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Abstract

In this paper, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine
process is presented. The main point of the present work consists of exploiting system identification schemes in connection with observer
and filter design procedures for diagnostic purpose. Linear model identification (black-box modelling) and output estimation (dynamic
observers and Kalman filters) integrated approaches to fault diagnosis are in particular advantageous in terms of solution complexity
and performance. This scheme is especially useful when robust solutions are considered for minimise the effects of modelling errors
and noise, while maximising fault sensitivity. A model of the process under investigation is obtained by identification procedures, whilst
the residual generation task is achieved by means of output observers and Kalman filters designed in both noise-free and noisy assump-
tions. The proposed tools have been tested on a single-shaft industrial gas turbine prototype model and they have been evaluated using
non-linear simulations, based on the gas turbine data.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The control devices currently in use to improve the
overall performance of industrial processes involve both
sophisticated digital system design techniques and complex
hardware (sensors, actuators, processing units). The com-
plexity means that the probability of fault occurrence can
be significant and an automatic supervisory control system
should be used to detect and isolate anomalous working
conditions as early as possible.

This ‘‘early’’ detection and isolation of faults in engi-
neering systems is a critical factor for avoiding product
deterioration, loss of production, poor plant economy, per-
formance degradation, major damage to machinery, envi-
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ronmental pollution and damage to human health or
even loss of life.

These motivations pushed a great attention on fault
detection and isolation (FDI) in dynamic processes the last
two decades and a wide variety of so-called model-based
approaches have been proposed to tackle this problem
[39,32,6,40].

Model-based methods all use mathematical models of
the plant being monitored. However, the conceptual realisa-
tion of these models can vary according to the following
approaches: the parity space [21], state estimation [48,31,
2,18,49,50], the fault detection filter [18,7,19], parameter
identification [48,2,39,43,44,16] and non-linear techniques
[36,14].

In each case, to guarantee that faults can be detected
and isolated (and distinguishable), mathematical models
of the process under investigation are required, either in
state space or input–output form. State space descriptions
generally provide mathematically rigorous tools for system

mailto:silvio.simani@unife.it
mailto:cesare.fantuzzi@ unimore.it
mailto:cesare.fantuzzi@ unimore.it


342 S. Simani, C. Fantuzzi / Mechatronics 16 (2006) 341–363
modelling and residual generation that may be used in fault
detection of industrial systems, both for noise-free mea-
surements and noisy data environment. Residuals should
then be processed to detect an actual fault condition, reject-
ing any false alarms caused by noise or spurious signals.
However, in practical applications, especially when consid-
ering large plants and complex systems, the straight-
forward application of such FDI techniques is difficult.
In fact, the plant model is usually designed to carefully cap-
ture all kinds of details relevant to the analysis and the
deployment of the real system. Thus, this model is often
non-linear and very complex, and it can exploit look-up
tables and hybrid structures to describes accurately the
behaviour of the real target system. This intrinsic complex-
ity, however, makes almost infeasible the straightforward
application of cited FDI methods, and a viable procedure
for practical application of FDI techniques is really neces-
sary in complex applications.

In our view, the complexity of the accurate plant model
can be somehow relaxed by reason of practical application
to FDI schemes. In particular we investigated through a
test-bed system the use of identification of linear models
theory in the solution of fault detection and isolation
problem. To this aim, we stressed two practical aspects
in system identification which are of importance in FDI
applications. Firstly, the system complexity may not indi-
cate a requirement for a complex physical or thermo-
dynamic model. In fact, as shown in this work, dynamic
model identification methods for FDI can successfully be
used, thus obviating the requirement for physical models.
Therefore, a linear mathematical model (state-space or
input–output descriptions) of the input–output links are
obtained by means of identification schemes. In particular,
when the signal to noise ratios are high, Auto Regressive
eXogenous (ARX) models can be used. On the other
hand, when the noise cannot be neglected, the Errors-
In-Variables (EIV) models can be used, according to
Kalman works [34,35]. Moreover, in the latter approach
the identification technique is based on the rules of the
Frisch scheme, based on traditional application to the
analysis of economic systems [20]. These approaches pro-
vide a reliable model of the plant under investigation, as
well as giving the variances of the input–output noises
[5]. Both of these identification methods have been used
in this work. Secondly, linear prototypes for the design
of linear output estimators [44,43] have been developed
instead of using non-linear models. This is considered
important to avoid the complexities that would otherwise
be inevitable when non-linear models are used. There is
certainly an increasing interest in the use of non-linear
methods (non-linear observers, extended Kalman filters,
fuzzy-logic methods, etc.). However, as the feature of sys-
tem supervision is to monitor the operation and perfor-
mance of the system with respect to an expected point
of operation, linear system methods are still very valid.
Deviations from expected behaviour can be used to mon-
itor system performance changes as well as component
malfunctions. Moreover, the linear approach to fault diag-
nosis is still advantageous in terms of solution complexity
and performance. This is especially true if so-called robust
solutions are sought, where the robustness is used to min-
imise the effects of modelling errors.

This work concerns the use of methods that have this
early FDI capability, long before the failure stage and
before plant operation and safety are compromised. Faults
at an early stage of development are referred to as incipient
faults due to the inherent difficulty in detection and isola-
tion. The presence of incipient faults is often unnoticeable
in system measurements. This means that traditional meth-
ods are less likely to successfully detect and isolate incipient
faults. We consider realistic data and measurements from a
gas turbine rig. The main challenges are to provide a tech-
nology for signalling the onset of turbine faults before
expensive failure occurs. It is our opinion that the method-
ology should be considered along with maintenance sched-
ules with an aim to cut down maintenance cost, whilst
steadily improving system reliability. The approach being
evaluated has an important implication on the use of on-
line FDI and diagnostic tools once the turbine is under cus-
tomer operation. This work aims to define a comprehensive
methodology for fault diagnosis by using an output estima-
tion/filtering approach, in conjunction with residual pro-
cessing schemes, including a simple threshold detection.
This paper describes how this is achieved in noise-free mea-
surement case and when the data are affected by noise,
using statistical analysis tools. The complete procedures
of model identification, residual generation and FDI have
been tested on a single-shaft industrial gas turbine proto-
type. The work provides a description of extensive simula-
tion results. Finally, the new aspect of the present work
consists of exploiting identification schemes in connection
with observer/filter design procedures for diagnostic pur-
pose. In particular, linear model identification (black-box
modelling) and output estimation (dynamic observers and
Kalman filters) approaches to fault diagnosis are in partic-
ular advantageous in terms of solution complexity and per-
formance. Moreover this characteristic is especially useful
when robust solutions are considered, i.e. where the robust-
ness is used to minimise the effects of modelling errors and
to maximise fault sensitivity. As the feature of system diag-
nosis consists of monitoring the operating condition of the
system with respect to an expected point of operation, lin-
ear system methods are very valid and effective. Any devi-
ations from expected system behaviour (due to faults
affecting the process inputs and outputs) could be used to
monitor system performance changes as well as system
component malfunctions.

The structure of the paper is the following. Basic
assumptions about the fault model and monitored system
are described in Section 2. The description of a general
gas turbine prototype plant is outlined in Section 3. Hence,
Section 4 presents the fault diagnosis problem as dynamic
system identification and FDI integrated approach. In par-
ticular, Section 4.1 recalls dynamic system identification
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methods suggested by the authors for the estimation of a
suitable linear dynamic model of the monitored process.
Section 4.2 presents the approach of residual generation
with the aid of dynamic output observers and Kalman
filters designed on the basis of the identified models. This
section also shows the design of such estimators under
the assumptions of both noise-free and noisy input–output
data. Therefore, Section 5 shows how the proposed algo-
rithms can be applied to the FDI of actuators, process
components and input–output sensors of the industrial
gas turbine process, described in Section 3. Results from
simulation show that minimal detectable and isolable faults
are perfectly compatible with the industrial target of this
application. Finally, Section 6 summarises the contribu-
tions and achievements of the paper providing some sug-
gestions for possible further research topics.

