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2
Change Detection Algorithms

In this chapter, we describe the simplest change detection algorithms. We consider a sequence ofindepen-
dent random variables(yk)k with a probability densityp�(y) depending upon only onescalar parameter.
Before theunknown change timet0, the parameter� is equal to�0, and after the change it is equal to�1 6= �0.
The problems are then to detect and estimate this change in the parameter.

The maingoal of this chapter is to introduce the reader to the design ofon-line change detection al-
gorithms, basically assuming that the parameter�0 before change isknown. We start from elementary
algorithms originally derived using an intuitive point of view, and continue with conceptually more involved
but practically not more complex algorithms. In some cases,we give several possible derivations of the same
algorithm. But the key point is that we introduce these algorithms within a general statistical framework,
based upon likelihood techniques, which will be used throughout the book. Our conviction is that the early
introduction of such a general approach in a simple case willhelp the reader to draw up a unified mental
picture of change detection algorithms in more complex cases. In the present chapter, using this general
approach and for this simplest case, we describe several on-line algorithms of increasing complexity. We
also discuss theoff-linepoint of view more briefly. The main example, which is carriedthrough this chapter,
is concerned with the detection of a change in the mean of an independent Gaussian sequence.

Thetools for reaching this goal are as follows. First, our description of all the algorithms of this chapter
is based on a concept that is very important in mathematical statistics, namely the logarithm of the likelihood
ratio, defined by s(y) = ln p�1(y)p�0(y) (2.0.1)

and referred to as the log-likelihood ratio. The key statistical property of this ratio is as follows : LetE�0 andE�1 denote the expectations of the random variables under the two distributionsp�0 andp�1 , respectively.
Then, E�0(s) < 0 and E�1(s) > 0 (2.0.2)

In other words,a change in the parameter� is reflected as a change in the sign of the mean value of the
log-likelihood ratio. This property can be viewed as a kind of detectability of thechange. Because the
Kullback informationK is defined byK(�1; �0) = E�1(s), we also have that the difference between the
two mean values is E�1(s)�E�0(s) = K(�1; �0) +K(�0; �1) > 0 (2.0.3)

From this, we deduce that the detectability of a change can also be defined with the aid of the Kullback
information between the two models before and after change.These concepts are used throughout the book.

Second, even for this simple case, it is of interest to classify all possible practical problem statements
with respect to two different issues :



26 CHAPTER 2 CHANGE DETECTION ALGORITHMS� The first possible classification is with respect to assumptions about the unknown change timet0. In
some applications, it is useful to considert0 as a nonrandom unknown value, or a random unknown
value with unknown distribution. In other words, we deal with a nonparametric approach as far as this
change timet0 is concerned. This assumption is useful because very often in practice, either it is very
difficult to havea priori information about the distribution of the change times, or this distribution
is nonstationary. This point of view is taken in sections 2.1, 2.2, and 2.4 for on-line algorithms and
in section 2.6 for off-line algorithms. In some applications, it is possible to usea priori information
about the distribution of the change time, taking a Bayesianpoint of view. Sucha priori information
can be available from life-time estimations made in reliability investigations. This point of view is
used in section 2.3.� The second possible classification of algorithms is with respect to the available information about the
value �1 of the parameter after change, as we discussed in section 1.4. We first consider that this
value is known : This is the case of sections 2.1, 2.2, and 2.3.The case of unknown value for�1 is
investigated in section 2.4 for on-line algorithms and in section 2.6 for off-line algorithms.

Before proceeding, let us add one comment concerning the performances of these algorithms and the
detectability of a given change. The criteria for the performance evaluation of these algorithms were intro-
duced in section 1.4 from an intuitive point of view. The performances of theon-linealgorithms presented
in the present chapter are investigated in detail in chapter5 with the aid of the formal definition of these
criteria, given in section 4.4. These performance evaluations can be computationally complex, even in the
present simple case. For this reason, it is also of interest to consider a kind of weak performance index, the
positivity of which simply states the detectability of a change (with no more indication on the properties
of the detection). The Kullback information is a good candidate for such a weak index, both because of
the above-mentioned inequalities and because, as shown in chapter 4, it is an adequate index of separability
between two probability measures. This mutual informationis zero only when the parameters are equal,
and can be shown to be an increasing function of the Euclideandistance between the parameters�0 and�1
when this distance is small. This detectability definition is investigated in detail in more complex cases in
chapters 7, 8, and 9.

2.1 Elementary Algorithms

In this section, we describe several simple and well-known algorithms. Most of the algorithms presented
here work on samples of data withfixedsize; only one uses a growing memory. In the next section, we
deal basically with a random-size sliding window algorithm. In quality control, these elementary algorithms
are usually calledShewhart control chartsand finite or infinitemoving average control charts. We also
introduce another elementary algorithm, called afiltered derivativealgorithm, which is often used in image
edge detection. We place these algorithms in our general likelihood framework, and consider the case in
which the only unknown value is the change timet0. Recall that all the key mathematical concepts are
described in chapters 3 and 4.

2.1.1 Limit Checking Detectors and Shewhart Control
Charts

Let us first introduce the initial idea used in quality control under the name of continuous inspection. Sam-
ples with fixed sizeN are taken, and at the end of each sample a decision rule is computed to test between
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the two following hypotheses about the parameter� :H0 : � = �0 (2.1.1)H1 : � = �1
As long as the decision is taken in favour ofH0, the sampling and test continue. Sampling is stopped after
the first sample of observations for which the decision is taken in favor ofH1.

We introduce the following notation, which is used throughout this and the subsequent chapters. LetSkj = kXi=j si (2.1.2)si = ln p�1(yi)p�0(yi)
be the log-likelihood ratio for the observations fromyj to yk. We refer tosi as thesufficient statisticfor
reasons that are explained in section 4.1.

The following statement is a direct consequence of the Neyman-Pearson lemma, which we recall in
chapter 4. For a fixed sample sizeN , the optimal decision ruled is given byd = � 0 if SN1 < h; H0 is chosen1 if SN1 � h; H1 is chosen

(2.1.3)

whereh is a conveniently chosen threshold. The sumSN1 is said to be thedecision function. The decision is
taken with the aid of what is called a stopping rule, which in this case is defined byta = N �minfK : dK = 1g (2.1.4)

wheredK is the decision rule for the sample numberK (of sizeN ) andta is thealarm time. In other words,
the observation is stopped after the first sample of sizeN for which the decision is in favor ofH1.
Example 2.1.1 (Change in mean). Let us now consider the particular case where the distribution is Gaus-
sian with mean value� and constant variance�2. In this case, the changing parameter� is �. The proba-
bility density is p�(y) = 1�p2�e� (y��)22�2 (2.1.5)

and the sufficient statisticsi is si = �1 � �0�2 �yi � �0 + �12 �
(2.1.6)

which we shall write as si = b� �yi � �0 + �12 �= b� �yi � �0 � �2� (2.1.7)

where � = �1 � �0 (2.1.8)

is thechange magnitudeand b = �1 � �0� (2.1.9)
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is thesignal-to-noise ratio. Therefore, the decision function (2.1.2) isSN1 = b� NXi=1 �yi � �0 � �2� (2.1.10)

The stopping rule for the change detection algorithm is as in(2.1.4), with the decision rule defined byd = � 0 if SN1 (K) < h1 if SN1 (K) � h (2.1.11)

where SN1 (K) = SNKN(K�1)+1 (2.1.12)

with Sji defined in (2.1.2). This change detection algorithm is one ofthe oldest and most well-known algo-
rithms for continuous inspection, and is calledShewhart control chart[Shewhart, 1931]. For this control
chart, when�1 > �0, the alarm is set the first time at which�y(K) � �0 + � �pN (2.1.13)

where �y(K) = 1N NKXi=N(K�1)+1 yi (2.1.14)

Note that the threshold is related to the standard deviationof the left side of this inequality. This stopping
rule is standard in quality control, where the name for the right side of this inequality is theupper control
limit . The tuning parameters of this Shewhart control chart are� andN . The behavior of this chart, when
applied to the signal of figure 1.1, is depicted in figure 2.1.

