Automatically, preferably under
normal operation,

» Detect faults
«+ Isolate faults
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other applications

Styrdator @
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Linkdping University Today  Information about which fault
* Basic principles + Search strategies to quickly
« OBD - EVAP and misfire determine fault location(s)
+ What next — prognostics and a

I LINKOPINGS heavy-duty truck use-case
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Why diagnosis in vehicles? Why diagnosis in vehicles?

+ Legislation imposes tougher and tougher requirements. Originally from
California OBD/OBD-II, but now also in the rest of USA/Europe/World

 Also for trucks (2005 basic Euro 4, 2006 Euro 4, 2008 Euro 5, ...)
« Availability, repairability, mechanic support

« Large part of emissions come from a small set of vehicles with fault emission
systems

What is required?
+ All components that can affect emissions must be supervised

« For example, a hole with diameter 0.5 mm in the fuel evaporative system

must be detected Out of date

15%
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Why diagnosis in other applications? Process Equipment Maintenance costs
% | = From a report by DuPont'...

In many plants, maintenance budget is about 2/3 of annual net profit
Maintenance is today the largest single controllable expenditure in a plant

= From study by Dow Chemicals? @
Cost of unnecessary maintenance about the same size as plant profit

= From a study by ARC (November 2003)
Asset management activities (checking, troubleshooting, calibration, repairs) are nnf

of the leading time consuming activities. 80% of the survey see it as important
/extremely important to reduce it

Maintenance costs represent a huge savings opportunity!

13rd. largest Chemical Company worldwide with 27 Billion USD in sales, 81,000 Employees and 12.5% Sales growth in 1 year

2:2nd largest Chemical Company worldwide with 32 Billion USD in sales, 46,000 Employees, and 18% Sales growth in 1 year
Source: Hoovers.com October 21, 2004

©ABBCM &D
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cMaD Vattenldckage

Gtz [nstruments Preventive Maintenance

Potential for Predictive Maintenance with pressure transmitters

Kenya -
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Shell Global Solutions

”

United States
Routine No c Zero Off ag Failed T
check Problem shift lines Austria
Germany

63% of instrument maintenance labor results in no action taken Netherlands

= waste of resources
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A difficult problem What is diagnosis more formally?
control inputs

A substantial part of the ECU code in cars is directly related to diagnosis : disenosis

and supervision (often more than 50%) disturbances Plant | o stalement

. . . - N [ "\ | Diagnosis

» Something that is often done late in the development process; much to — - System

gain if supervision was developed in parallell with other designs faults

+ Sensor placement and selection —

« Methodology needed, just for other functions in control systems Diagnosis

Given observations, a diagnosis is a statement of component state that is consistent with observations

Diagnosis system
Given observations, find all diagnoses

all diagnoses = f(observations)

oo oo

Fault Tolerant Control

Principles

I. MU Ul Il UN<OPNGS
UNIVERSITET UNVERSITET




Traditional and model based diagnosis

» Hardware redundancy

+ Thresholding of measurements (limit-checking)

+ Change rate limitations of physical properties

+ Often different limits in different parts of the operating range
Traditional diagnosis is model based, only with very simple models

With more advanced models; there is a possibility to increase diagnosis
performance, more exact fault isolation, fewer false-alarms. Comes at the price
of developing better models.

Also a possibility to reduce the number of sensors needed.

