Vehicle Propulsion Systems
 Lecture 3
 Conventional Powertrains with Transmission Performance, Tools and Optimization

Lars Eriksson

Professor
Vehicular Systems
Linköping University
April 2, 2020

Outline

Repetition
(2) Gear-Box and Clutch Models

- Selection of Gear Ratio
- Gear-Box Efficiency
- Clutches and Torque Converters
(3) Analysis of IC Powertrains
- Average Operating Point
- Quasistatic Analysis
(4) Other Demands on Vehicles
- Performance and Driveability
(5) Optimization Problems
- Gear ratio optimization
- Software tools
- General advice
-Prepare yourselves before you go to the computer
-Make a plan (list of tasks)
- Hand-in Format
- Electronic hand-in
- Report in PDF-format
- Reasons:
-Easy for us to comment
-Will give you fast feedback

Energy System Overview

Primary sources

Different options for on-board energy storage

Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

W2M - Energy Paths

The Vehicle Motion Equation
Newtons second law for a vehicle

$$
m_{v} \frac{d}{d t} v(t)=F_{t}(t)-\left(F_{a}(t)+F_{r}(t)+F_{g}(t)+F_{d}(t)\right)
$$

- F_{t} - tractive force
- F_{a} - aerodynamic drag force
- F_{r} - rolling resistance force
- F_{g} - gravitational force
- F_{d} - disturbance force

Mechanical Energy Demand of a Cycle

Evaluating the integral

Tractive force from The Vehicle Motion Equation

$$
\begin{gathered}
F_{\text {trac }}=\frac{1}{2} \rho_{a} A_{f} c_{d} v^{2}(t)+m_{v} g c_{r}+m_{v} a(t) \\
\bar{F}_{\text {trac }}=\bar{F}_{\text {trac }, a}+\bar{F}_{\text {trac }, r}+\bar{F}_{\text {trac }, m}
\end{gathered}
$$

Resulting in these sums

$$
\begin{gathered}
\bar{F}_{t r a c, a}=\frac{1}{x_{t o t}} \frac{1}{2} \rho_{a} A_{f} c_{d} \sum_{i \in \operatorname{trac}} \bar{v}_{i}^{3} h \\
\bar{F}_{t r a c, r}=\frac{1}{x_{t o t}} m_{v} g c_{r} \sum_{i \in \text { trac }} \bar{v}_{i} h \\
\bar{F}_{t r a c, m}=\frac{1}{x_{t o t}} m_{v} \sum_{i \in \text { trac }} \bar{a}_{i} \bar{v}_{i} h
\end{gathered}
$$

Values for cycles

Numerical values for the cycles.
\{MVEG-95, ECE, EUDC\}

$$
\begin{array}{lr}
\bar{X}_{\text {trac }, a}=\frac{1}{x_{\text {tot }}} \sum_{i \in \text { trac }} \bar{v}_{i}^{3} h= & \{319,82.9,455\} \\
\bar{X}_{\text {trac }, r}=\frac{1}{x_{\text {tot }}} \sum_{i \in \text { trac }} \bar{v}_{i} h= & \{0.856,0.81,0.88\} \\
\bar{X}_{\text {trac }, m}=\frac{1}{x_{\text {tot }}} \sum_{i \in \text { trac }} \bar{a}_{i} \bar{v}_{i} h= & \{0.101,0.126,0.086\}
\end{array}
$$

Adopting appropriate units and packaging the results as an Equation

$\bar{E}_{\text {MVEG-95 }} \approx A_{f} c_{d} 1.9 \cdot 10^{4}+m_{v} c_{r} 8.4 \cdot 10^{2}+m_{v} 10 \quad \mathrm{~kJ} / 100 \mathrm{~km}$

QSS Toolbox - Quasistatic Approach

- IC Engine Based Powertrain

- The Vehicle Motion Equation - With inertial forces:

$$
\left[m_{v}+\frac{1}{r_{w}^{2}} J_{w}+\frac{\gamma^{2}}{r_{w}^{2}} J_{e}\right] \frac{d}{d t} v(t)=\frac{\gamma}{r_{w}} T_{e}-\left(F_{a}(t)+F_{r}(t)+F_{g}(t)+F_{d}(t)\right)
$$

- Gives efficient simulation of vehicles in driving cycles

Two Approaches for Powertrain Simulation

- Dynamic simulation (forward simulation)

-"Normal" system modeling direction
-Requires driver model
- Quasistatic simulation (inverse simulation)

-"Reverse" system modeling direction
-Follows driving cycle exactly

Outline

(1) Repetition
(2) Gear-Box and Clutch Models

- Selection of Gear Ratio
- Gear-Box Efficiency
- Clutches and Torque Converters
(3) Analysis of IC Powertrains
- Average Operating Point
- Quasistatic Analysis
(4) Other Demands on Vehicles
- Performance and Driveability
(5) Optimization Problems
- Gear ratio optimization
- Software tools