It is often more useful to detect deviations from�0 in both directions, namely increases and decreases.
In this case, assume that the mean value after the change is either�+1 = �0 + � or ��1 = �0 � �. Then the
alarm is set the first time at which j�y(K)� �0j � � �pN (2.1.15)

where�0 � � �pN is thelower control limit. This is depicted in the figure 2.2. The tuning parameters of this
algorithm are� andN again. The optimal tuning of these parameters can be obtained with the aid of an a
priori information concerning the change magnitude�.

Let us add one comment about a slightly different use of control charts [S.Roberts, 1966]. To prevent
false alarms and to obtain more reliable detection results,the intuitive idea consists of deciding a change
when a preassigned number of crossings in (2.1.15) occur among several successive data samples of sizeN .
This idea is known as arun testin quality control, and sometimes as acounterin the engineering literature.
Various types of run tests have been used to supplement Shewhart control charts, as explained in [S.Roberts,
1966]. A similar idea is also used for another change detection algorithm in subsection 2.1.4.

2.1.2 Geometric Moving Average Control Charts

Two key ideas underlie the geometric moving average (GMA) algorithm. The first idea is related to the
above-mentioned behavior of the log-likelihood ratio (2.0.1). The second deals with the widespread intuitive
idea of exponential weighting of observations. As usual in nonstationary situations, because of the unknown
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Figure 2.1 A Shewhart control chart corresponding to a change in the mean of a Gaussiansequence with constant
variance.
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Figure 2.2 A two-sided Shewhart control chart.
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change timet0, it is of interest to use higher weights on recent observations and lower weights on past ones.
Therefore, the following decision function is relevant [S.Roberts, 1959, Hines, 1976a, Hines, 1976b] :gk = P1i=0 i ln p�1 (yk�i)p�0 (yk�i)= P1i=0 isk�i (2.1.16)

where the weightsi are exponential, namelyi = �(1 � �)i, 0 < � � 1 (2.1.17)

The coefficient� acts as a forgetting factor. This decision function can be rewritten in a recursive manner asgk = (1� �) gk�1 + � sk; with: g0 = 0 (2.1.18)

The alarm time is defined by the following stopping rule :ta = minfk : gk � hg (2.1.19)

whereh is a conveniently chosen threshold.

Example 2.1.2 (Change in mean - contd.). In the case of a change in the mean of an independent Gaus-
sian sequence,sk is given by (2.1.6), and the GMA decision function is~gk = (1� �) ~gk�1 + � (yk � �0); with: ~g0 = 0 (2.1.20)

where~g andg are related through ~gk = �2�1 � �0 gk � �1 � �02 (2.1.21)

The behavior of this decision function, when applied to the signal of figure 1.1, is depicted in figure 2.3. In
the corresponding two-sided situation, the stopping rule ista = minfk : j~gkj � hg (2.1.22)

Example 2.1.3 (Change in variance). In the case of a change in the variance�2, which is relevant in
quality control, as explained in example 1.2.1, we havesk = ln �0�1 +� 1�20 � 1�21� (yk � �)22 (2.1.23)

Therefore, the relevant decision function can be written as~gk = 2�20�21�21 � �20 gk � 2�20�21�21 � �20 ln �0�1 (2.1.24)

wheregk is defined in (2.1.18). In a recursive form, this becomes~gk = (1� �) ~gk�1 + � (yk � �)2; with: ~g0 = 0 (2.1.25)
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Figure 2.3 A geometric moving average algorithm corresponding to a change in the mean of a Gaussian sequence
with constant variance.
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2.1.3 Finite Moving Average Control Charts
A similar idea to the previous control charts consists in replacing the exponential forgetting operation by
a finite memory one, and thus in using a finite set of weights, which are no longer assumed to form a
geometric sequence. For defining this new detector, which iscalled finite moving average (FMA) algorithm,
let us follow the derivation of the geometric moving averagecontrol charts. First, consider the following
variant of the causal filtering (2.1.16) used in these charts:gk = N�1Xi=0 i ln p�1(yk�i)p�0(yk�i) (2.1.26)

where the weightsi are any weights for causal filters. The stopping rule is as in the previous control chart :ta = minfk : gk � hg (2.1.27)

Example 2.1.4 (Change in mean - contd.). In the case of anincreasein the mean, this stopping rule can
be computed as follows. Using (2.1.6), the decision function gk in (2.1.26) can be expressed asgk = N�1Xi=0 i(yk�i � �0) (2.1.28)

In the two-sided case,gk is the same, and the stopping rule ista = minfk : jgkj � hg (2.1.29)

2.1.4 Filtered Derivative Algorithms
In the case of a change in the mean of a Gaussian sequence, the filtered derivative algorithms are based on
the following very intuitive idea. Ideally, that is, in a no noise situation, a change in the mean level of a
sequence of observations is locally characterized by a great absolute value of the (discrete) derivative of the
sample observations. Because the derivative operator actsin a very poor manner as soon as noise is present
in observations, a more realistic detector should use a filtering operation before derivation. This explains
the title of this subsection. The typical behavior of this algorithm is depicted in figure 2.4 for the ideal and
realistic situations. Now, because of the smoothing operation on the jump, several alarms are to occur in the
neighborhood oft0. An elementary way to increase the robustness of this detector is to count the number of
threshold crossings during a fixed time interval before deciding the change actually occurred.

Let us now put this intuition-based detector into our more formal framework for change detection algo-
rithms. We use again the derivation of the finite moving average control charts :gk = N�1Xi=0 i ln p�1(yk�i)p�0(yk�i) (2.1.30)

where the weightsi are again any weights for causal filters, and we consider the discrete derivative ofgk :rgk = gk � gk�1 (2.1.31)

and the following stopping rule : ta = minfk : N�1Xi=0 1frgk�i�hg � �g (2.1.32)
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Figure 2.4 Ideal (left) and realistic (right) behaviors of a filtered derivative algorithm corresponding to a change in
the mean of a Gaussian sequence with constant variance : signal (first row), filtered signal (second row), and filtered
and derivate signal (third row).
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where1fxg is the indicator of eventfxg. In this formula,h is the threshold for the derivative, and� is a
threshold for the number of crossings ofh. This threshold� is used for decreasing the number of alarms in
the neighborhood of the change due to the smoothing operation. It turns out that, in practice,� = 2 is often
a convenient value for achieving this goal.

Example 2.1.5 (Change in mean - contd.). In the case of anincreasein the mean, the decision functiongk
corresponding to (2.1.30) can again be taken asgk = N�1Xi=0 i(yk�i � �0) (2.1.33)

The stopping rule is as in (2.1.32). In the two-sided case of jump in mean in an unknown direction, the
stopping rule is ta = minfk : N�1Xi=0 1fjrgk�ij�hg � �g (2.1.34)

Two elementary choices of smoothing filters in (2.1.30) are as follows :� An integrating filter withN constant unit weightsi, which results inrgk = yk � yk�N� A triangular filter with impulse response of triangular form, namelyp+i = p�i = i for 0 � i � p,
whereN � 1 = 2p, which results inrgk = p�1Xi=0 yk�i � 2p�1Xi=p yk�i

In other words, the corresponding stopping rules are based upon the difference between either sample values
or local averages of sample values.

2.2 CUSUM Algorithm

We now introduce the cumulative sum (CUSUM) algorithm, which was first proposed in [Page, 1954a]. We
describe four different derivations. The first is more intuition-based, and uses ideas connected to a simple
integration of signals withadaptive threshold. The second derivation is based on a more formal on-line
statistical approach, similar to the approach used before for introducing control charts, and based upon a
repeated use of the sequential probability ratio test. The third derivation comes from the use of the off-line
point of view for amultiple hypotheses testingapproach. This derivation is useful for the introduction of
the geometrical interpretation of the CUSUM algorithm withthe aid of a V-mask. The fourth derivation is
based upon the concept of open-ended tests.