II UN<OPINGS
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PEMFC system model dln
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3 states at cathode side =10, N, s, 1,01 Energy balance 1 state (temperature)
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3 states at cathode s.m. it K d“ =E,(1,)-E,,(T,.)-VI-0

I N 2 states at anode s.m. - :
+
l.“\ 21st March 2016, Linkoping University, SE. 255
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PEM Fuel Cell System

Less.
humidification

Hydrogen
tank

Voltage A
sensor fault
PEMFC Anode

Efficiency
reduction

Humidifier

exhaust

=)

Ohmic resistance
increase

Membrane A ECSA reduction

A\/alve clogging

Cathode

flow

Cathode
Valve clogging £\ @ exhaust
e A Temperatur
e sensor
2 sensors: stack voltage and temperature 9 fault variables

Inlet air 7 considered system faults (5 BOP, 2 stack) 108'a|gebra‘ic equaﬁorls
\ 2 sensor faults 11 differential constrains
§ 3

215t March 2016, Linkoping University, SE. 1155
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Isolability Analysis

Isolbily mabixfor PEM FuelCol, sensored

o |
T o All the faults but the two of the stack can be
e ° univocally isolated with Mixed Causality
fainf ®
ot [ ] o
_ecsal [ o
ot °
TLvsens|- [ ]
fisens|- [ ]
Tom  Tm Tk T Tem e T Twew e

I \
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IQ" 215t March 2016, Linkoping University, SE. 3/55
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Redundancy, models, and model based diagnosis Where is the change in mean?

A requirement for all diagnosis is redundancy which can be given by: i
» Extra hardware, for example extra sensors measuring the same .
quantity
+ Models h
740 50 100 150 200 250 3(;0 350 400 450 500
20
N r1=Y1— Y2
151
v X r2 = y1 — f(y3)
2 z T3 =y2 — f(y3) ’
% st
° N o f . . .
0 50 100 150 200 250 300 350 400 450 500
[ KT e [ KT
. . . . 9 . . 20
Where is the change in intensity? Fault isolation
—_ _
I | » Assume y|, y,, and u known. Then three y1=2u
’ residuals can be formed as yo = 4u +1
o I
| r=y1—2u, re=ys—4du—1 r3=2y—y2+1
T T T T T  Allis 0 when the equations are satisfied, i.e., the system operates in
nominal mode
® * The three residuals react differently to faults in sensors and actuators
Al => Fault isolation possibilities i K f
°r rn| X X
A
2r r 2 X X
o r3 X X
vz [ KT R
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Fault isolation in a production engine

Intercooler i

Whfm
booAst leak ’—‘ = x
“ (. ’

3

z

Turbo :
anifold leak simple case, only more advanced

\J

- \:‘ » Same approach applicable as in the
Wth j

models

* Dynamic systems
+ Signal processing
+ State-observer techniques

oo
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Modelling

+ Same kind of mean value engine models you have already seen in the
course are useful also for diagnosis.

 For example, the flow past the throttle is models by the equations

Wth _ Kthpboost U Pman

\/T DPboost
with 2 K+l
2K Pma " _ | Pman "
r—1 Pboo Pboost
Pman H Pman 2 =
w(Pmony it (52 > (7)

Pboost

rtl

H .
K (%ﬂ) " otherwise
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Example on analytical redundancy in the engine model”

Intercooler chl = fi (nvpm)

Whfm
booTs‘t leak ’—‘ \ﬁ Win = fa (a’pm,pb)
—_— ( ) + In stationary operation, all flows
;===
m
Wih

Turbo are equal
anifold leak

\J

1 = Whim — Win = Whitm — f2(, Dm, Db)
ro = thm - chl = thm - fl (napm)
r3 = Weyl - Wth = fl(n’pm) - fQ(a7pmvpb)

 Sensitive to different faults, i.e.,
possibilities for fault isolation

oo
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Modelling faulty behaviour

* Not only the nominal behaviour
needs models

+ Sometimes, but not always,
models for faulty components

delta boost air [g/s]
N

are needed " ‘ ‘ ‘ ‘
95 100 105 boost [kpa]HO 115 120
Do Pamb P
WboostLeak: = kbiql( ) 6
VT e

Warnm = Win + Whoost Leak

where kb represents efficient
leakage area.

delta manifold air [g/s]

L
70 80 90 100

60
pman [kPa]
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Problem illustration (1/2) Problem illustration (2/2)

