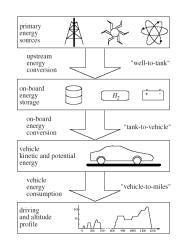
The energy need for the MVEG-95 cycle per 100 km.

_	CLIV/	المنالم		الجماسة مربين الجماسة ا	DAC Car II
	$ar{E}_{MVEG-95} pprox A_f c_d 1$	$.9 \cdot 10^4 + m$	$v_v c_r 8.4 \cdot 10$	$b^2 + m_v 10$	kJ/100 <i>km</i>

pact light-weight PAC-Car II
m^2 0.4 m^2 .25 · .07 m^2
7 0.017 0.0008
) kg 750 kg 39 kg
W 3.2 kW
W 57 kW
r

Average and maximum power requirement for the cycle.

Energy System Overview



Primary sources

Different options for on-board energy storage

Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

Outline

Repetition

Energy Consumption of a Driving Mission The Vehicle Motion Equation Losses in the vehicle motion

Energy demand

Energy demand and recuperation Sensitivity Analysis

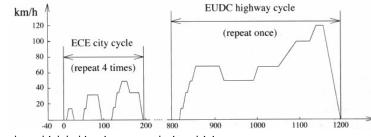
Forward and Inverse (QSS) Models

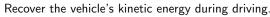
IC Engine Models

Normalized Engine Variables Engine Efficiency

Energy demand again - Recuperation

- ▶ Previously: Considered energy demand from the cycle.
- ▶ Now: The cycle can give energy to the vehicle.





26 / 49

Perfect recuperation

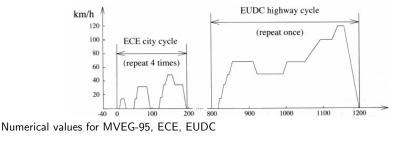
► Mean required force

$$ar{F}=ar{F}_{a}+ar{F}_{a}$$

Sum over all points

$$\bar{F}_a = \frac{1}{x_{tot}} \frac{1}{2} \rho_a A_f c_d \sum_{i=1}^N \bar{v}_i^3 h$$
$$\bar{F}_r = \frac{1}{x_{tot}} m_v g c_r \sum_{i=1}^N \bar{v}_i h$$

Perfect recuperation - Numerical values for cycles



$$\bar{X}_a = \frac{1}{x_{tot}} \sum_i \bar{v}_i^3 h =$$
 {363, 100, 515}

$$\bar{X}_r = \frac{1}{x_{tot}} \sum_i \bar{v}_i h = \{1, 1, 1\}$$

 $\bar{E}_{\text{MVEG-95}} \approx A_f c_d 2.2 \cdot 10^4 + m_v c_r 9.81 \cdot 10^2 \qquad kJ/100 km$

Comparison of numerical values for cycles

► Without recuperation.

$$\begin{split} \bar{X}_{trac,a} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 h = \\ \bar{X}_{trac,r} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i h = \\ \bar{X}_{trac,m} &= \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h = \\ \end{split}$$

$$\{0.856, 0.81, 0.88\}$$

$$\{\overline{X}_{trac,m} = \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h = \\ \{0.101, 0.126, 0.086\}$$

► With perfect recuperation

$$\bar{X}_{a} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i}^{3} h =$$

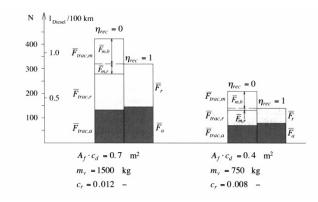
$$\bar{X}_{r} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i} h =$$

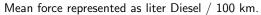
$$\{363, 100, 515\}$$

$$\bar{X}_{r} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i} h =$$

$$\{1, 1, 1\}$$

Perfect and no recuperation





30 / 49

Sensitivity Analysis – Design changes

Cycle energy reqirement (no recuperation)