2. Model description

In the following it is assumed that the monitored system,
depicted in Fig. 1, can be modelled in fault-free condition,
by a linear, discrete-time, time-invariant, dynamic model in
the form:

xðt þ 1Þ ¼ AxðtÞ þ Bu�ðtÞ;
y�ðtÞ ¼ CxðtÞ; t ¼ 1; 2; . . .

�
ð1Þ

where xðtÞ 2 Rn is the state vector, y�ðtÞ 2 Rm the process
output vector and u� 2 Rr the control input vector. A, B

and C are constant matrices of appropriate dimensions
obtained by means of identification procedures proposed
in the following.

Under fault-free conditions, the input and the output
available sensor measurement signals u(t) = [u1(t) . . .ur(t)]
and y(t) = [y1(t) . . .ym(t)] can be described by the following
relations:

uðtÞ ¼ u�ðtÞ þ ~uðtÞ;
yðtÞ ¼ y�ðtÞ þ ~yðtÞ.

�
ð2Þ

In real applications, variables ~uðtÞ and ~yðtÞ represent noise
signals which, due to technological reasons, may affect the
behaviour of the input–output sensors.

The scheme shown in Fig. 1 describes the relations
among the actual input sensors u*(t) and y*(t), the sensor
faults fuðtÞ ¼ ½fu1

; . . . ; fur �
T and fyðtÞ ¼ ½fy1

; . . . ; fym
�T and
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Fig. 1. The monitored system.
the sensor outputs u(t) and y(t). These relations can be
modelled by the following equations in the noise free case:

uðtÞ ¼ u�ðtÞ þ fuðtÞ;
yðtÞ ¼ y�ðtÞ þ fyðtÞ.

(
ð3Þ

Again according to Fig. 1, when component faults

fsðtÞ 2 Rn can occur in the plant described by Eq. (1), the
dynamic system will be modelled as

xðt þ 1Þ ¼ AxðtÞ þ BuðtÞ þ fsðtÞ. ð4Þ
Faults fc(t) can also occur on the regulator in the control-
ler. In such a case, under the assumptions that fu(t) = 0 and
fy(t) = 0, the link among the output u(t) of the regulator, its
input y(t), and the controller faults fc(t) can be modelled as

uðtÞ ¼ ~uðtÞ þ fcðtÞ þ uRðtÞ ð5Þ
when the input–output behaviour of the controller (by
neglecting its dynamics and assuming constant unitary
gain) in the fault-free case can be described as

u�ðtÞ ¼ uRðtÞ; ð6Þ

where uR(t) represents the reference or set-point signal.
It is worthwhile stressing the difference between the fault

signals fu(t) and fc(t). According to Eqs. (1) and (3), input
sensor faults fu(t) do not affect the monitored system (1).
On the other hand, because of Eqs. (3) and (6), actuator
(or controller) fault vector fc(t) affects both the system of
Eq. (1) and the vector u(t) by means of the signals u*(t).

Usually fu(t), fy(t), fs(t) and fc(t) signals are described by
step and ramp functions representing abrupt and incipient
faults (bias or drift), respectively.
3. Modelling aspects of an industrial gas turbine prototype

This section describes the dynamic non-linear model of
an industrial gas turbine as the presented metho methodol-
ogy has aimed at the diagnosis of a wide range of compo-
nents of an industrial process. The non-linear model has
been calibrated by means of reference steady-state condi-
tion data of a real industrial gas turbine and it has been
used to simulate various machine transient. Although the
model is modular in structure and was carried out in sim-
plified form, these features did not compromise its accu-
racy. The computation time is also minimal, making the
modelling methods suitable for on-line simulation.

The comparison between values of working parameters
obtained by the simulation and measurements during some
transients on the gas turbine in operation provided encour-
aging results. The implementation of industrial gas turbine
dynamic models can make it possible:

• to predict machine transient conditions due to compo-
nent of different kind, volume and time constant, reduc-
ing test costs;

• to design gas turbine control systems;
• to generate time series of transient condition data.
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In particular, it is possible to have a large volume of data
otherwise difficulty to be available for industrial gas turbine
that works mainly in steady-state conditions. In diagnostic
applications, the machine dynamic model can be used to
simulate operating conditions of gas turbines with faults
in components, measurements and control sensors.
Fig. 2. Block diagram of the single-shaft gas turbine.
3.1. Gas turbine prototype model description

In this section, the model for simulating an industrial
gas turbine, with variable compressor IGV angle and first
turbine nozzle cooled alone, working in parallel with elec-
tric mains was carried out. More specific details regarding
the description of the turbine main modules are also given
in [45,43].

The dynamic non-linear gas turbine model has been
developed by dividing the dynamic operation of the
machine into elementary modules corresponding to its
main components and developing a dynamic model for
each of the modules. The overall representation of a spe-
cific gas turbine is carried out by identifying the necessary
modules and connecting them appropriately by means of
thermodynamic and mechanic links. The dynamic behav-
iour of each module is described by means of equations
representing the thermodynamic transformations, the mass
and momentum balance. The mass and momentum balance
equations are used in one-dimensional differential form, in
the hypothesis of assimilating each block to a constant sec-
tion duct. Model equations are integrated considering that
the change in the fluid density takes place according to an
isentropic transformation. The equations representing the
thermodynamic transformation are used instead in station-
ary form, since the fluid thermal inertia is considered neg-
ligible in comparison to the mechanical inertia.

From a mechanical standpoint, the fluid is considered as
a perfect gas and in each modules are used mean values of
specific heat at constant pressure and at a constant volume
depending on the temperature between modules input and
output and on the fluid composition. The use of mean spe-
cific heats in dynamic simulations, where the changes in
thermodynamics and performance values are analysed
with reference to an initial steady-state condition, does
not significantly affect the result accuracy, but considerably
reduces both the model complexity and the calculation
time.

The mass flow rates bled on the compressor are calcu-
lated without considering the dynamic effects on them in
transient conditions, and considering that the mass flow
function of air bled at the outlet of each elementary com-
pressor module is constant in all operating conditions.
The effect on the thermodynamic cycle of turbine nozzle
and blade row cooling flows, calculated starting from the
mass flow rates bled on the compressor, is assessed by split-
ting the total cooling flow appropriately into two parts and
assuming that one is mixed upstream and the other down-
stream from the turbine module, causing a reduction of the
main flow total temperature and then, a reduction of the
available enthalpy drop. In addition to the equations
describing the various modules, equations are used that
represent the dynamic balance of shafts and rotating
masses of the machine connected to them. The simulation
of the gas turbine working was carried out by integrating
the differential equations and solving the static equations
with the variable values calculated at each time instant.

Since the intention was to limit calculation and system
costs in the subsequent diagnostic stage, it is necessary to
be able to run the dynamic model on a PC using com-
mercial available software. To achieve the integration of
the differential equations SIMULINK� of MATLAB�

[46,47] was used, as it is a feasible (easy to use) and wide
spread software.

Fig. 2 represents the simplified block diagram of the
machine and, in the following, Fig. 8 shows its schematic
layout. These highlight boundary and control inputs and
output variables, the compressor and turbine maps, direct
and feedback main links among the various modules.

With reference to Fig. 2, Mf is the control input (fuel
mass flow rate), whilst Ta, pa (ambient temperature and
pressure) and LHV (lower heating value) are boundary
condition input, whilst Pe (electric power), T5 and m5 (tur-
bine exhaust temperature and mass flow) are outputs.

The nomenclature used in Figs. 2 and 8 is described in
Table 1.