31 residuals
4.5

. « Set of residuals sensitive to fault
faults (1) System + #res.gen. exponential in
AU, observation y(f)  residual () model redundancy + Clearly all are not equally good
actuators u(® . ) + For single fault isolation * Select for detection, easy
- 'k"L"'f"-“ﬂ“l“"r' #res ~ #faults « Fault-to-noise ratio
- T . . . . . o1e
Model | prediction §(t) | - ML our engine application: « Select a set to achieve isolability
&= f(z,u) 208 residuals and 7 performance, not as easy
y = hiz,u) faults « Complexity issue:
« If model is perfect, all residuals are * 42 residuals used as number of sets to choose from
“equally good” input data here 9gno residuals " AL LAV W
O f:o L " A = i 'v“u
T = # 0 f # 0 ] 50 i . 10 . Sa‘:‘i‘e 20 250 ] 300
v s, Iow s
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Residual data from our engine test-cell

* Code for residuals generated using
Fault Diagnosis Toolbox
https://faultdiagnosistoolbox.github.io

e T ient ti f i . 0 o o
FAnSIEn opeTe IO O engine EVAP diagnosis and misfire detection

+ Normal driving

+ 7 different fault modes

» Each residual generator = 10 gtates
« complex,

fyp_im  fypic  fyT_ic

Leakage after air-filter

II UNKOPING Il UN<OPINGS
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Evaporative systems monitoring

The OBDII system shall detect an evaporative system
malfunction when the complete evaporative contains a
leak or leaks that cumulatively are greater than or

Engine /
equal to a leak caused by a 0.040" diameter orifice ’ g
- California Air Resource Board,

OBDII regulations, section 1968.2, Title 13.

Diagnosis Valve

Purge Control Valve

Carbon
Canister

Fuel Tank

II UIN<OPINGS
UNIVERSITET

Pressure trace for tank with 1 mm leakage

1500~
i i i
1000 1 1 Diagnosis Valve H

500

0

-500

—-1000

Pressure difference [Pa

-1500

—-2000

—25001
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Pressure trace for tank with no leakag

1500 -

H 1 ! Diagnosis Valve
1000 - '

500 ' 1 1 Purge Vaive

ok
-500 - (

-1000 [

-1500 /
-2500

-3000
0

Pressure difference [Pa]

t[s]
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Misfire

Misfire: No combustion in cylinders has to be detected, otherwise
« Increased emissions, uneven torque, catalyst damage (fast)

1.8834 1.8836 1.8838 1.884 1.8842 1.8844 1.8846 1.8848 1.885 1.8852 1.8854

II UN<OPINGS
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(Severe) Effects of misfire Misfire

Create alarm signal, for each cylinder, that with high probability detects
misfire but do not raise false alarms

351

No fault
Misfire

3k

251

-6 -4 -2 0
TQ/)

oo oo

35
Misfire
3300f "
2660 3250
= 32001
52520 a . . . .
Other applications and future directions
= 3100
1.8834 1.8836 1.8838 1.884 1.8842 1.8844 1.8846 1.8848 1.885 1.8852 1.8854 3050
><|05 2460 2480 2500 2520 2540 2560 2580 2600 2620 2640 2660
Easy operation point: Difficult operation point:
¢ In the middle of the operating range ¢ Cold start, slow combustion
e Medium load ¢ Low load, uneven torque

Il MU Ul II UNKOPINGS
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Supervision of industrial gas turbine from Siemens

oo
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Supervision of industrial gas turbine from Siemens

%l Health parameter Anc; — efficiency deviation for C1
e I I

2 JL JL l"t
0
B -85 ----- Sy - - —-——- - - - = 2--- -+ T,
T = =
%1!’ ml‘\,l"\“g : *ﬂ%"«,mm‘w“‘“' ?_,u:uuu
72 £ Wi e, E
-------------------------------------- T,
4 t
Nov Dec Jan Feb Mar Apr
T J&v J&v
0 =
—————————————— o i -7 1 T Rl riy
2 T Ty, oMty
prower "44:.,;,,,0 - “* H
9 ' T T iy =
___________________________ Npuange g,
- t
May Jun Jul Aug Sep Oct

oo

What’s next... :

38

Supervision of industrial gas turbine from Siemens

i R ¢ Model in Modelica
Em J ¢ Consists of approximately 1,000
iy equations
¢ Supervise efficiency in compressors,
. Gas/Turbine turbines, sensors, ...