2.2.1 Intuitive Derivation

As we mentioned in the previous section, the typical behavior of the log-likelihood ratioSk shows a negative
drift before change, and a positive drift after change, as depicted in figure 2.5, again for the signal of
figure 1.1. Therefore, the relevant information, as far as the change is concerned, lies in the difference
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Figure 2.6 Typical behavior of the CUSUM decision functiongk.

between the value of the log-likelihood ratio and its current minimum value; and the corresponding decision
rule is then, at each time instant, to compare this difference to a threshold as follows :gk = Sk �mk � h (2.2.1)

where Sk = kXi=1 sisi = ln p�1(yi)p�0(yi) (2.2.2)mk = min1�j�kSj
The typical behavior ofgk is depicted in figure 2.6. The stopping time ista = minfk : gk � hg (2.2.3)

which can be obviously rewritten asta = minfk : Sk � mk + hg (2.2.4)

Now it becomes clear that this detection rule is nothing but acomparison between the cumulative sumSk
and anadaptive thresholdmk+h. Because ofmk, this threshold not only is modified on-line, but also keeps
completememory of the entire information contained in the past observations. Moreover, it is obvious from
(2.1.6) that, in the case of change in the mean of a Gaussian sequence,Sk is a standardintegrationof the
observations.

2.2.2 CUSUM Algorithm as a Repeated Sequential
Probability Ratio Test

Page suggested the use of repeated testing of the two simple hypotheses :H0 : � = �0 (2.2.5)
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Figure 2.7 Repeated use of SPRT.Ti = 5; 12; 24; and30 are the stopping times in each successive cycle, anddi = 0; 0; 0; and1 are the corresponding decision rules.H1 : � = �1
with the aid of thesequential probability ratio test (SPRT). Let us first define a single use of the SPRT
algorithm. The SPRT is defined with the aid of the pair(d; T ) whered is the decision rule andT is a
stopping time, exactly as the Neyman-Pearson rule is definedwith the aid of the decision ruled. The
stopping timeT is the time at which the final decision is taken and thus at which observation is stopped.
The definition of the SPRT is thus d = � 0 if ST1 � ��1 if ST1 � h (2.2.6)

whereT is the exit time : T = T��;h = minfk : (Sk1 � h) [ (Sk1 � ��)g (2.2.7)

where� � 0 andh > 0 are conveniently chosen thresholds. Now, as in section 2.1,we use repeated SPRT
until the decisiond = 1 is taken. The typical behavior of this repeated use of the SPRT is depicted in
figure 2.7, whereTi = 5; 12; 24; and30 are the stopping times in each successive cycle, anddi = 0; 0; 0;
and1 are the corresponding decision rules. The key idea of Page was torestart the SPRT algorithm as long
as the previously taken decision isd = 0. The first time at whichd = 1, we stop observation and do not
restart a new cycle of the SPRT. This time is then thealarm timeat which the change is detected.

Using an intuitive motivation, Page suggested that the optimal value of the lower threshold� should be
zero. This statement was formally proven later [Shiryaev, 1961, Lorden, 1971, Moustakides, 1986, Ritov,
1990] and is discussed in section 5.2. Starting from the repeated SPRT with this value of lower threshold,
the resulting decision rule can be rewritten in a recursive manner asgk = 8<: gk�1 + ln p�1 (yk)p�0 (yk) if gk�1 + ln p�1(yk)p�0(yk) > 00 if gk�1 + ln p�1(yk)p�0(yk) � 0 (2.2.8)

whereg0 = 0. Remembering the definition ofsk in (2.1.2), this can be compacted intogk = (gk�1 + sk)+ (2.2.9)
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where(x)+ = sup(0; x). Finally, the stopping rule and alarm time are defined byta = minfk : gk � hg (2.2.10)

wheregk is given in (2.2.9). The typical behavior of this decision function is depicted in figure 2.6. It is
easy to prove that this form of decision rule is equivalent tothe other form that we presented in (2.2.4). On
the other hand, it can also be written as gk = �Skk�Nk+1�+ (2.2.11)

where Nk = Nk�1 � 1fgk�1>0g + 1 (2.2.12)1fxg is the indicator of eventx, andta is defined in (2.2.10). In this formula,Nk is the number of observa-
tions after re-start of the SPRT. The formula (2.2.11) can beinterpreted as an integration of the observations
over asliding window with random size. This size is chosen according to the behavior of the entire past
observations.

2.2.3 Offline Statistical Derivation
As we discussed in chapter 1, when taking an off-line point ofview, it is convenient to introduce the follow-
ing hypotheses about the observationsy1; :::; yk :H0 : � = �0 for 1 � i � k

for 1 � j � k; Hj : � = �0 for 1 � i � j � 1� = �1 for j � i � k (2.2.13)

The likelihood ratio between the hypothesesH0 andHj is�k1(j) = Qj�1i=1 p�0(yi) �Qki=j p�1(yi)Qki=1 p�0(yi) (2.2.14)

(where
Q0i=1 = 1). Thus, the log-likelihood ratio isSkj = kXi=j ln p�1(yi)p�0(yi) (2.2.15)

When the change timej is unknown, the standard statistical approach consists of estimating it by using the
maximum likelihood principle, which leads to the followingdecision function :gk = max1�j�kSkj (2.2.16)

This decision function is the same as those obtained in formulas (2.2.4) and (2.2.9). It can also be written asta = minfk : max1�j�kSkj � hg (2.2.17)

Up to now, we have discussed only thedetectionissue in change detection problems. Let us now consider
theestimation of the change timet0. It follows from equation (2.2.16) that the maximum likelihood estimate
of t0 after detectionis equal to the timej at which the maximum in (2.2.16) is reached. This estimate can
be computed using the following formula :t̂0 = ta �Nta + 1 (2.2.18)

We discuss this formula in section 2.6.
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Example 2.2.1 (Change in mean - contd.). We now continue the discussion about the simple example of a
change in the mean value� of an independent Gaussian random sequence, with known variance�2. We
first consider the one-sided case of an increase in the mean, namely�1 > �0. In this case, (2.1.6) holds,
and the decision functiongk introduced in (2.2.1), (2.2.9), and (2.2.16) becomes in thefirst formulation,gk = Sk1 � min1�j�kSj1 (2.2.19)Sj1 = �1 � �0�2 jXi=1 �yi � �1 + �02 �
and in the second formulation,gk = �gk�1 + �1 � �0�2 �yk � �1 + �02 ��+

(2.2.20)

and finally gk = max1�j�kSkj (2.2.21)

in the third formulation. It is obvious from the formula forSj1 that the observations are first processed
through an ordinary integration; and then, as stated before, an adaptive threshold is used.

2.2.4 Parallel Openended Tests
Now let us emphasize the connection between formulas (2.2.15)-(2.2.17) and an idea due to [Lorden, 1971]
which turns out to be very useful for the design and the analysis of change detection algorithms. The
CUSUM stopping timeta can be interpreted using a set ofparallel so-called open-ended SPRT, which
are activated at each possible change timej = 1; : : : ; k, and with upper thresholdh and lower threshold�� = �1. Each of these SPRT stops at timek if, for somej � k, the observationsyj; : : : ; yk are significant
for accepting the hypothesis about change. Let us formalizethis in the following way. LetTj be the stopping
time for the open-ended SPRT activated at timej :Tj = minfk � j : Skj � hg (2.2.22)

where we use the convention thatTj = 1 when this minimum is never reached. Lorden defined the
following extended stopping timeas the minimum of theTj :T � = minj=1;2;:::fTjg (2.2.23)

The comparison between (2.2.17) and (2.2.22)-(2.2.23) shows thatta = T �. We continue this discussion
when describing the geometrical interpretation after.

2.2.5 Twosided CUSUM Algorithm
Let us now investigate further the situation discussed in section 2.1 where the mean value after change is
either�+1 = �0 + � or ��1 = �0 � �, with � known. In this case, it is relevant [Page, 1954a] to use two
CUSUM algorithms together; the first for detecting an increase in the mean, and the second for detecting a
decrease in the mean. The resulting alarm time ista = minfk : (g+k � �h) [ (g�k � �h)g (2.2.24)g+k = �g+k�1 + yk � �0 � �2�+g�k = �g�k�1 � yk + �0 � �2�+
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In these formulas, we canceled the multiplicative term�1��0�2 , which can be incorporated in the threshold�h
in an obvious manner. Formula (2.2.24) corresponds to the well-known cumulative sum control chartwidely
used in continuous inspection for quality control.