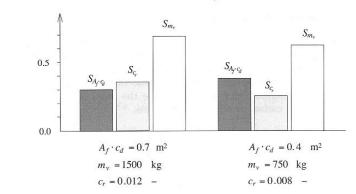
$$\bar{E}_{\text{MVEG-95}} \approx A_f c_d \, 1.9 \cdot 10^4 + m_v c_r \, 8.4 \cdot 10^2 + m_v \, 10 \qquad kJ/100 \, km$$

Sensitivity analysis

$$S_{p} = \lim_{\delta p \to 0} \frac{\left[\bar{E}_{\text{MVEG-95}}(p + \delta p) - \bar{E}_{\text{MVEG-95}}(p)\right] / \bar{E}_{\text{MVEG-95}}(p)}{\delta p / p}$$
$$S_{p} = \lim_{\delta p \to 0} \frac{\left[\bar{E}_{\text{MVEG-95}}(p + \delta p) - \bar{E}_{\text{MVEG-95}}(p)\right]}{\delta p} \frac{p}{\bar{E}_{\text{MVEG-95}}(p)}$$

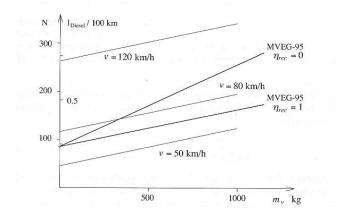
- Consider the vehicle design parameters:
 - $\blacktriangleright A_f c_d$
 - ► Cr
 - ► m_v

Sensitivity Analysis

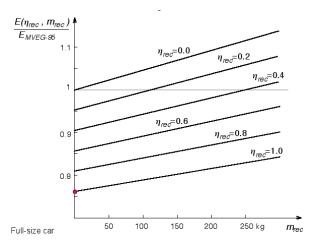


Vehicle mass is the most important parameter.

Vehicle mass and fuel consumption



Realistic Recuperation Devices



34 / 49

Outline

Repetition

Energy Consumption of a Driving Mission

The Vehicle Motion Equation Losses in the vehicle motion Energy Demand of Driving Missions

Energy deman

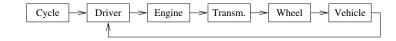
Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

IC Engine Models

Normalized Engine Variables Engine Efficiency

Dynamic approach



- Forward simulation.
- Drivers input u propagates to the vehicle and the cycle
- ► Drivers input ⇒ ... ⇒ Driving force ⇒ Losses ⇒ Vehicle velocity ⇒ Feedback to driver model
- Available tools (= Standard simulation) can deal with arbitrary powertrain complexity.

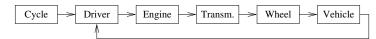
Quasistatic approach

- Backward simulation
- Driving cycle ⇒ Losses ⇒ Driving force ⇒ Wheel torque ⇒ Engine (powertrain) torque ⇒ ... ⇒ Fuel consumtion.
- Available tools are limited with respect to the powertrain components that they can handle.
 - The models need to be prepared for inverse simulation.
- Considering new acausal tools such as Modelica opens up possibilities.
- See also: Efficient Drive Cycle Simulation, Anders Fröberg and Lars Nielsen (2008) ...

38 / 49

Two Approaches for Powertrain Simulation

Dynamic simulation (forward simulation)



 $-\ensuremath{``Normal''}\xspace$ system modeling direction

-Requires driver model

Quasistatic simulation (inverse simulation)

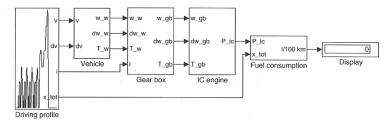
Cycle -> Vehicle -> Wheel -> Transm. -> Engine

- -"Reverse" system modeling direction
- -Follows driving cycle exactly
- Model (or calculation) causality

QSS Toolbox – Quasistatic Approach

IC Engine Based Powertrain

294 (2012) 2011 (2012) 2011 (2012) - 2012 (2012) 전 5 (2012)