’~~"v y | Transiission

oo

40
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Maintenance philosophies

. . . Predictive/
Reactive/corrective Preventive/scheduled . .
Condition-based maintenance
Timing Belt P
e o /\T\
.o ,::'t(\b )

Prognostics | Y ey

< == N

=

Fix it when it breaks Maintain it at regular Predict when it breaks and
intervals so it do not break|  maintain it accordingly

UN<OPINGS UNXOPINGS
oo oo
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Preventive vs condition-based maintenance

. . MTBEF statistical expected life
In preventive maintenance the
maintenance interval is 4 Potential safety risk
important vithoutprognodiy cervice Additional dwit
. , Service itional use gained with . H 1 i
. . . _ Y7 life tics/di i = . =
. Selecting maintenance intervals | esgmiecs brognosticsdagnostics Use-case: Lead-acid battery prognostics in
. . component .
is a compromise between £ hequ vehicles
* achieving low failure E| severeusage
probability z
. . g T, T,
« utilize component life &
. . o Time-based service withcut
+ If usage and degradation rate is VA diagnostics/orognostics
different, an individualised Mild usage
condition-based maintenance is :
b f . 1 Timea in operation
enericlal. Sourze:Econcmic 2nd Safety 32121 of Diagnosrizs & Frognostics (Romero et al. *996) P

oo b
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Lead-acid starter batteries Battery prognostics

« Batteries cause Vehicle Off Road « Two main principles:

» Wear/aging of battery highly
dependent on

 Physical modeling of aging
and wear

« Analyze, large amounts of,
data

« Batteries are difficult to model

— usage profile
— individual variances
— surrounding components

— vehicle configuration « Here, a data-driven approach is

explored
oo oo
Fleet data Our test-case - Scania fleet data
+ Scania records data from all + Here; ~ 50,000 vehicles in 5 European "

markets (Sweden, Germany, Belgium,
Netherlands, and France)

vehicles; remote diagnostics

 Transmits data either by mobile-
link or when in a Scania
workshop

e ~120,000 readouts

« In each data readout; 417 variables used

+ Coarse data + Configuration variables

005

» “gstatic”, no time-series

» Histograms of temp., load., speed, ...
 No variable directly related to battery health .
+ No current measurement

« selected variables
« Multi/no purpose data

« Voltage only measured before ignition
» No battery relaxation compensation

II UN<OPINGS Il UN<OPINGS
UNVERSITET UNIVERSITET



Time and mileage distributions

0.6 07 0.8 0.9

survival time for failed batteries
survival time for censored batteries

= = =mileage for failed batteries
= = =mileage for censored batteries

49
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Direct statistical analysis on data

UNXOPINGS
UNIVERSITET
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Performance of time/mileage maintenance policies

« Maintenance policies based on
time or mileage = .
L == = random guess ’¢’
+ Not much better than random ** d
guesses orr .
« Large potential for condition  *°|
based maintenance o5
« Indicates strong influence oer
from usage 0 |
02 ,”
01 F ,/,
0 ” L
o 0.1 02 03 04 05 06 0.7 08 09 1
[ KT
. . . 62
Direct Survival Analysis

R() =P(T > 1)

R(t)

oo
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1

All vehicles are not equal Vehicle usage and configuration matters
. Number of truck configurations very large Do battery size correlate WlE}}LgPOd or bad battery life-time?