Let us add some comments about�. When introducing this chapter, we discussed the availability of
information about�1, or, equivalently from an on-line point of view, about the change magnitude�. In
most practical cases, little is known about this parameter.However, three possiblea priori choices can be
made for using the CUSUM algorithm in this case. The first consists of choosing� as a minimum possible
magnitude of jump. In the second, we choosea priori the most likely magnitude of jump. The third choice
for � is a kind of worst-case value from the point of view of the costof a nondetected change. In these three
cases, the resulting change detection algorithm is optimalfor only onepossible jump magnitude equal to�. Notice that ana posteriorichoice of the most likely magnitude leads to the GLR algorithm, which is
introduced in subsection 2.4.3, and leads to the almost optimal algorithm in such a case.

From the point of view of minimum magnitude of change, the limit case is� = 0. In other words,
this situation occurs when all possible jumps are to be detected, whatever their magnitude. It is useful to
note [Nadler and Robbins, 1971] that, for this situation, the double CUSUM algorithm presented before in
formula (2.2.24) is equivalent to ta = minfk : Rk � �hg (2.2.25)

where Rk = maxj�k jXi=1(yi � �0)�minj�k jXi=1(yi � �0) (2.2.26)

2.2.6 Geometrical Interpretation in the Gaussian Case

If we rewrite the decision function (2.2.21), we obtaingk = max1�j�k kXi=j �yi � �0 � �2� (2.2.27)

In the corresponding decision rule, the alarm is set the firsttime k at which there exists a time instantj0
such that kXi=j0 �yi � �0 � �2� � �h (2.2.28)

At each timek, this can be seen as a SPRT with reverse time and only one (upper) threshold�h [Lorden, 1971,
Page, 1954a]. For this purpose, look at figure 2.8 upside down. This can be geometrically interpreted, as
depicted in figure 2.9. In this figure the cumulative sum~Sk1 = 1� kXi=1(yi � �0) (2.2.29)

is plotted in the case�0 = 0. Because this cumulative sum does not contain the term��2 , the corresponding
threshold is no longer a constant value, but a straight line with slope! tan(�), where! is the horizontal
distance between successive points in terms of a unit distance on the vertical scale, and� is the angle
between this line and the horizontal one. It is obvious thattan(�) = �2! (2.2.30)
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Figure 2.8 Behavior ofSkj as a SPRT with reverse time (look upside down).
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Figure 2.9 The cumulative sum~Sk1 intersected by a V-mask, in the case�0 = 0, � = 1.

This defines half a V-mask, as depicted in figure 2.9. Letd = �h= tan(�) be the distance between the current
sample pointyk and the vertex of the V-mask plotted forward. Then equation (2.2.28) can be rewritten in
terms of these parameters : kXi=j0[yi � �0 � ! tan(�)] � d tan(�) (2.2.31)

Notice that, because of (2.2.30), the size of the angle� of the V-mask decreases with the magnitude� of
the jump. This concludes the geometrical interpretation for one-sided CUSUM algorithms. The geometrical
interpretation of two-sided CUSUM algorithms is obtained with the aid of a symmetry of the previous
picture with respect to the horizontal line, which gives rise to the so-called V-mask. The decision rule is
then simply to stop when the boundaries of this mask cover anypoint already plotted.

The geometrical interpretation of the CUSUM algorithm whenviewed as a set of open-ended SPRT is
based on figure 2.10, again for the signal of figure 1.1. In thisfigure are depicted the cumulative sum~Sk1 ,
several upper thresholds for the open-ended SPRT, and a standard V-mask. Note that the center of local
coordinates for the SPRT beginning at timek is placed at(k � 1; yk�1). It is obvious that the slope of
the upper thresholds of the parallel one-sided SPRT is the same as the slope! tan(�) of the V-mask. This
figure shows that the stopping timeta in (2.2.17) orT � in (2.2.23) is attained when the decision function
of the one-sided SPRT reaches the upper threshold or when thecumulative sum in reverse time reaches the
V-mask.

2.3 Bayestype Algorithms

In this section, we continue to investigate the problem of detecting a change in the scalar parameter of an
independent random sequence. As stated in the introduction, we discuss the Bayesian approach in whicha
priori information about the distribution of the change time is available. We assume that this information is
in the form of ana priori probability distribution for the change timet0. This approach was first investigated
in [Girshick and Rubin, 1952] for continuous inspection of atechnological process with known transition
probabilities between the two (normal and abnormal) functioning modes. The theoretical derivation of opti-



44 CHAPTER 2 CHANGE DETECTION ALGORITHMS

-3

-2

-1

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50

-20

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

alarm time

h
Figure 2.10 The CUSUM algorithm as a set of open-ended SPRT.
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mal Bayesian algorithms for change detection was obtained in [Shiryaev, 1961]. This pioneering work was
the starting point and theoretical background of a great number of other papers about Bayes-type algorithms.

The main (classical Bayesian) idea consists of deciding that a change has occurred when thea poste-
riori probability of a change exceeds a conveniently chosen threshold. We assume here that thea priori
distribution of the change timet0 is geometric :P(t0 = k) = % (1� %)k�1 , for k > 0
We assume that the change from�0 to �1 in the probability densityp�(yk) of our independent sequence can
be modeled by a Markov chain with two states,0 and1. The transition matrix of this Markov chain isP = � p(0j0) p(0j1)p(1j0) p(1j1) � = � 1� % 0% 1 � (2.3.1)

wherep(ijj) is the probability of a transition from statej to statei. The probability of the initial state is
given byp(0) = 1� � andp(1) = �. Note that the expectation of the change time isE(t0jt0 > 0) = 1% .

Let �k be thea posteriori probabilityof state1 of this Markov chain. It results from Bayes’ rule that�k = �k�1 p�1(yk) + (1� �k�1) % p�1(yk)�k�1 p�1(yk) + (1� �k�1) % p�1(yk) + (1� �k�1)(1 � %) p�0(yk) (2.3.2)

For simplicity, we will deal with a monotonic function of�k instead of�k alone, because it will be more
convenient for recursive computations. This function is$k = �k1� �k (2.3.3)

The recursive formula for$k is $k = 11� %($k�1 + %) p�1(yk)p�0(yk) (2.3.4)

To deal with the log-likelihood ratio as in the previous sections, we rewrite this formula as follows :gk = ln(%+ egk�1)� ln(1� %) + ln p�1(yk)p�0(yk) (2.3.5)

where gk = ln$k (2.3.6)

The last term is the log-likelihood ratio, which basically contains the updating information available at timek. Becausegk is an increasing function of�k, the Bayesian stopping rule becomes :ta = minfk : gk � hg (2.3.7)

exactly as in the previous sections (remember (2.2.10)).

Example 2.3.1 (Change in mean - contd.). Let us return to our basic example. We assume here that the
mean values�0, �1, and the constant variance�2 are known. In this case, the log-likelihood ratio is given
in (2.1.6), and consequently the decision functiongk isgk = ln(%+ egk�1)� ln(1� %) + �1 � �0�2 �yk � �0 + �12 �

(2.3.8)

The behavior of this decision function is depicted in figure 2.11, again for the signal of figure 1.1. In this
figure, the influence of the choice of the parameter% of the geometric distribution is emphasized. The solid
line corresponds to the ideal case where we know the true value 0:05 of this parameter. The two other lines
correspond to cases where the tuning value of% is different from this true value.
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Figure 2.11 Typical behavior of a Bayesian decision function :% chosen to be the true value% = 0:05 (solid line);
noncorrect but acceptable choice of% = 0:001 (dashed line); nonacceptable choice of% = 0:9 (dotted line).



2.4 UNKNOWN PARAMETER AFTER CHANGE 47

Notice that, in some sense, the Bayesian decision rule is notof the same type as the other ones before,
because it assumes the availability of the parameter% of the geometrica priori distribution of the change
time t0, and of the initial probability� which is implicit ing0. For this reason, the practical implementation
of this decision rule is not so simple and requires a preliminary investigation of this question ofa priori
information. The effect of the choice of the parameter% on the behavior ofgk is depicted in figure 2.11.

2.4 Unknown Parameter After Change

We now discuss the case where the parameter�1 after change is unknown. Without loss of generality in our
on-line framework, the parameter�0 before change is assumed to be known.

2.4.1 Introduction

It follows from the previous discussion that a sequential change detection algorithm can be interpreted as a
set of “parallel” open-ended tests. We begin the present discussion with these tests.