Different Types of Gearboxes

- Automatic Gear Box, with torque converter
- Automatic Gear Box, with automated clutch
- Automatic Gear Box, with dual clutches (DCT)
- Continuously variable transmission

Causality and Basic Equations

- Causalities for Gear-Box Models

Quasistatic Approach

Dynamic Approach

- Power balance - Loss free model

$$
\omega_{1}=\gamma \omega_{2}, \quad T_{1}=\frac{T_{2}}{\gamma}
$$

Connections of Importance for Gear Ratio Selection

- Vehicle motion equation:

$$
m_{v} \frac{d}{d t} v(t)=F_{t}-\frac{1}{2} \rho_{a} A_{f} c_{d} v^{2}(t)-m_{v} g c_{r}-m_{v} g \sin (\alpha)
$$

Constant speed $\frac{d}{d t} v(t)=0$:

$$
F_{t}=\frac{1}{2} \rho_{a} A_{f} c_{d} v^{2}(t)+m_{v} g c_{r}+m_{v} g \sin (\alpha)
$$

- A given speed v will require power $F_{t} v$ from the powertrain.
- This translates to power at the engine $T_{e} \omega_{e}$.

Changing/selecting gears decouples ω_{e} and v.

- Required tractive force increases with speed.

For a fixed gear ratio there is also an increase in required engine torque.

Selection of Gear Ratio - Engine Centric View

Gear ratio selection connected to the engine map.

The gear ratio, maps the road load into the engine map

Selecting gear ratios helps achieve goals

- Top speed $=$ Gear 4
- Overdrive $=$ Gear 5 (F.E.)

Additionally: Also geometric ratio between gears. $\frac{i_{g, 1}}{i_{g, 2}} \approx \frac{i_{g, 2}}{i_{g, 3}} \approx \frac{i_{g, 3}}{i_{g, 4}} \approx \frac{i_{g, 4}}{i_{g, 5}}$

Selection of Gear Ratio - Road Centric View

Gear-box Efficiency

- In traction mode

$$
T_{2} \omega_{w}=e_{g b} T_{1} \omega_{e}-P_{0, g b}\left(\omega_{e}\right), \quad T_{1} \omega_{e}>0
$$

- In engine braking mode (fuel cut)

$$
T_{1} \omega_{e}=e_{g b} T_{2} \omega_{w}-P_{0, g b}\left(\omega_{e}\right),, \quad T_{1} \omega_{e}<0
$$

Selection of Gear Ratio

Optimizing gear ratio for a certain cycle.

- Potential to save fuel.
- Case study 8.1 (we'll look at it later).

Clutch and Torque Converter Efficiency

Friction clutch torque:

$$
T_{1, e}(t)=T_{1, g b}(t)=T_{1}(t) \forall t
$$

Action and reaction torque in the clutch, no mass.

Torque Characteristics of a Friction Clutch

$\xrightarrow{-\Delta \omega_{0}} \underbrace{\Delta \omega_{0}}_{-T_{b}}$
Approximation of the maximum torque in a friction clutch

$$
T_{1, \max }=\operatorname{sign}(\Delta \omega)\left(T_{b}-\left(T_{b}-T_{a}\right) \cdot e^{-|\Delta \omega| / \Delta \omega_{0}}\right)
$$

Outline

(1) Repetition
(2) Gear-Box and Clutch Models

- Selection of Gear Ratio
- Gear-Box Efficiency
- Clutches and Torque Converters

3) Analysis of IC Powertrains

- Average Operating Point
- Quasistatic Analysis
(4) Other Demands on Vehicle
- Performance and Driveability
(3) Optimization Problems
- Gear ratio optimization
- Software tools

Main parameters in a Torque Converter

Input torque at the converter:

$$
T_{1, e}(t)=\xi(\phi(t)) \rho_{h} d_{p}^{5} \omega_{e}^{2}(t)
$$

Converter output torque

$$
T_{1, g b}(t)=\psi(\phi(t)) \cdot T_{1, e}(t)
$$

Graph for the speed ratio $\phi(t)=\frac{\omega_{g b}}{\omega_{e}}$, and the experimentally determined $\psi(\phi(t))$

The efficiency in traction mode becomes

$$
\eta_{t c}=\frac{\omega_{g b} T_{1, g b}}{\omega_{e} T_{1, e}}=\psi(\phi) \phi
$$

Average Operating Point Method

- Average operating point method
-Good agreement for conventional powertrains.
- Hand-in assignment

- More details and better agreement (depends on model quality) -Good agreement for general powertrains
- Hand-in assignment.

Quasistatic analysis - IC Engine Structure

Quasistatic analysis - Engine Operating Points

Why is the average operating point surprisingly good?

The data is looks quite nonlinear...

The Willans line approximation -is surprisingly good for normal driving.

The average value from a process that has variations that follow a line will end up on the line.
If we avoid the extremes it becomes a good approximation.