—

« The usage profiles of two vehicles typically differ significantly

. : 0.9
» Haulage missions on freeways

08

« Distribution vehicles in cities

+ Battery usage; for example heat during nights when sleeping in the RO =P(T >1)

cabin < osf
Do configuration and usage pattern matter? osl
KT G [ KT RE
Vehicle usage and configuration matters Vehicle usage and configuration matters

Do kitchen equipment correlate with good or bad battery life-time?

Kitchen equipment

Do battery mount position correlate with good or bad battery life-time?

1

0.8

R =P(T =1 = R(@®) =P(T 2 1)

R(t)

0.4

—All
02 Without kitchen equipment |

With kitchen equipment

\ 1 1 L I L L L
0 L L L L L L L 0 2 4 6 8 10 12 14 16

time unit

[ R TRt o



Vehicle usage and configuration matters

Low battery voltages when it is cold outside, important?

Time at low voltages (26-27 V) when cold outside (-5 to -10 deg C)

T
09l
0.8

07}

Rt)=P(T > 1)

R(t)

06|

II UIN<OPINGS
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Basic procedure to building predictive models

v/
Fleet data ‘ { Random Survival
Data imputation
50,000 vehicles Forest or
(missing data) Recurrent Neural
417 variables Nt

N/

[ R TRt
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Conclusions so far ...

« Component lifetime varies significantly within the fleet

 Usage patters matter

 Very difficult to understand exactly how to weigh different risk factors
+ Temperature
+ Speed
« Load

« We would like some automated procedure that figure this out for us!
Machine learning models is one way to do this.

Il UN<OPINGS
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20 vehicles of same age and mileage

B(t;to, V)

time unit

o
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When to schedule next maintenance?

1
-
Vehicle ID: 31266
0.8 - [
~ N ) .
ES Significant difference in
:, 0.6 low temperature statistics
Y
0.4+
Vehicle ID: 10103
0.2 | | | | |
0 1 2 3 4 5

time unit

oo
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Recurrent Neural Network models

« Multiple readouts per vehicle e
gives sequence of data instead of *"3?
static

Time
-
+ Sparse and irregular readouts Shape after

. augmentation: /’\

« Arecurrent neural network is .7, 66)

desi ned [ concat 1 ) [ concat 2 ) [ concat 3 ]

g LSTM @ @ @

« Neural networks is sensitive to Output Shape:

imbalanced data — special ]

LSTM LSTM

measures included [ e ) )

+ Outperforms RSF models s [ - ] : - ] / lem ]

Input shape: @ @ @
(2, 7,485)

Il UN<OPINGS
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Imputation of missing data

NN 0 O W 1 RO | L T T T e T N T T T T T o

variables

W A A1

0001000100 0 ‘w:‘un

T,

111

LN 10§
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vehicles
[ KT RE
Best performing model
+ Ensemble of 5 LSTM
networks e
+ ~ 800,000 trainable e
parameters
+ Trained using standard os
stochastic gradient descent ~
with mini-batches S04
* ~100 epochs
+ Trained in about 2 hoursona *
computational resource at
the department (nothing o0

really special)

False positive rate

64
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TSFSO06 - Diagnosis and supervision

If this sounds interesting and you would like to know more

TSFS06, Diagnosis and supervision is a unique course in Sweden, no other
university gives such an in-depth course focused on diagnosis

* 6hp. Starts in March

* Theoretic and method oriented (although many examples will come from
automotive applications)

+ Cross disciplinary. Leverages on knowledge from many areas: automatic
control, signal processing, statistics and probability, logic, artificial
intelligence

» Course within a research intensive area, content close to research frontiers
« Possibilities for master thesis work (exjobb)

65
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Diagnosis in vehicles and
other applications

Erik Frisk <erik.frisk@liv.se>
Department of Electrical Engineering
Linkdping University
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