As explained in [Wald, 1947], two possible solutions exist in the present case. The first one consists
of weighting the likelihood ratio with respect to all possible values of the parameter�1, using a weighting
function dF (�1), whereF (�1) may be interpreted as the cumulative distribution functionof a probability
measure. In the second solution, the unknown parameter�1 is replaced by its maximum likelihood estimate,
which results in the generalized likelihood ratio (GLR) algorithm. In other words, for known�1, change
detection algorithms are based on the likelihood ratio :�n = p�1(y1; : : : ; yn)p�0(y1; : : : ; yn) (2.4.1)

and for unknown�1 we must replace�n by other statistic. More precisely, the first solution is based upon
the weighted likelihood ratio : ~�n = Z 1�1 p�1(y1; : : : ; yn)p�0(y1; : : : ; yn) dF (�1) (2.4.2)

and the second one uses the GLR : �̂n = sup�1 p�1(y1; : : : ; yn)p�0(y1; : : : ; yn) (2.4.3)

We investigate these two solutions in subsections 2.4.2 and2.4.3, respectively.

2.4.2 Weighted CUSUM Algorithm

Let us now explain in detail the algorithm resulting from theidea of weighting the unknown parameter.

2.4.2.1 Derivation of the Algorithm

We follow Lorden’s idea introduced before, which explains the CUSUM algorithm as an extended stopping
time associated with a family of open-ended SPRT. The weighted-CUSUM algorithm was derived for change
detection in [Pollak and Siegmund, 1975], and is a direct extension of the CUSUM stopping time. It is
defined as follows. Let ~�kj = Z 1�1 p�1(yj; : : : ; yk)p�0(yj; : : : ; yk)dF (�1) (2.4.4)
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be the weighted likelihood ratio for the observations from time j up to timek. Then the stopping time ista = minfk : max1�j�k ln ~�kj � hg (2.4.5)

Typical choices of the weighting functionF (�) are the following. The most simple choices involve using
the uniform distribution over a specified interval that contains all possible values of the parameter�1, or
Dirac masses on some specified values. Another useful choiceis the Gaussian distribution. Note that this
type of algorithmcannotbe written in a recursive manner as the simple CUSUM algorithm (2.2.9) that we
describe in section 2.2.

Example 2.4.1 (�2-CUSUM algorithm). Let us now discuss the problem of detecting a change in the mean
of a Gaussian sequence with known variance�2, in the special case where the distributionF (�) = F (�) is
concentrated on two points,�0 � � and�0 + �. In this case, the weighted likelihood ratio is easily shown
to be ~�kj = Z 1�1 exp �b ~Skj � b22 (k � j + 1)�dF (�) (2.4.6)

where b = �� (2.4.7)

is the signal-to-noise ratio, and ~Skj = 1� kXi=j (yi � �0) (2.4.8)

This reduces to ~�kj = cosh (b ~Skj ) e� b22 (k�j+1)= cosh [b(k � j + 1)�kj ] e� b22 (k�j+1) (2.4.9)

where �kj = 1k � j + 1 j ~Skj j (2.4.10)

Note that~�kj in (2.4.9) is the likelihood ratio for testing the noncentrality parameter of a�2 distribution
with one degree of freedom, between the values0 and (k � j + 1) b2. This fact explains the name of the�2-CUSUM algorithm.

The stopping time is thus ta = minfk : gk � hg (2.4.11)

where gk = max1�j�k �ln cosh (b ~Skj )� b22 (k � j + 1)� (2.4.12)

As we said before, this algorithm cannot be written in a recursive manner because it is derived from
Lorden’s open-ended test. However, using Page’s and Shiryaev’s interpretation of the CUSUM algorithm
as a repeated SPRT with lower threshold equal to0 and upper threshold equal toh as discussed in subsec-
tion 2.2.2, it is possible to design a slightly modified decision rule which is written in a recursive manner.
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This results in gk = ( �Skk�Nk+1)+ (2.4.13)�Skk�Nk+1 = �12Nk b2 + ln cosh(b ~Skk�Nk+1) (2.4.14)�Sk = ~Skk�Nk+1 (2.4.15)�Sk = �Sk�11fgk�1>0g + yk � �0� (2.4.16)

whereNk = Nk�11fgk�1>0g + 1.
This CUSUM algorithm can be used in the same situations as thetwo-sided CUSUM algorithm. The

multidimensional parameter counterpart of this algorithmis investigated in section 7.2, case 3.

2.4.2.2 Geometrical Interpretation in the Gaussian Case

We continue to investigate the detection of a change in the mean of a Gaussian sequence, and give now the
geometrical interpretation of the weighted CUSUM (2.4.4) and�2-CUSUM (2.4.9) algorithms in this case.
We discuss first a one-sided weighted CUSUM algorithm, and then a two-sided one. We finish with the
geometrical interpretation of the�2-CUSUM algorithm.

Let us assume that the probability measureF (�) is confined to the interval[�0;1). The weighted
CUSUM algorithm is based upon the stopping time :ta = minfk : gk = max1�j�k ln ~�kj � hg (2.4.17)

where the weighted likelihood ratio is~�kj = Z 10 exp ��� ~Skj � �22�2 (k � j + 1)� dF (�) (2.4.18)

Let us define the following function :f(x; l) = lnZ 10 exp���x� �22�2 l� dF (�) (2.4.19)

BecauseF defines a probability measure on(R;R), the functionf(x; l) is an increasing function ofx. It is
obvious that the decision rule involves stopping the first timek at which the cumulative sum~Skj reaches the
curve line threshold~ck�j+1, where~cl is the unique positive solution of the equationf(x; l) = h [Robbins,
1970]. This threshold~cl is the half lower part of the curve in figure 2.12 and is called aU-mask. The
geometrical interpretation is now the same as for the CUSUM algorithm.

If we now assume thatF is a symmetric distribution over(�1;1), thenf(x; l) � h if and only if jxj � ~cl (2.4.20)

Therefore, the geometrical interpretation of the two-sided weighted CUSUM algorithm is obtained from the
one-sided one, with the aid of a symmetry with respect to the horizontal line drawn at the last observation
point, as depicted in the figure 2.12, and as for the ordinary CUSUM algorithm before.

Finally, let us assume thatF is concentrated on two points, which corresponds to the�2-CUSUM
algorithm. In this case, the functionf can be written asf(x; l) = ln cosh (bx)� b22 l (2.4.21)
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Figure 2.12 U-mask for the weighted CUSUM algorithm.
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Figure 2.13 Mask for the�2-CUSUM algorithm.

and we wish to find~cl such that f(~cl; l) = h (2.4.22)

Forv � 0, the equationln cosh juj = v has a unique positive solution, which is given byjuj = ln(ev +pe2v � 1) = v + ln(1 +p1� e�2v) (2.4.23)

From this solution the boundary~cl isj~clj = 1b  h+ ln(1 +s1� exp ��2�h+ b2l2 ��)!+ b2 l (2.4.24)

Whenl goes to infinity, the two asymptotes of this boundary have theequationcl = ��h+ ln2b + b2 l� (2.4.25)

This fact is depicted in figure 2.13. From these formulas the difference between the boundary and its
asymptotes decreases very quickly whenh increases for alll. In other words,~cl � cl = O(e�2h) (2.4.26)

whenh goes to infinity. Therefore, the stopping boundary for the�2-CUSUM algorithm is made nearly
of straight lines, and thus is very close to the stopping boundary of the two-sided CUSUM algorithm. We
continue this discussion in section 11.1.