The machine load adjustment is performed by means of
fuel flow rate Mf control and varying the IGV angle with
the logic of keeping the turbine outlet temperature con-
stant. This logic is especially suited for optimum heat
recovery steam generator operation in cogenerative appli-
cations. The SIMULINK� schemes of the speed controller
of the turbine and of the pressurising valve model are
sketched in Fig. 3.

To simulate this type of load control (by adjusting the
IGV angle to keep the turbine outlet temperature constant)
it was considered that the IGV angle at each time is
obtained using a feedback PID controller applied to the
turbine outlet temperature, as shown in Fig. 2.



Table 1
Nomenclature

C compressor
CC combustor (combustion chamber)
CM compressor map
ED exhaust duct
EG electric generator
ID intake duct
IGV inlet guide vanes
PID proportional integral derivative controller
T turbine
TM turbine map
Mf fuel mass flow rate
LHV lower heating value
gisc isentropic compressor efficiency
Fmc compressor mass flow function
FNc compressor rotational speed function
bc compressor pressure ratio
gise isentropic expansion efficiency
FNt turbine rotational speed function
bt turbine pressure ratio
ti ith section (module) temperature
pi ith section (module) pressure
mi ith section (module) mass rate
qi ith section (module) mass flow rate
Ta ambient temperature
pa ambient pressure
Pc compressor power
Pt turbine power
Cc compressor torque
Ct turbine torque
Pe electrical power
Pot turbine output pressure
wt turbine angular rate
Nt turbine rotational speed
et turbine efficiency
ec turbine efficiency
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In order to assess the validity of the dynamic MAT-
LAB/SIMULINK� model developed, it was decided to
compare results obtained from the simulation of transient
conditions with measurements taken on a gas turbine
working in a cogeneration plant [45,43].

Load reduction transients on a single-shaft industrial
gas turbine in operation were carried out by the control
system in two ways:

• reducing the fuel flow rate Mf and closing the IGV to
keep the turbine outlet temperature Tot constant;

• reducing the fuel flow rate Mf alone, after that the IGV
reached the total closer position.

As an example, for the first case, the electrical power Pe,
the fuel flow rate Mf and the turbine outlet temperature Tot

during the transient were recorded.
The measurements for the first load reduction operation,

corresponding to a specimen of the system dynamic behav-
iour, are shown in Figs. 4–6, in which a data sample is
taken each 0.08 s. All data samples are normalised with
respect to the standard deviation of the corresponding
signals.
In the case examined, the PID control system character-
istics were determined in order to reproduce, during the
simulation, the electrical power Pe, the fuel flow rate Mf

and the turbine outlet temperature Tot experimentally
recorded. In this way, the simulation provides the electrical
power Pe, the fuel flow rate Mf and the turbine outlet tem-
perature Tot these variables are shown in Figs. 4–6 by using
continuous lines. In the same figures, the estimated signals
are then compared with the actual measurements acquired
from the real process by sampling with regular time inter-
vals (diamond symbols).

The agreement between the simulated and measured
curves proves the validity of the dynamic MATLAB/SIM-
ULINK� model developed and therefore shows how it is
possible to reproduce the real behaviour of the process
under investigation [45].

In particular, in the case of load reduction performed by
the control system reducing the fuel flow rate and closing
the IGV, the mean-square difference between the values
obtained by the simulation and those measured experimen-
tally are about 1.1% for the electrical power Pe, 10�3% for
fuel flow rate Mf and 0.4% for the turbine outlet tempera-
ture Tot. Similarly, in the case of load reduction caused by
the fuel flow rate Mf reduction, the mean-square differences
are about 0.8% for the electrical power Pe and turbine out-
let temperature Tot whilst 0.4% for the fuel flow rate Mf.
The percentage differences between calculated and mea-
sured transient final values are about 0.9% for the electrical
power Pe, 0.001% for the fuel flow rate Mf and 0.5% for
turbine outlet temperature Tot, in the case of load reduc-
tion performed by fuel flow rate reduction and IGV clos-
ing. The percentage differences were about 0.6% for all
three variables, in the case of load reduction caused by fuel
flow rate reduction.

The above results confirms the validity of the gas turbine
dynamic model. In particular, the developed simulator in
MATLAB/SIMULINK� appears suitable for generating
time series of transient condition data. Data sequences
are exploited to derive the methodology for gas turbine
operation monitoring and measurement and control sen-
sors fault diagnosis.
3.2. Fault scenario description

Fault conditions are simulated using the turbine proto-
type developed in MATLAB/SIMULINK� environment.
In particular, four fault cases have been considered in this
work, namely:

(1) Compressor contamination (system fault), fs(t). The
fault ‘‘case 1’’ represents fouling of the surfaces of
the compressor blades, this reduces air flow, changes
the blade aerodynamics and consequently changes
the surface roughness. The failure is modelled as
a gradual decrease in mass flow rate for a given
pressure ratio. The maximum decrease in mass flow



Fig. 3. SIMULINK� turbine (a) speed controller and (b) pressurising valve model.
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Fig. 4. Turbine outlet temperature Tot in the case of load reduction
performed reducing the fuel flow rate Mf and closing the IGV angle a.

Fig. 5. Fuel flow rate Mf in the case of load reduction performed reducing
the fuel flow rate Mf and closing the IGV angle a.

Fig. 6. Electrical power Pe in the case of load reduction performed
reducing the fuel flow rate Mf and closing the IGV angle a.
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rate is set nominally at 5% while the fault develop-
ment rate is set to (5% decrease of normal flow
rate)/hour.

(2) Thermocouple sensor fault (output sensor fault), fy(t).
The fault ‘‘case 2’’ represents the malfunctioning of
a thermocouple in the turbine gas path which leads
to a slowly increasing or decreasing reading over
time. There is no limit placed on the error magnitude
while the fault development rate is set to (5% error in
measuring actual temperature)/hour.

(3) Turbine damage (system fault), fs(t). The fault ‘‘case
3’’ represents the fault fs(t) of the turbine. This results
in a reduction in turbine efficiency. The fault fs(t) is
modelled as a gradual reduction in turbine efficiency
over time. The maximum decrease in turbine effi-
ciency is set nominally at 5% while the fault develop-
ment rate is set to (5% reduction of normal
efficiency)/hour.
(4) Controller actuator fault (actuator fault), fc(t). The
fault ‘‘case 4’’ affects the actuator of the turbine con-
troller. Under the assumption that there are no actu-
ator dynamics in the current turbine model, the fault
fc(t) of the actuator causes a slower response to
demanded flow rates. Its effect is modelled as a simple
first order lag on the resulting fuel flow. The actuator
response time constant increases linearly with the
time in order to represent a progressive damage to
the actuator.

Note that in real industrial applications it is common-
place for each of the above faults to develop slowly over
a period of months. For the purpose of this simulation,
in order to avoid excessively long duration simulations,
the fault development rate will be increased so that signif-
icant effects are present after 1 h. However, this is still con-
siderably longer than the duration of the gas turbine
dynamics which occur over periods of seconds, a factor
which must be taken account of in any FDI algorithm
design.

The rate of development and magnitude of faults have
been set to nominal values in this case study. It will be of
interest to know how small the fault parameters can be
made whilst still maintaining good FDI performance. It
is finally assumed that only a single fault may occur in
the actuators, components or output sensors of the simu-
lated plant.

3.3. Failure mode effect analysis (FMEA)

In order to understand the relations among injected
fault signals and monitored measurements (e.g., ql, tk, ph

and mj) from the turbine prototype, Table 2 shows the fault
effect distribution in the case of a single fault occurrence in
each actuator, component and sensor.



2 PPCRE (predicted per cent reconstruction error) is defined as
PPCRE% ¼ 100� stddevðy�ŷÞ

stddev y .