Outline

(1) Repetition
(2) Gear-Box and Clutch Models

- Selection of Gear Ratio
- Gear-Box Efficiency
- Clutches and Torque Converters

3) Analysis of IC Powertrains

- Average Operating Point
- Quasistatic Analysis
(4) Other Demands on Vehicles
- Performance and Driveability
(5) Optimization Problems
- Gear ratio optimization
- Software tools
- Maximum grade for which a fully loaded car reaches top speed
- Acceleration time from standstill to a reference speed ($100 \mathrm{~km} / \mathrm{h}$ or 60 miles $/ \mathrm{h}$ are often
- Important factors for customers
- Not easy to define and quantify
- For passenger cars:
- Top speed used)

Performance and driveability

Top Speed Performance

- Starting point - The vehicle motion equation.

$$
m_{v} \frac{d}{d t} v(t)=F_{t}-\frac{1}{2} \rho_{a} A_{f} c_{d} v^{2}(t)-m_{v} g c_{r}-m_{v} g \sin (\alpha)
$$

- At top speed

$$
\frac{d}{d t} v(t)=0
$$

and the air drag is the dominating loss.

- power requirement $\left(F_{t}=\frac{P_{\text {max }}}{V}\right)$:

$$
P_{\max }=\frac{1}{2} \rho_{a} A_{f} c_{d} v^{3}
$$

Doubling the power increases top speed with 26%.

Uphill Driving

- Starting point the vehicle motion equation.

$$
m_{v} \frac{d}{d t} v(t)=F_{t}-\frac{1}{2} \rho_{a} A_{f} c_{d} v^{2}(t)-m_{v} g c_{r}-m_{v} g \sin (\alpha)
$$

- Assume that the dominating effect is the inclination $\left(F_{t}=\frac{P_{\text {max }}}{v}\right)$, gives power requirement:

$$
P_{\max }=v m_{v} g \sin (\alpha)
$$

- Improved numerical results require a more careful analysis concerning the gearbox and gear ratio selection.

Acceleration Performance

- Starting point:

Study the build up of kinetic energy

$$
E_{0}=\frac{1}{2} m_{v} v_{0}^{2}
$$

- Assume that all engine power will build up kinetic energy (neglecting the resistance forces)
Average power during acceleration: $\bar{P}=E_{0} / t_{0}$
- Ad hoc relation,

$$
\bar{P}=\frac{1}{2} P_{\max }
$$

Assumption about an ICE with approximately constant torque (also including some non accounted losses)

$$
P_{\max }=\frac{m_{v} v^{2}}{t_{0}}
$$

$34 / 48$

Acceleration Performance - Validation

t_{0} (s) as published

Published acceleration data

Compared to

$$
P_{\max }=\frac{m_{v} v^{2}}{t_{0}}
$$

Surprisingly good agreement

Encourages us to make simplified models and analyses

Optimization problems

Different problem types occur in vehicle optimization

- Structure optimization
-What components to select and use?
- Parametric optimization
-What are the optimal design parameters?
- Control system optimization
-How shall the system be controlled?

Next up

Parametric optimization of the gear ratios in a conventional vehicle.

Driving cycle specification - Gear ratio

Number of gears and their usage is specified, but ratios free.
-How much can changed gear ratios improve the fuel economy?

- Implement a simulation model that calculates m_{f} for the cycle.
- Set up the decision variables $i_{g, j}, j \in[1,5]$.
- Set up problem

$$
\begin{array}{cc}
\min & m_{f}\left(i_{g, 1}, i_{g, 2}, i_{g, 3}, i_{g, 4}, i_{g, 5}\right) \\
\text { s.t. } & \text { model and cycle is fulfilled } \tag{1}
\end{array}
$$

- Use an optimization package to solve (1)
- Analyze the solution.

Model implemented in QSS

Conventional powertrain.

Efficient computations are important

The simulation model is evaluated many times while we search

Structure of the code

Will use a similar setup, for a different problem, in hand-in assignment 2.

Running the solver

Complex problem
-Global optimum not guaranteed
Make sure you're not stuck in a bad local minimum.

Several runs with different initial guesses.

The optimizer shamelessly exploits all means it has.
-The solution is always an extreme point.
-Not necessarily good...

Software tools
Improves the fuel consumption with 5%.
-Improvements of 0.5% are worth pursuing.

There are many tools for studying energy consumption of different vehicle propulsion systems

	Quasi static	Dynamic
QSS (ETH)	X	
Advisor, NREL \rightarrow AVL	X	(X)
PSAT		X
ALPHA		X
VECTO		X
VSim (Volvo)		X
VTAB (Scania)		X
Inhouse tools	(x)	(X)

ALPHA - Advanced Light-Duty Powertrain and Hybrid Analysis. (EPA) VECTO - Vehicle Energy Consumption calculation TOol. (EU, HD)

Information from AVL:

- The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) first developed ADVISOR in 1994.
- Between 1998 and 2003 it was downloaded by more than 7,000 individuals, corporations, and universities world-wide.
- In early 2003 NREL initiated the commercialisation of ADVISOR through a public solicitation.
- AVL responded and was awarded the exclusive rights to license and distribute ADVISOR world-wide.