Example 2.4.2 (Change in mean - contd.). Let us again discuss the problem of detecting a change in the
mean of a Gaussian sequence withunit variance, in another special case where the distributionF (�) =F (�) is Gaussian with mean�0 and known variance�2. In this case, the weighted likelihood ratio can be
written as ~�kj = 1�p2� Z 1�1 exp �� ~Skj � �22 (k � j + 1)� exp �� �22�2 � d� (2.4.27)
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or ln ~�kj = �22[�2(k � j + 1) + 1] � ~Skj �2 � 12 ln[�2(k � j + 1) + 1] (2.4.28)

where~Skj is defined in (2.4.8). The functionf(x; l) can be written asf(x; l) = �22(�2l + 1) x2 � 12 ln(�2l + 1) (2.4.29)

and satisfies (2.4.20). The equationf(jxj; l) = h has a unique positive solution from which we deduce that
the boundary~cl is ~cl = �s2(l + ��2) �h+ 12 ln(�2l + 1)� (2.4.30)

2.4.3 GLR Algorithm

We continue to discuss the case where the parameter�1 after change is unknown. The parameter�0 before
change is again assumed to be known. The derivation of the GLRalgorithm proceeds in the same way as
the third derivation of the CUSUM algorithm. Actually we follow [Lorden, 1971], except that we use the
widely accepted term “generalized likelihood ratio” (GLR)instead of “maximum likelihood.”

2.4.3.1 Derivation of the Algorithm

We now describe Wald’s second solution for the case of unknown parameter after change. Let us start
from the generalized likelihood ratio given in equation (2.4.3). As before, the log-likelihood ratio for the
observations from timej up to timek is Skj (�1) = kXi=j ln p�1(yi)p�0(yi) (2.4.31)

In the present case,�1 is unknown; therefore, this ratio is a function of two unknown independent param-
eters : the change time and the value of the parameter after change. The standard statistical approach is to
use the maximum likelihood estimates of these two parameters, and thus thedoublemaximization :gk = max1�j�k ln �̂kj = max1�j�k sup�1 Skj (�1) (2.4.32)

The precise statement of the conditions on the probability densitiesp�i under which this double maximiza-
tion can be performed is found in [Lorden, 1971]. Actually, the densities should belong to the so-called
Koopman-Darmois family of probability densities :p�(y) = e�T (y)�d(�)h(y) (2.4.33)

whered is strictly concave upward and infinitely differentiable over an interval of the real line. This family
is discussed in detail in chapter 4. The corresponding stopping rule is the same as in (2.2.10). As we said
before, this algorithm cannot be written in a recursive manner.

Now let us discuss further the issue of level of availablea priori information about the parameter after
change. In many applications, it is possible to know a minimum magnitude�m of the changes of interest
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in the parameter�. In this case, the second maximization in the GLR algorithm can be achieved using this
minimum magnitude of change as follows :gk = max1�j�k sup�1:j�1��0j��m>0 Skj (�1) (2.4.34)

If information about a maximum possible magnitude of changeis also available, the decision function is
modified accordingly in an obvious manner.

Let us now discuss theestimation issue. In the present case, two unknown values have to be estimated
after a change has been detected : the change timet0 and the magnitude of the jump(�1��0). As far ast0 is
concerned, the estimation is the same as before in the third derivation of the CUSUM algorithm, namely the
maximum likelihood estimate which is given by (2.2.18). Theconditional maximum likelihood estimates of
the change magnitude and time are given by(~|; ~�1) = arg max1�j�ta sup�1:j�1��0j��m>0 taXi=j ln p�1(yi)p�0(yi) (2.4.35)

andt̂0 = ~|.
Example 2.4.3 (Change in mean - contd.). Let us return to the example of change in the mean of an in-
dependent Gaussian sequence. In this case, the mean�0 before change is known, and the mean�1 after
change is unknown. The constant variance�2 is also known. The corresponding cumulative sum can be
rewritten as Skj = �1 � �0�2 kXi=j �yi � �1 + �02 �

(2.4.36)

Let us introduce� = �1 � �0. Then equation (2.4.34) can be rewritten asgk = max1�j�k sup�:j�j��m>0 kXi=j ��(yi � �0)�2 � �22�2 � (2.4.37)

In the present independent Gaussian case, the constrained maximization over� is explicit :gk = max1�j�k kXi=j " �̂j(yi � �0)�2 � �̂2j2�2# (2.4.38)

where the absolute value of theconstrainedchange magnitude estimate isj�̂j j = 0@ 1k � j + 1 kXi=j jyi � �0j � �m1A+ + �m (2.4.39)

and its sign is the same as the sign of the mean value1k�j+1Pki=j(yi��0) of the last centered observations

or “innovations.” Note that the second term�22�2 on the right side of (2.4.37) is nothing but the Kullback
information between the two laws before and after the change.

Note also that, when�m = 0, the decision function isgk = 12�2 max1�j�k 1k � j + 1 24 kXi=j (yi � �0)352 (2.4.40)
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The above property of explicit maximization over the unknown parameter�1 after change can be ex-
ploited in more complex situations, as explained in section7.2.4. Furthermore, (2.4.38) can be viewed as
a correlationbetween the innovation(yi � �0) and the “signature” of the changê�k. This correlation
property, which is typical for matched-filtering operations, is recovered in (7.2.118) for the more general
situation of additive changes in state-space models.

Finally, let us comment further on the asymptotic equivalence, in the Gaussian case again, between the
three algorithms, which we describe for the case of unknown parameter after change. As we explain in
the previous subsection, the�2-CUSUM algorithm is asymptotically equivalent to the two-sided CUSUM
algorithm when the threshold goes to infinity. But it should be clear that the two-sided CUSUM algorithm
is nothing but the GLR algorithm corresponding to the degenerate situation where�1 = �0 � �.

2.4.3.2 Geometrical Interpretation in the Gaussian Case

We describe the geometrical interpretation of the GLR algorithm in the same way we described the CUSUM
algorithm, namely starting from the reverse time interpretation of the decision function. We begin with a
one-sided GLR algorithm, and we use a symmetry with respect to the horizontal line for the two-sided case
as before. From the decision function (2.4.32), it follows that the stopping rule can be rewritten in reverse
time as follows. There exists a time instantl such that the following inequality holds :sup�:���m>0 lXi=1 ��(yi � �0)� �22 � � h�2 (2.4.41)

This can be rewritten as ~Sl1 = 1� lXi=1(yi � �0) � inf�:���m>0 �h�� + �2� l� (2.4.42)

Let us now introduce the lower boundaryĉl for the cumulative sum~Sl1 :ĉl = inf�:���m>0 �h�� + �2� l� (2.4.43)

and discuss this minimization. We distinguish two situations for the parameter�: � = �m and� > �m.
For the situation� = �m, and from the discussion in section 2.2 about the geometrical interpretation of the
stopping rule in terms of the V-mask, we find that, for largel, the boundary in (2.4.43) is the straight line
with minimal angle with respect to the horizontal line, as depicted in figure 2.14. For� > �m, the boundary
is a curve, as we explain now. Let us consider again the reverse time SPRT with one thresholdh. Because
of the Wald’s identity (which we explain in detail in chapter4), for a SPRT with thresholdh, the average
number of samples until the threshold is reached is asymptoticallyE(l) � hK(�) (2.4.44)

whereK is the Kullback information. In the Gaussian case, it is wellknown thatK(�) = �22�2 . It follows
that, for l � hK(�m) , the minimum in equation (2.4.43) is then reached for� = �m. On the other hand, for
small values ofl, the minimum in equation (2.4.43) is then reached for� such thatl K(�) = h. Inserting
this value in equation (2.4.43), we obtain ĉl = p2hl (2.4.45)
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Figure 2.14 U-mask for the GLR algorithm : boundary with equation (2.4.46).

which is the equation of a parabola, leading to the so-calledU-mask depicted in figure 2.14. This parabola
is inscribed in the V-mask discussed before, because the points of tangency between the straight line and
the parabola have the abscissal = 2h�2�2m as depicted by vertical segments in this figure. In summary, the
equation of the boundary is ĉl = ( p2hl if l � 2h�2�2mh��m + �ml2� otherwise

(2.4.46)

The explanation for the upper boundary is the same.
As we explained before, the GLR algorithm is computationally complex. Approximations of this algo-

rithm, with lower computational cost, are thus of interest.In [Lorden and Eisenberger, 1973], a possible
approximation of the GLR algorithm dealing with the joint use of two CUSUM algorithms is proposed.
These two algorithms are designed to detect changes with large and small magnitudes, respectively. The
geometrical interpretation of this approximation is that aU-mask can be approximated by the intersection
of two V-masks, as depicted in figure 2.15. This point is further discussed in chapter 11.