Table 2
Fault effect analysis

Fault/yi(t) ql tk ph mj

Case 1 1 0 0 0
Case 2 0 1 0 0
Case 3 0 0 1 0
Case 4 0 0 0 1
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Table 2 was obtained in noise-free conditions by per-
forming a fault sensitivity analysis, i.e. by selecting the
most sensitive output measurement yi(t) of y(t) with respect
to the simulated generic fault case fy(t), fc(t) or fs(t).

The output measurements y(t) that are mainly affected
by the considered fault situations are denoted by a ‘1’ in
the corresponding table entry, while an entry ‘0’ means that
the fault does not affect the correspondent output variable
yi(t). Under these considerations, the entries ‘1’s in Table 2
represent the output variables y(t) that are mainly sensitive
to the considered fault case. It means that the sensitivity of
the considered output measurement with respect to the
concerning injected fault signal is greater than any other
different fault cases. On the other hand, a ‘0’ entry means
that the effect of the fault on the considered output mea-
surement can be neglected and therefore the considered
fault does not affect the concerning output variable.

Note finally how faults occurring at the same time in
actuator, components and sensor can be distinguished by
analysing their effects on the monitored outputs y(t). This
analysis allows also to simplify the identification proce-
dure, as it reduces the number of output measurements
yi(t) that have to be considered and monitored for the iden-
tification and FDI schemes.

4. Identification and FDI integrated approach

It is worth noting that the fault diagnosis scheme for the
monitored process presented here requires the knowledge
of a state-space model of the system under investigation.
When classical modelling techniques cannot be used as
the complete physical knowledge of the system is not avail-
able, the model is too complex, or the model parameters
are not perfectly known, it is reasonable to consider a
‘‘black-box’’ identification approach [44,16] as suggested
in this work. Therefore, next sections recalls briefly the
problems of the identification (Section 4.1) and FDI (Sec-
tion 4.2) of linear dynamic models in both the noise-free
and noisy environment, respectively.

4.1. Dynamic linear model identification

4.1.1. ARX identification

In the first approach to identification presented here, no
hypotheses about the input and output measurements
acquired from the simulated process are assumed. In this
situation, equation error (EE) identification can be
exploited and, in particular, different EE models can be
extracted from the data [44]. A specific discrete-time,
time-invariant, linear dynamic model, e.g., ARX (Auto
Regressive eXogenous) [37,43], can be selected inside the
assumed family of models.

Hence, the input–output link can be mathematically
described by performing the identification of a multiple-
input multiple-output (MIMO) input–output minimal
parameterisation models of the type:

yiðt þ miÞ ¼
Xm

j¼1

Xmij

k¼1

aijkyjðt þ k � 1Þ

þ
Xr

j¼1

Xmi

k¼1

bijkujðt þ k � 1Þ; ð7Þ

where the integers mi (i = 1, . . . ,m) are related to the struc-
ture of the model and define the order n of the system and
its memory as

n ¼
Xm

i¼1

mi. ð8Þ

The integers mij appearing in Eq. (7) are univocally defined
by the structure of the model through the relations:

mij ¼ mi for i ¼ j;

mij ¼ minðmi þ 1; mjÞ for i > j;

mij ¼ minðmi; mjÞ for i < j.

8><
>: ð9Þ

The model in the form of Eq. (7), can also be rewritten by
means of an input–output equivalent polynomial form:

PðzÞyðtÞ ¼ QðzÞuðtÞ; ð10Þ
where z denotes the unitary advance operator, P(z), Q(z)
are polynomial matrices in canonical form [24,3,25]. The
entries of P(z) and Q(z) are given by

piiðzÞ ¼ zmi � aiimi z
ðmi�1Þ � � � � � aii2z� aii1;

pijðzÞ ¼ �aijmij z
ðmij�1Þ � � � � � aij2z� aij1;

qijðzÞ ¼ bijmi
zðmi�1Þ þ � � � þ bij2zþ aij1.

ð11Þ

The model structure, i.e. the order n and the parameter vec-
tors aijk, bijk of the polynomials in the matrices P(z), Q(z)
of the model have to be determined by an identification ap-
proach [27,24,3,25]. The signal yi(t) in Eq. (7) or y(t) in Eq.
(10) represents the one-step-ahead prediction for the actual
ith output measurements y(t) [37].

If h = {aijk,bijk}, m = (m1, . . . ,mm) and J(h,m) a selected
cost function, the problem of identifying a multivariable
model can be described as the determination, on the basis
of given input–output sequences, of a suitable structure m
and parameters h minimising J(h,m). The cost function
J(h,m) can be described as, e.g., the PPCRE criteria2 [28],
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or AIC, MDL tests [37], connected to the prediction error
of the identified model.

4.1.2. EIV identification

The second approach of this study to system identifica-
tion considers the situation in which the input–output data
acquired from the process under investigation can be
affected by additive noise.

Therefore, under this assumption, the so-called Frisch
scheme [20] is considered by the authors and applied to
perform the dynamic system identification. Such a scheme
allows to determine the linear discrete system which has
generated the noisy sequences {u(t),y(t)} as well as the vari-
ances of the noise signals f~uðtÞ; ~yðtÞg now corrupting the
data [5].

In the ideal Frisch scheme these signals usually are
assumed zero-mean white noises, mutually uncorrelated
and uncorrelated with every component of u*(t) and y*(t).
Moreover, it is normally assumed that:

uðtÞ ¼ u�ðtÞ þ ~uðtÞ;

yðtÞ ¼ y�ðtÞ þ ~yðtÞ;

(
ð12Þ

where every noise signals ~uðtÞ and ~yðtÞ are independent of
every other term u(t) and y(t) only.

In the present noisy case, the identification problem
can therefore be solved [5] by determining, if possible, the
order n and the parameter vectors aijk and bijk of a model
described by Eq. (7), as well as the variances of the
input–output additive noise of Eq. (12). In fact, given the
noisy input–output sequence {u(t),y(t)}, the recalled identi-
fication scheme provides the model which has generated
the noiseless sequences {u(t),y(t)} [29,13]. It is interesting
to note that the relations given by Eqs. (10) and (12)
describes the so-called Errors-In-Variables (EIV) models
[34,35,5,4].

The next step is the transformation of the input–output,
discrete-time, time-invariant canonical polynomial model
of Eq. (10) into its canonical state-space representation
[25]. In this context, as the FDI task is performed by
means of output estimators (see next Section 4.2), the
authors suggest to use the state-space canonical systems
obtained by the EE models for designing dynamic observ-
ers [44,43], whilst the EIV coming from the Frisch scheme
[44,16], in order to build Kalman filters, as shown in
[29,13]. In particular for the latter approach, it is worth-
while underlining that the problem of identifying EIV
models from noisy input–output sequences is considered
in particular with reference to filtering applications and
design, with reference to the ‘‘EIV optimal filtering’’ prob-
lem [29,13].

It is important to note that in the case of a MIMO linear
model, the possible choice of state-space representations
(of input–output ARX and EIV models) in canonical form
[24,25] instead of parity space methods [21] (in connection
with input–output linear prototypes) may avoid unex-
pected false alarm problems [11].
Finally, once the parameters h = {aijk,bijk} and the
structure m = (m1, . . . ,mm) have been identified, the link
between canonical state-space (A,B,C) and input–output
(P,Q) models can be described by the following relations:

A ¼ ½Aij� ð13Þ

with

Aii ¼

0 1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1

aii1 aii2 . . . aiimi

2
666664

3
777775
ðmi�miÞ

; ð14Þ

Aij ¼

0 . . . . . . . . . . . . 0

..

. ..
.