- ► The Vehicle Motion Equation With inertial forces: $\left[m_v + \frac{1}{r_w^2}J_w + \frac{\gamma^2}{r_w^2}J_e\right] \frac{d}{dt}v(t) = \frac{\gamma}{r_w}T_e - (F_a(t) + F_r(t) + F_g(t) + F_d(t))$
- ▶ Gives efficient simulation of vehicles in driving cycles

Outline

Repetition

Energy Consumption of a Driving Mission The Vehicle Motion Equation Losses in the vehicle motion Energy Demand of Driving Missions

Energy demand

Energy demand and recuperation Sensitivity Analysis

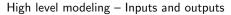
Forward and Inverse (QSS) Models

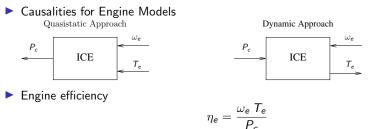
IC Engine Models

Normalized Engine Variables Engine Efficiency

41 / 49

Causality and Basic Equations

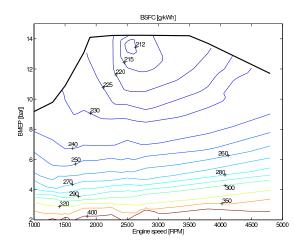




• Enthalpy flow of fuel (Power $\dot{H}_{fuel} = P_c$)

$$P_c = \dot{m}_f q_{LHV}$$

Engine Efficiency Maps



Measured engine efficiency map.

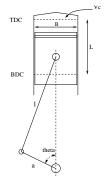
Used very often for fuel consumption assessment.

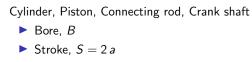
The engineering perspective, design/evaluation.

-What to do when map-data isn't available?

42 / 49

Engine Geometry Definitions





- Number of cylinders z
- Cylinder swept volume, $V_d = \frac{\pi B^2 S}{4}$
- Engine swept volume, $V_D = z \frac{\pi B^2 S}{4}$
- Compression ratio $r_c = \frac{V_{max}}{V_{min}} = \frac{V_d + V_c}{V_c}$

Definition of MEP

- Mean Effective Pressure (MEP) = $\frac{\text{Work}}{\text{Displacement Volume}} = \frac{4\pi T_e}{V_D}$
- ▶ MEP normalizes the work output with the size of the engine.
- ► The engineering perspective.

If we can build a good model in the MEP domain, then we can scale it with V_D and get a generic engine model, with which we can evaluate the design impact of different engine sizes. Opens up possibilities for selecting engines for optimal fuel economy for a vehicle, etc.

Normalized Engine Variables

• Mean Piston Speed $(S_p = mps = c_m)$:

$$c_m = \frac{\omega_e S}{\pi}$$

• Mean Effective Pressure (MEP= p_{me} ($N = n_r \cdot 2$)):

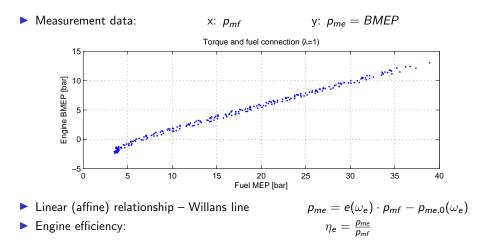
$$p_{me} = \frac{N \pi T_e}{V_d}$$

- Used to:
 - Compare performance for engines of different size
 - ▶ Design rules for engine sizing. At max engine power: $c_m \approx 17 \text{ m/s}$, $p_{me} \approx 1\text{e6}$ Pa (no turbo) \Rightarrow engine size
 - Connection:

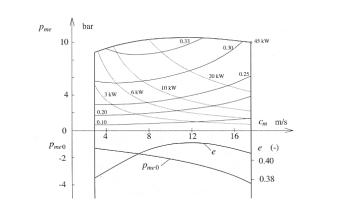
$$P_e = z \, \frac{\pi}{16} \, B^2 \, p_{me} \, c_m$$

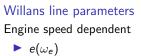
46 / 49

Torque modeling through – Willans Line



Engine Efficiency – Map Representation





 $\blacktriangleright p_{me,0}(\omega_e)$