2.5 Change Detection and Tracking

In this section, we do not introduce any other derivations ofchange detection algorithms. Instead we ex-
plain an example of the use of one of the previously describedalgorithms in the framework of adaptive
identification, for improving the tracking capability of adaptive identification algorithms.

Let us consider the simple example of a piecewise constant sequence perturbed by a white Gaussian
noise". In other words, we consider the multiple change times counterpart of the above widely discussed
example, modeled as yk = "k + �(k) (2.5.1)

where�(k) is an unknown piecewise constant function of time, as depicted in figure 2.16. The standard
recursive estimation of the mean value can be written as�yk = k � 1k �yk�1 + 1k yk (2.5.2)
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Figure 2.15 Two V-masks (dotted lines) approximating one U-mask (solid curve) : how a GLR algorithm can be
approximated by two CUSUM algorithms for detecting changes with small andlarge magnitudes, respectively.

k

�(k)

0
Figure 2.16 Piecewise constant signal.



2.6 OFFLINE CHANGE DETECTION 57

This estimation is known to be efficient provided that the underlying unknown mean value is constant. Our
suggestion is to use change detection algorithms for checking this assumption. We assume that the time
duration between successive jumps is bounded from below. This assumption is necessary for the initial
estimation of the mean to be used in the subsequent detectionof change. The joint use of the estimation and
detection algorithms results in cycles made of the following steps :

1. Initial estimation of the mean, during a fixed size time interval during which the detection algorithm
is switched off; let�yN be this estimated mean value.

2. Carrying on the estimation and activation of the change detection algorithm using�0 = �yk for k � N .

3. Updating the initial estimation after a change has been detected. This updating can take place either
at the alarm time if no other information is provided by the change detection algorithm, or at the
estimated change timêt0 if this information is available. Similarly, the updating can include the
possible estimatê� of the magnitude of the jump. If both valuest̂0 and �̂ are available, returning to
step 1 after a change has been detected is not necessary; the cycle restarts from step 2.

The two main types of relevant change detection algorithms to be used in such a cycle are the CUSUM and
GLR algorithms introduced before. The main reason is that these are the only algorithms that can provide
us with an estimate of the change timet0 in addition to an alarm timeta.

Let us add some comments about the tuning of change detectionalgorithms in such a framework. Min-
imum values�m of jump magnitudes (for the CUSUM and GLR algorithms) and thresholds are required.
Minimum values of jumps must be close to the precision of the estimation algorithm, for example, of the
order of magnitude of the corresponding standard deviationof the estimate. On the other hand, the threshold
has to be chosen in such a way that the mean time between false alarms should not be too much less than
the mean time between successive jumps in the piecewise function.

2.6 Offline Change Detection

In this section, we introduce two new tasks, which were mentioned in subsection 1.1.2 :

1. Off-line hypotheses testingbetween the hypotheses “without change” and “with change.”

2. Off-line estimation of the unknown change time.

The main difference between this section and the previous ones is that now the complete sample of observa-
tions is available before beginning the investigation for achange.

This task was first investigated in [Page, 1957], using basically the same type of ideas that he used
for the CUSUM algorithm, which are described in subsection 2.2.3. The problem of off-line estimation
of the change time was investigated in [Hinkley, 1970, Hinkley, 1971], including precision issues and the
distribution of the estimation error.

2.6.1 Offline Hypotheses Testing
Let (yk)1�k�N be a sequence of independent random observations with density p�(y). Two situations are
possible. Either all the observations in this sample have the same density, characterized by~�0, or there exists
anunknown change time1 < t0 � N such that, beforet0, the parameter� is equal to�0, and after the change
it is equal to�1 6= �0. Let us first assume that~�0, �0, and�1 are known. As discussed in subsection 2.2.3, it
is convenient to introduce the following hypotheses about this sequence of observations :H0 : � = ~�0 for 1 � k � N

for 1 � j � N; Hj : � = �0 for 1 � k � j � 1� = �1 for j � k � N (2.6.1)
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The problem is to test between the hypothesisH0 and the composite hypothesis :H1 = [j�1Hj (2.6.2)

Note that the estimation of the change time isnot included in this problem statement, and that the unknown
change time may be interpreted here as anuisanceparameter. The estimation of the change time is discussed
in the next subsection.

The likelihood ratio corresponding to the hypothesesH0 andHj is�N1 (j) = Qj�1i=1 p�0(yi) �QNi=j p�1(yi)QNi=1 p~�0(yi) (2.6.3)

(where
Q0i=1 = 1). The standard statistical approach in this situation consists of replacing the unknown

parametert0 by itsmaximum likelihood estimate(M.L.E.). Therefore, we consider the following statistic :�N = max1�j�N �N1 (j) (2.6.4)

and the decision ruled such thatd = 0 (1), according to which hypothesisH0 (H1) is chosen, is given byd = � 0 if ln�N < h1 if ln�N � h (2.6.5)

When the parameters~�0, �0 and�1 are unknown, they are also replaced by their M.L.E. This results in
the following decision function :~�N = max1�j�N sup~�0 sup�0 sup�1 �N1 (j; ~�0; �0; �1) (2.6.6)

2.6.2 Offline Estimation of the Change Time
We consider the same hypotheses as in the previous subsection. We assume the existence of a change point
(typically this assumption is the result of the previous hypotheses testing) and the problem is now to estimate
the change time. In the present case, all the parameters�0, �1, andt0 are assumed to be unknown. Therefore,
the corresponding M.L.E. algorithm is(t̂0; �̂0; �̂1) = arg max1�k�N sup�0 sup�1 ln"k�1Yi=1 p�0(yi) NYi=k p�1(yi)# (2.6.7)

which can be condensed intot̂0 = arg max1�k�N ln"k�1Yi=1 p�̂0(yi) NYi=k p�̂1(yi)# (2.6.8)

where�̂0 is the M.L.E. estimate of�0 based on the observationsy1; :::; yk�1, and�̂1 is the M.L.E. estimate of�1 based upon the observationsyk; :::; yN . When�0 and�1 are assumed to be known, this can be simplified
to t̂0 = arg max1�k�N ln"k�1Yi=1 p�0(yi) NYi=k p�1(yi)# (2.6.9)
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Figure 2.17 Estimation of the change time. The MLE of the change time is the abscissa of the maximum value of
the cumulative sumSNk .

and rewritten as t̂0 = arg max1�k�N "lnQNi=k p�1(yi)QNi=k p�0(yi) + ln NYi=1 p�0(yi)# (2.6.10)

The second term on the right of this equation is constant for agiven sample. Therefore, the estimate of the
change time is t̂0 = arg max1�k�N NXi=k ln p�1(yi)p�0(yi) (2.6.11)

The geometrical interpretation of this estimation method is depicted in figure 2.17, in which we plot the
cumulative sum : SNk = NXi=k ln p�1(yi)p�0(yi) (2.6.12)
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The figure shows that the M.L.E. oft0 is the abscissa of the maximum value of this sum. Let us add some
further comments about the relationship between this algorithm and the CUSUM algorithm described in
subsection 2.2.3. Formula (2.6.11) can be rewritten ast̂0 = arg min1�k�N k�1Xi=1 ln p�1(yi)p�0(yi) (2.6.13)

which has the following geometrical interpretation. Let usreturn once more to figure 2.5. From the previous
formula, it is obvious that the estimatêt0 is one plus the abscissa of the minimum value of the cumulative
sum plotted in this figure. On the other hand, the on-line CUSUM algorithm can be geometrically interpreted
with the aid of figure 2.17 in the following manner. The alarm of this on-line algorithm is set when the
deviation of the cumulative sumSNk with respect to its current maximum value is greater than thethresholdh. If you look at figure 2.17both upside down and from the back, you see that you exactly recover the picture
of figure 2.5. From this explanation, it is obvious that estimate (2.6.13) can be rewritten as in (2.2.18).