0 . . . . . . . . . . . . 0

aij1 . . . aijmij 0 . . . 0

2
666664

3
777775
ðmi�mjÞ

ð15Þ

and

C ¼

1 0 . . . . . . . . . . . . . . . . . . . . . 0

0 . . . 0 1 0 . . . . . . . . . . . . 0

..

.
. . . . . . . . . . . . . . . . . . . . . . . . ..

.

0 . . . . . . . . . . . . 0 1 0 . . . 0

2
66664

3
77775;

ð16Þ
where the 1’s entries in the matrix C are in the columns
1, (mi + 1), . . . , (m1 + � � � + mm�1 + 1).

Moreover, the input distribution matrix B can be com-
puted as

B ¼M�1B; ð17Þ
where

B ¼

B1

B2

..

.

Bm

2
66664

3
77775; Bi ¼

bi11 . . . bir1

..

. . .
. ..

.

bi1mi
. . . birmi

2
664

3
775; ð18Þ

and

M ¼ ½Mij�; with i; j ¼ 1; . . . ;m; ð19Þ

where

Mii ¼

�aii2 �aii3 . . . �aiimi 1

�aii3 �aii4 . . . 1 0

..

. ..
. ..

.

�aiimi 1 ..
.

1

2
66666664

3
77777775
ðmi�miÞ

ð20Þ

and
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Mij ¼

�aii2 �aii3 . . . �aiimij 0

�aii3 �aii4 . . . 0 0

..

. ..
. ..

.

�aiimij 0 0

0 . . . . . . . . . 0

0 . . . . . . . . . 0

2
6666666664

3
7777777775
ðmi�mjÞ

. ð21Þ

It is worth noting that the bijection defined by the matrix
M between the entries of P(z) polynomial matrix and B is
always well-conditioned, with jdet(M)j = 1, independently
of the actual values of the scalars aijk [26]. Moreover, be-
cause of the invertibility of M, the bijective transformation
holds between canonical state-space purely dynamic system
(A,B,C) and input–output polynomial model (P,Q). These
models are therefore characterised by the same minimal
numbers of parameters.

4.2. Residual generation

As depicted in Fig. 7, the symptom (or residual r(t)) gen-
eration is implemented by means of dynamic observers or
Kalman filters, driven by the measured sequences u(t)
and y(t). Moreover, by means of these devices, due to the
structure of the C matrix (see relation of Eq. (16)) and
because of the fault affects analysed in Section 3.3, a set
of signals can be produced from which it will be possible
to isolate faults associated to actuators, components and
sensors. On the other hand, the symptom evaluation refers
to a logic device which processes the redundant signals
generated by the first block in order to estimate and
unequivocally identify a fault occurrence.

With reference to Fig. 7 the symptom signals are differ-
ences between estimated signals (given by observers or Kal-
man filters) and the actual ones supplied by the input and
output sensors.

As stated in the previous section, the banks of output
observers and Kalman filters are used when EE and EIV
models are considered, respectively.

In particular, the dynamic observers for the system of
the form of Eq. (1) have the following structure:

x̂ðt þ 1Þ ¼ Ax̂ðtÞ þ BuðtÞ þ KðyðtÞ � Cx̂ðtÞÞ;
ŷðtÞ ¼ Cx̂ðtÞ;

�
ð22Þ

x̂ðtÞ being the estimate of the observer state vector, ŷðtÞ the
estimate of the measured outputs y(t), whilst the triple
(A,B,C) is a minimal state-space canonical representation
describing the identified input–output model of Eq. (10)
from the inputs to the outputs of the process.
Residual
generation

Residual

evaluation
t

u

y
r f

Fig. 7. Logic diagram of the fault detection system.
The observer eigenvalues, p = [p1, . . . ,pn], placed on the
basis of the gain matrix K, are chosen inside the positive
unit circle by solving the minimisation problem:

min
p

V ðpÞ. ð23Þ

V(p) being the cost function described by the formula:

V ðpÞ ¼

X
t
r2ðt; pÞjhX

t
r2ðt; pÞjf

¼ krðt; pÞjhk
2

krðt; pÞjfk
2
; ð24Þ

where k Æk represents the 2-norm or the mean square value
of the vector r(Æ), i.e. the square root of the sum of the
squared entries of the vector r(Æ). The residual signal
r(t,p) is a function of the vector p, as the observer gain
matrix K depends on the placement of the eigenvalues p.

Hence, according to Eq. (23), eigenvalues p = [p1, . . . ,pn]
are chosen in order to maximise the mean square error of
the fault residual sensitivity r(t,p)jf and minimise the mean
square error of the residual in fault-free condition, r(t,p)jh.
This pole placement procedure provides robustness prop-
erty versus modelling error to the observer and, conse-
quently, false alarm rejection.

In particular, the residual vectors are described by the
relations:

rðt; pÞjh ¼ yðtÞ � Cx̂ðt; pÞ in fault-free conditions

rðt; pÞjf ¼ yðtÞ � Cx̂ðt; pÞ in faulty conditions

(

that can be rewritten as

rðt; pÞjh ¼ yðtÞ � C½zI� ðA� KCÞ��1 � ½BuðtÞ þ KyðtÞ�
in fault-free conditions i.e. fuðtÞ ¼ 0;

fyðtÞ ¼ 0; fsðtÞ ¼ 0 and fcðtÞ ¼ 0

rðt; pÞjf ¼ yðtÞ � C½zI� ðA� KCÞ��1

� ½BuðtÞ þ KyðtÞ þ BfuðtÞ þ � � � þ BfcðtÞ
þ fsðtÞ þ KfyðtÞ� � fyðtÞ

in faulty conditions i.e. fuðtÞ 6¼ 0;

fyðtÞ 6¼ 0; fsðtÞ 6¼ 0 and fcðtÞ 6¼ 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð25Þ
where z is the unitary advance operator, whilst the fault
vectors fu(t), fy(t), fs(t) and fc(t) are defined by Eqs. (3)–
(5), depending on the considered fault case. The signals
u(t) and y(t) represent the fault-free input and output
vectors acquired from the actual process, respectively, as
described in Section 2.

The problem given by relation of Eq. (23) can be solved
in MATLAB� environment by means of the Optimisation

Toolbox [46] using, e.g., the constrained minimisation func-
tions FMINCON, CONSTR and LEASTSQ. These numerical
routines used to solve the pole placement optimisation
can allow to obtain stable observers in the form of Eq.
(22). It can be successfully used also the Genetic Algorithm
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Optimisation Toolbox of MATLAB�, that seems able to
manage the well-known problems of local minima.

The evaluation of the cost function of Eq. (24) leads to
the optimisation problem that can be sketched by the
Algorithm 1 below. The solution obviously depends on
the experimental conditions, as the values of the cost func-
tion of Eq. (24) are computed on the basis of the non-linear
process input–output sequences.

Algorithm 1.

Step 1: initial estimate for the observer eigenvalues p;
Step 2: fault-free input–output ûðtÞ; ŷðtÞ sequence

generation;
Step 3: fault-free residual vector r(t,p)jh computation (Eq.

(25));
Step 4: faulty input–output ûðtÞ; ŷðtÞ sequence generation;
Step 5: faulty residual vector r(t,p)jf computation (Eq.

(25));
Step 6: cost function V(p) of Eq. (24) evaluation;
Step 7: eigenvalues p variation along the direction of the

function V(p) decrease;
Step 8: goto Step 2.

It is worth noting that optimisation algorithms exploited
for implementing Algorithm 1 should find a constrained
(poles search inside the unit circle) minimum of a scalar
function of several variables starting at an initial estimate.
This is generally referred to as constrained non-linear opti-
misation or non-linear programming.

They are based on numerical optimisation algorithms.
As an example, the optimisation function exploits a
‘‘Large-Scale’’ optimisation method. By default the optimi-
sation function chooses the large-scale algorithm when the
gradient of the optimised function is provided and if only
upper and lower bounds exist or only linear equality con-
straints exist. This algorithm consists of a subspace trust
region method and is based on the ‘‘interior-reflective
Newton method’’ described in [10,9]. Each iteration
involves the approximate solution of a large linear system
using the method of preconditioned conjugate gradients
(PCG). For more details, see the trust-region and precondi-
tioned conjugate gradient method descriptions in [38].

On the other hand, if the‘‘Medium-Scale’’ optimisation
is considered, a sequential quadratic programming (SQP)
method is used. In this method, a quadratic programming
(QP) subproblem is solved at each iteration. An estimate of
the Hessian of the Lagrangian is updated at each iteration
using the BFGS formula [17,23]. A line search is performed
using a merit function similar to that proposed by Han [30],
Powell [42,41]. The QP subproblem is solved using an
active set strategy similar to that described in [22].

Roughly speaking, in the absence of faults, the residual
signals rðtÞ ¼ yðtÞ � Cx̂ðtÞ should be approximately zero.
Hence, the symptom evaluation is obtained simply by com-
paring residual signals r(t) with a fixed threshold � accord-
ing to the following geometric test:
jrðtÞj 6 � for fðtÞ ¼ 0;

jrðtÞj > � for fðtÞ 6¼ 0

�
ð26Þ

f(t) being a generic fault vector. It is worth noting that, the
term � can describe an adaptive thresholds �(t) which de-
pend on plant operating conditions and �(t) values have
to be computed as function of plant inputs [8,6]. A FDI
technique with the threshold adaptor or selector is de-
scribed also in [15,12]. This method represents a passive ap-
proach since no effort is made to design a robust residual.

On the other hand, regarding the noisy case, with refer-
ence to the fault-free system, described by a minimal state-
space EIV model (A,B,C) given by Eqs. (10) and (12), a
Kalman filter has the structure [29,13]:

x̂ðt þ 1jtÞ ¼ Ax̂ðtjt � 1Þ þ BuðtÞ
þ KðtÞðyðtÞ � Cx̂ðtjt � 1ÞÞ;

ŷðtjtÞ ¼ CðI� KðtÞCÞx̂ðtjt � 1Þ þ CKðtÞyðtÞ.

8><
>: ð27Þ

The variable x̂ðt þ 1jtÞ represents the one step ahead pre-
diction of the system state of Eq. (4), whilst the signal
ŷðtjtÞ is the estimate of the output y(t) given by the filter.

A Riccati equation is used to compute the time-variant
gain K of the filter by means of the knowledge of the
covariance matrix of the input vector noise ~uðtÞ and the
variance of the ith component of the output noise ~yðtÞ,
obtained from the application of the Frisch scheme meth-
odology, as shown in [29,13].

It can be proved [33] that the innovation signal
rðtÞ ¼ yðtÞ � Cx̂ðtjt � 1Þ is a white process when all the
assumptions regarding the system (A,B,C) and the statisti-
cal characteristics of the noises are completely fulfilled. In
particular, the innovation converges to a steady state solu-
tion when the pair (A,B) is completely reachable and the
pair (A,C) is completely observable.

Because of the linear property of system of Eq. (2) and
because of the effect of faults on the system output mea-
surements, any change in measurements due to a fault is
reflected in a change in the mean and in the standard devi-
ation of r(t), therefore the detection strategy which is com-
monly chosen in connection with Kalman filtering methods
for failures detection consists in monitoring the innova-
tions r(t). In particular, since the Kalman filter produces
zero-mean and independent white residuals with the system
in normal operation, a method for failure detection and
isolation consists in testing how much the sequence of
innovations has deviated from the white noise hypothesis.
The tests which can be performed on the innovations are
the usual ones for zero-mean and variance, as cumulative
sum algorithms as well as independence, as v2-type. If a
system abnormality occurs, the statistics of r(t) change,
so its comparison with a threshold fixed under no faults
conditions, becomes the detection rule.

It is assumed that only a single fault may be present in
the actuators, components or input sensors of the plant
at any given time. On the other hand, in some cases the
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proposed methodology can effectively handle multiple
faults.

It is worth noting that the new aspect of the present
work consists of exploiting identification schemes in
connection with observer/filter design procedures for diag-
nostic purpose. In particular, linear model identification
(black-box modelling) and output estimation (dynamic
observers and Kalman filters) approaches to fault diagnosis
are in particular advantageous in terms of solution com-
plexity and performance. Moreover this characteristic is
especially useful when robust solutions are considered, i.e.
where the robustness is used to minimise the effects of
modelling errors and to maximise fault sensitivity. As the
feature of system diagnosis consists of monitoring the oper-
ating condition of the system with respect to an expected
point of operation, linear system methods are very valid
and effective. Any deviations from expected system behav-
iour (due to faults affecting the process inputs and outputs)
could be used to monitor system performance changes as
well as system component malfunctions.
Fig. 8. The monitored turbine process.
5. Identification and FDI of the gas turbine prototype

The following sections show the complete design proce-
dure for a model-based fault diagnosis system, starting
from system identification, both in the noise-free and noisy
environment, to residual generation for fault detection and
isolation. The procedure is applied to a model of a real
industrial plant [45].

Two points have to be underlined here. Firstly, Section
5.1 describes how linear state-space models have been iden-
tified for principal working conditions of the plant, as
state-space descriptions provide general and mathemati-
cally rigorous tools for system modelling and residual gen-
eration that may be used successfully for fault diagnosis.
Secondly, Sections 5.2 and 5.7 show how residuals should
then be processed to detect an actual fault condition, reject-
ing any false alarms caused by noise or spurious signals. In
particular, this work addresses output estimation approach
for fault diagnosis of actuators, components and input–
output sensors, mainly in conjunction with residual pro-
cessing schemes which include a simple threshold detection
[6] as well as residual statistical analysis.

Moreover, one of the main reasons of the proposed
methodology should be stressed again. Linear prototypes
for the design of linear output estimators [44] have been
identified here instead of non-linear models obtained by
modelling techniques in connection with non-linear ob-
servers. In fact, in some cases, the linear approach is still
advantageous in terms of solution complexity and perfor-
mance. Moreover linear system methods are still very valid
since the feature of the system supervision is to monitor the
operation and performance of the system with respect to an
expected point of operation. It must be realised that, of
course, a change in point of operation can be indicative
of a fault in the process.
5.1. Dynamic process identification

The identification procedure presented in Section 4.1 has
been applied to the industrial gas turbine prototype devel-
oped in MATLAB/SIMULINK� environment described
in Section 3.1 [45]. It is a strongly non-linear model, as it
consists mainly of non-linear functions and look-up tables
that model the thermodynamic relations among the vari-
ables involved.

Fig. 8 shows the block schematic diagram of the gas tur-
bine including its inputs and outputs.

Air flows (ambient air temperature and pressure, pa and
Ta, that are not control inputs) via an inlet duct to the com-
pressor (‘‘compressor’’ block), high pressure air from the
compressor is heated in combustion chambers (‘‘combus-
tor’’ block) and expands through a single stage compressor
turbine (‘‘turbine’’ block). A butterfly valve (valve angle,
av) provides a means of controlling the speed of the turbine
(first control input, u1(t)). Cooling air is bled from the
compressor outlet to cool the turbine stator and rotor.

A regulator (‘‘controller’’ block) regulates the combus-
tor fuel flow (Mf in Fig. 8) to maintain the compressor
speed (Nt) at a set-point value. Under steady state condi-
tions, the power generated by the turbine is balanced by
that absorbed by the compressor and losses since there is
no power turbine present in the model.