Example 2.6.1 (Change in mean - contd.). We continue the investigation of the Gaussian independent
case, and we assume that the variance�2 is known, but that the two mean values�0 before and�1 af-
ter the change are unknown. In this case, the M.L.E. formula (2.6.8) can be written ast̂0 = arg max1�k�N (�"k�1Xi=1(yi � �̂0)2 + NXi=k(yi � �̂1)2#) (2.6.14)

where we canceled the terms that do not modify the argument ofthe maximization. By replacing the estimates
by their values, which are the relevant empirical means of the observations,�̂0 = 1k � 1 k�1Xi=1 yi (2.6.15)

and �̂1 = 1N � k + 1 NXi=k yi (2.6.16)

we obtain, after straightforward manipulations,t̂0 = arg max1�k�N ��(k � 1)(N � k + 1)(�̂0 � �̂1)2� (2.6.17)

The geometrical interpretation is the same as before in figure 2.17.
Let us give a further interpretation of (2.6.14) in terms of least-squares estimation. This equation can

be rewritten as t̂0 = arg min1�k�N inf�0;�1 "k�1Xi=1(yi � �0)2 + NXi=k(yi � �1)2# (2.6.18)

In other words, we use a least-squares estimation algorithmfor the following piecewise regression problem :yk = �(k) + "k (2.6.19)

whereL("k) = N (0; �2) and �(k) = � �0 if k < t0�1 if k � t0 (2.6.20)

as depicted in figure 2.18. This problem is the simplest case of the more complex problem of choice of
segments for piecewise approximation, which is also calledtwo-phase regression. More details can be
found in [Quandt, 1958, Quandt, 1960, Hinkley, 1969, Hinkley, 1971, Seber, 1977].
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Figure 2.18 Least-squares regression : piecewise constant mean (dotted line), and corresponding Gaussian signal
(solid line).

2.7 Notes and References

Section 2.1

All these algorithms were introduced for solving problems in quality control [Duncan, 1986], which is the
origin of the word “chart”, as used in this context. The first proposed algorithm was Shewhart’s control
chart [Shewhart, 1931], which was investigated further in [Page, 1954c]. The geometric moving average
algorithm was introduced in [S.Roberts, 1959] as a more efficient alternative to Shewhart’s chart in many
cases. Another alternative, finite moving average chart, was introduced in [Page, 1954a, Laı̈, 1974]. A close
although essentially different algorithm, the filtered derivative algorithm, was introduced in [Bassevilleet
al., 1981]; this algorithm is similar to the gradient techniques used for edge detection in image processing
[L.Roberts, 1965].

Section 2.2

The CUSUM algorithm was introduced in [Page, 1954a]. The literature concerning this algorithm is quite
extensive [Phillips, 1969, Woodward and Goldsmith, 1964, Van Dobben De Bruyn, 1968, Hinkley, 1969,
Hinkley, 1970, Hinkley, 1971]. One reason for this situation is the optimal property of this algorithm, which
was proved in [Lorden, 1971]. This algorithm is also often referred to as Shiryaev’s SPRT [Shiryaev, 1961].

Section 2.3

Bayesian techniques for change detection were introduced in [Girshick and Rubin, 1952], further developed
and investigated in [Shiryaev, 1961, Shiryaev, 1963, Shiryaev, 1965, S.Roberts, 1966], and more recently
in [Shiryaev, 1978, Pollak, 1985, Pollak, 1987]. They were initially the result of the first attempt to solve
change detection problems in quality control with the aid ofa formal mathematical problem statement. The
optimal properties of these algorithms were obtainedbeforethe proof of optimality of CUSUM techniques,
and with the aid of slightly different criteria.
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Section 2.4

In the case of an unknown parameter after change, the GLR algorithm was derived in [Lorden, 1971] as
a generalization of the CUSUM algorithm for this situation.The interest in this algorithm is justified by
its “uniformly optimal properties” [Lorden, 1971, Lorden,1973]. This algorithm is less efficient than the
CUSUM algorithm because it does not require the precise knowledge of the parameter after change. Fur-
thermore, the possibility of adapting it to more complex situations makes this algorithm quite attractive.
Another less sensitive algorithm is the weighted CUSUM algorithm introduced in [Pollak and Siegmund,
1975]. The�2-CUSUM algorithm was introduced in [Nikiforov, 1980, Nikiforov, 1986].

Section 2.5

To our knowledge, the idea of using a change detection algorithm to improve the performance of an adap-
tive identification algorithm was introduced in [Willsky and Jones, 1976], which is an extension of the work
in [MacAulay and Denlinger, 1973]. For earlier investigations concerning the joint use of detection and
identification, the reader is referred to [Lainiotis, 1971]. In the present framework of a change in a scalar pa-
rameter, the CUSUM algorithm was used in [Perriot-Mathonna, 1984, Favier and Smolders, 1984, Bivaikov,
1991]. Similar attempts, although not based on the same detection algorithms, can be found in [Hägglund,
1983, Chen and Norton, 1987, Maritonet al., 1988].

Section 2.6

The off-line hypotheses testing problem was first addressedin [Page, 1957]. Other investigations can be
found in [Deshayes and Picard, 1986, Siegmund, 1985b]. The off-line estimation of a change time was
originally obtained in [Page, 1957]. The literature on thisissue is extensive [Hinkley, 1969, Hinkley, 1970,
Hinkley, 1971, Kligiene and Telksnys, 1983, Picard, 1985, Deshayes and Picard, 1986].

2.8 Summary

Main notation : si = ln p�1(yi)p�0(yi)Skj = kXi=j si; Sk = Sk1ta = minfk : gk � hg
For the basic example of a change in the mean� of a Gaussian distribution with constant variance�2, we
also use the notation : b = �1 � �0�si = b� �yi � �0 + �12 �~Skj = 1� kXi=j (yi � �0)
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Elementary Algorithms
Shewhart control chart gKN = SN1 (K) = SNKN(K�1)+1
whereK is the sample number. The tuning parameters are the sizeN of the sample of observations tested
and the thresholdh.

GMA algorithm gk = (1� �)gk�1 + �sk; with: g0 = 0
The tuning parameters are the weight0 < � � 1 and the thresholdh.

FMA algorithm gk = NXi=0 i ln p�1(yk�i)p�0(yk�i)
The tuning parameters are the sizeN of the sliding window, the weightsi, which are any weights for causal
filters, and the thresholdh.

Filtered derivative algorithmrgk = gk � gk�1ta = minfk : NXi=0 1frgk�i�hg � �g
The tuning parameters are again the sizeN of the sliding window, the weightsi, which are any weights for
causal filters, the thresholdh, and the counter of alarms�. For the basic example, two useful choices arergk = yk � yk�Nrgk = N�1Xi=0 yk�i � 2N�1Xi=N yk�i
CUSUM Algorithm
Intuitive derivation of the CUSUM algorithmgk = Sk �mkmk = min1�j�kSj
The stopping rule can thus be rewritten asta = minfk : Sk � mk + hg
or equivalently as an integrator compared to an adaptive threshold.
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CUSUM as a repeated SPRT The CUSUM algorithm can be recursively written asgk = (gk�1 + sk)+
or equivalently as gk = �Skk�Nk+1�+Nk = Nk�1 � 1fgk�1>0g + 1
The CUSUM algorithm can thus be seen as a random size sliding window algorithm.

Offline derivation gk = max1�j�kSkj
The estimate of the change time is t̂0 = ta �Nta + 1
Twosided CUSUM algorithm For the basic example,ta = minfk : (g+k � �h) [ (g�k � �h)gg+k = �g+k�1 + yk � �0 � �2�+g�k = �g�k�1 � yk + �0 � �2�+
Bayestype Algorithmsgk = ln(%+ egk�1)� ln(1� %) + ln p�1(yk)p�0(yk)
The tuning parameters of this Bayes-type algorithm are thea priori probability % of a change, the initial
probability� implicit in g0, and the thresholdh.

Unknown Parameter After Change�2CUSUM algorithm For the basic example,gk = max1�j�k �ln cosh (b ~Skj )� b22 (k � j + 1)�
GLR algorithm gk = max1�j�k sup�1 Skj (�1)
For the basic example, the second maximization is explicit :gk = max1�j�k kXi=j " �̂j(yi � �0)�2 � �̂2j2�2 #�̂j = 1k � j + 1 kXi=j (yi � �0)
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Offline Change Detection
Offline hypotheses testing �N = max1�j�N �N1 (j)~�N = max1�j�N sup~�0 sup�0 sup�1 �N1 (j; ~�0; �0; �1)
Offline estimation t̂0 = arg max1�k�N NXi=k ln p�1(yi)p�0(yi)