The process inputs ui(t) are the ambient air temperature
Ta and pressure pa, fuel flow Mf(u2(t)) and the butterfly
valve opening angle (av,u1(t)). As an example, the control
input signals av(t) and Mf(t), as well as the boundary con-
dition inputs Ta and pressure pa are shown in Fig. 9. Note
that the input signals are also affected by the measurement
noise, whose levels are reported in Table 4.

The process outputs yi(t) consist of all the 28 measure-
ments that can be acquired from each block of the simu-
lated MATLAB/SIMULINK� system, e.g., mass flow
(mj), temperature (tk), pressure (ph), torque (ql) and speed
(Nt) signals.

It is worth noting that, according to Section 3.3, among
the 28 output measurements, ql, tk, ph and mj only have to
be monitored for the identification and FDI schemes pre-
sented here.



0 10 20 30 40 50 60 70 80 90
20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90
180

200

220

240

260

280

300

320

340

360

380

0 10 20 30 40 50 60 70 80 90
180

200

220

240

260

280

300

320

340

360

380

a b

dc

Fig. 9. Gas turbine input signals: (a) valve angle, (b) fuel flow, (c) ambient temperature and (d) ambient pressure.
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Fig. 10. Turbine monitored output signals: (a) flow rate, (b) temperature, (c) pressure and (d) mass flow rate.

S. Simani, C. Fantuzzi / Mechatronics 16 (2006) 341–363 353



Table 3
Steady-state values of the turbine monitored variables

Variable Mean value Unit

pa 101,325 N=m2

Ta 288.16 K
p1 102,066.2356 N=m2

p2 101,845.6648 N=m2

p3 1,014,989.5034 N=m2

p4 978,218.3118 N=m2

p5 929,453.2286 N=m2

p7 206,408.6312 N=m2

p8 100,900 N=m2

m1 8.1302 kg/s
m3 16.6868 kg/s
m4 16.8355 kg/s
m5 13.1491 kg/s
m6 1.9748 kg/s
m8 15.444 kg/s
m9 13.668 kg/s
m10 1.4617 kg/s
Mf 0.21224 kg/s
t1 291.8465 K
t2 277.2356 K
t3 577.543 K
t4 577.2024 K
t5 1139.7976 K
t6 1139.7976 K
t7 838.4191 K
qc 3096.7421 N m
qt 3081.1332 N m
Pc 5,141,363.216 W
Pt 5,100,672.251 W
wt 1660.2491 rad/s
Nt 15,854.2107 RPM
av 48.4934 Deg
ec 0.87673
et 0.79353

Table 4
Turbine inputs

Variable Name Accuracy

Ta Ambient air temperature 14 [K]
pa Ambient air pressure 10%
Mf Fuel flow Mf 10%
av Valve angle 9 [Deg]

Table 5
Turbine output signals and ARX SSE

Variable label Variable name SSE Accuracy

mj Mass flow 610�2 10%
ph Pressure 610�2 15%
ql Torque 610�2 10%
tk Temperature 610�2 15 [K]
wt Speed 610�2 10%

Table 6
ARX model validation

Variable SSE
identification

SSE first
validation

SSE second
validation

mj 610�2 <0.05 <0.01
ph 610�2 <0.04 <0.01
ql 610�2 <0.07 <0.1
tk 610�2 <0.09 <0.1
wt 610�2 <0.07 <0.1
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The monitored output sequences are been reported in
Fig. 10. They are affected by the measurement noise
described in Table 5.

In the SIMULINK� prototype of Fig. 8, the faults fs, fc

and fy can be simulated. They represent actuator, system,
controller component and output sensor faults, respec-
tively. In particular, they are modelled as ramp functions
[45].

The time series of data {u(t),y(t)} shown in Figs. 9 and
10 have been used to identify the linear models were gener-
ated with a non-linear dynamic model in SIMULINK�

environment and they simulate measurements taken on
the actual machine with a sampling rate of T = 0.08 s.

As an example, in order to sketch the operating condi-
tions of the monitored process, the steady state values of
the variables that can be acquired from the turbine SIMU-
LINK� simulator have been reported in Table 3. These
values can be automatically computed for each simulation
by the SIMULINK� simulator. According to Section 3.1,
the non-linear SIMULINK� model of the gas turbine
was validated in steady state conditions against engine
measurements when they were available, and against the
prediction of a more rigorous steady state gas turbine
model when measurements were not available. The accu-
racy of variables from identified linear model was found
to be within 5% of the reference (real measurement and
reference model) values.

Table 4 shows the input measurement accuracy, when
output reconstruction errors are shown in Table 5 for a
MIMO ARX model of order n = 8. These values should
represent the errors of the actual sensors used for acquiring
the input measurements of the industrial process.

The ARX MIMO (n = 8) model is driven by
u = [av(t), Mf(t)] and gives the prediction of the ith output
yi(t). In the monitored system shown in Fig. 8, the ambient
pressure and temperature (pa and Ta) are not considered as
inputs as they are considered constant at all times. Table 5
also shows measurement accuracy of the main monitored
output variables yi(t).

The identified ARX MIMO model was tested under dif-
ferent operating conditions and it has always provided an
output reconstruction error SSE (sum of squared errors)
lower than 0.5%. Moreover, two time series of data gener-
ated by the gas turbine non-linear prototype were exploited
in order to validate the ARX model, as summarised in
Table 6. In this case, with reference to the main monitored
output measurements, the ARX model has always pro-
vided in full simulation an output reconstruction error
SSE lower than 1%. A very effective way of evaluating
the adequacy and flexibility of identified models consists
in their use for performing complete simulations (i.e. using
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only the initial samples of the observed outputs) and in
comparing the obtained predictions with observed output
samples. This procedure, which can be applied when a sin-
gle set of data is available, gives the best results when
applied to sequences different from those used to identify
the model. The mean-square prediction error SSE between
the observed outputs and the ones obtained by simulation
can be used to compare models with different structures.

The reconstruction errors of ARX model are sum-
marised in Table 6. The SSE prediction errors are also
reported with respect to three different sequences of data.
In Table 6, the first SSE column refers to the model predic-
tion errors, whilst the second and the third ones correspond
to the SSE values for two validation sequences. It is impor-
tant to note that the structures of the identified ARX/EIV
input–output models (in this application, n = 8 for both the
cases) have been selected according to the structure selec-
tion criteria for ARX model, e.g., PPCRE [28], or AIC,
MDL, FPE tests [37], and the criteria for EIV models,
e.g., in [5,4].

On the other hand, regarding the identification pro-
cedure for noisy data recalled in Section 4.1, the Frisch
scheme was proposed by the authors and applied to per-
form the dynamic system identification of the plant. Such
a scheme facilitates the determination of a linear discrete-
time dynamic model that generates the noisy sequences,
as well as the variances of the noises ~uðtÞ and ~yðtÞ corrupt-
ing the data.

Table 7 summarises the reconstruction errors concern-
ing the EIV MIMO models in the form of Eqs. (10) and
(12) with two inputs (a(t) and IGV(t)) and the monitored
output variables, as outputs.

As an example, the four output measurements yi(t) (ph,
mj, ql, tk) used for the FDI task were reported in Table 7.
These output signals represent the most sensitive output
measurements with respect to the four considered fault
cases.

Moreover, Table 8 collects the estimated input and
output noise signals for the identified EIV model (n = 8).
Table 7
EIV model reconstruction errors

Variable Name J(h) Accuracy

ph Pressure 0.0054 15%
mj Mass flow 0.0049 10%
ql Torque 0.0042 10%
tk Temperature 0.0031 15 [K]

Table 8
Eighth order EIV noise variances

Variable Input noise ~ru Output noise ~ry

ph [0.1417,0.2623] 0.2497
mj [0.1417,0.2623] 0.2345
ql [0.1417,0.2623] 0.2909
tk [0.1417,0.2623] 0.0941
On the basis of the data collected in Table 8, a Kalman
filter with two inputs (r = 2) and four outputs (m = 4) can
be designed for residual generation in the noisy case.
According to Section 4.2, the residual generator is hence
implemented by means of dynamic observers or Kalman
filters, in order to produce a set of signals from which it will
be possible to detect and isolate faults associated to actua-
tors, components and output sensors.

Finally, note again that, due to the fault effect analysis
developed in Section 3.3, the variables ql, tk, ph and mj only
have to be considered in order to develop the integrated
identification and FDI scheme presented here.
5.2. Turbine FDI using output observers

In this section, the presented model-based FDI method-
ology has been applied to detect and isolate faults in the
industrial gas turbine prototype under, when no assump-
tions have been made about input and output measure-
ments. Both faulty situations and fault-free measurements
have been simulated by using the plant simulator devel-
oped in MATLAB/SIMULINK� environment.

It is worth noting that in the presence of a fault condi-
tion, the challenge for the designer of the FDI algorithm
may be summarised as follows:

(1) Detect that a fault condition exists with minimum
delay from the initial occurrence of the fault.

(2) Identify the nature, magnitude and location of the
fault, again with minimum delay from the initial
occurrence of the fault.

It is also desirable to avoid introducing perturbation sig-
nals onto the model variables. In the first instance an FDI
design should be based upon data {u(t),y(t)} which is avail-
able from the normal day to day operation of the plant, for
example during transient and over prolonged periods of
steady state operations.
5.3. Case 1: Compressor failure

This subsection describes the design of the FDI scheme
for the fault ‘‘Case 1’’ (fs(t), the component Fault) described
in Section 3.2.

The inputs for the system are u(t) while y(t) are the out-
puts which could be affected by the fault fs(t). The detection
of a compressor fault has been performed by using the clas-
sical output observer configuration, when yi(t) = ql(t). The
inputs av(t), Mf(t) and the output yi(t) feed the observer to
estimate the signal yi(t) itself, and to generate the residual
r(t).

In this case, yi(t) represents the output measurement
which is the most sensitive signal to a fault affecting the
compressor fs(t). Under this assumption, yi(t) consists of
a torque measurement ql directly acquired from the
compressor.
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Fig. 11. The monitored signal versus the component fault mode. (a) ql(t) output. (b) The simulated fault fs(t).
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As recalled in Section 4.2, the observer is designed for
the ARX model, that was identified with an output re-
construction error J(h) = 0.009 regarding ql measurement.
Hence, the diagnosis of the ql(t) torque signal (linked to
the faulty compressor component fs(t)) requires the knowl-
edge of the triple (A,B,C) from the identification of the
ARX model with two inputs which gives the prediction
of the output yi(t) = ql(t).

The poles p of the output observer for the signal ql(t)
were chosen near 0.7 according to the minimisation of
the function V(p). The output signal yi(t) = ql(t) is depicted
in Fig. 11(a), whilst Fig. 11(b) shows the ramp fault fs(t).

It is worth noting how the shape of transient of the mea-
sured variable ql(t) between 0 to 20 s. is determined by the
input variation and is not related to the incipient compres-
sor fault.

5.4. Case 2: Output sensor fault

Thermocouple fault detection described in Section 3.2 is
linked to the signal fy(t), that models the fault affecting the
process output tk, under noise-free assumptions.

As described in Section 4.2, the construction of the
observer for the diagnosis of the output sensor fault (ther-
mocouple fault) affecting the measurement of the tempera-
ture tk requires the knowledge of the canonical state-space
model (A,B,C) and therefore the estimation of the ARX
model with two inputs which gives also the prediction of
the turbine output tk.

The ARX model driven by av(t) and Mf(t) input signals,
was identified. Regarding the output yi(t) = tk, such a model
gives an output reconstruction error equal to 0.007. More-
over, the poles of the output observer, were chosen near
0.3 in order to minimise the function V(p).

As shown in Fig. 12, an incipient fault (drift) was simu-
lated in the output sensor of the SIMULINK� model by
adding a ramp function with a slope of 0:008 K=s to the
yi(t) = tk output signal. Moreover, it was decided to con-
sider a fault during a transient as, in this case, the residual
error due to ARX model approximation is maximum and
therefore it represents the most critical case.

The fault occurring on the single sensor causes alter-
ation of the sensor signal yi(t) = tk and of the residuals
given by the output observer using this signal as input.
These residuals indicate a fault occurrence when their val-
ues are lower or higher than the thresholds fixed in fault-
free conditions.

Fig. 13(a) shows the fault-free (continuous line) and
faulty (dotted line) residual r(t) obtained from the differ-
ence between the values computed by the observer related
to the output yi(t) = tk and the ones given by the sensor.
Obviously, the non-zero value of the residual is due to
the ARX model approximation. The drift (ramp fault) in
Fig. 13(b) starts at the instant t = 15 s.

Since the observer gives the estimate ŷiðtÞ of yi(t) at the
instant t by using measurements available from the instant
t = 0 to t = n � 1, a fault occurring at the instant t affects
only yi(t). This change produces the instantaneous peak
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which appears in Fig. 13(b) on the residual signals
rðtÞ ¼ yiðtÞ � ŷiðtÞ. In this case, the peaks are not due to
instantaneous changes in the input signals, e.g., fuel flow
Mf(t) or valve position av(t). Thus, they may be used as
incipient detector of anomalous behaviour of the output
sensors.

Fig. 13(b) shows the behaviour of the residual with the
same fault as the previous case occurring at the instant
t = 35 s in different operating conditions of the plant. The
fault-free residual, r(t), is depicted by the continuous line,
whilst the residual corresponding to the fault is shown with
the dotted line. The peak that appears in the Fig. 13(b) is
generated by the change related to the fault occurrence at
the same instant.

Fig. 14 depicts the dynamics of the drift fy(t) affecting
the tk output sensor.

It is worth noting how, because of the links between
fault and symptom signals, the dynamics of the faulty
residuals may have different scales and modes with respect
to the fault signals. The residual dynamics can, in fact, only
capture the shape (ramp nature) of the fault and not the
precise magnitude.
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Fig. 14. Simulated sensor fault function.
5.5. Case 3: Turbine damage

The output observer fed by the inputs a(t), Mf(t) and by
the output measurement ph(t) of the pressure of the turbine
(see Fig. 15) has been designed according to Section 4.2, in
order to detect such component fault, i.e. the turbine com-

ponent fault. This fault case was described in Section 3.2.
Concerning the considered measurement yi(t) = ph(t),

the identified ARX model gives a mean-square reconstruc-
tion error equal to 0.008. The observer eigenvalues were
chosen near 0.4 to minimise the cost function V(p).

The component fault dynamics fs(t) is shown in Fig. 16.
The fault-free and the faulty residual are shown in

Fig. 17.

5.6. Case 4: Actuator fault

As described in Section 3.2, fault ‘‘case 4’’, fc(t) affects
the actuator of the turbine controller.

Under this fault condition, the inputs of the turbine, the
fuel flow, Mf(t), the valve angle, a(t) and the outputs y(t)
Fig. 15. The ph(t) measured pressure signal from the turbine.
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Fig. 17. ph(t) observer residuals.

0 10 20 30 40 50 60 70 80 90
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
T

ba

Fig. 18. Diagnosis of the mj(t) mass flow signal. (a) The mj(t) tu
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were considered. In particular, the speed demand, Nt, and
the speed of the turbine, xt, were also taken in account.
For these outputs, the ARX models with two inputs was
identified.

A single fault fc(t) was simulated by means of the SIM-
ULINK� model, and mj(t) was determined as the most
sensitive output to a fault regarding the actuator, with a
J(h) = 0.006.

According to the design scheme presented in Section 4.2,
the observer eigenvalues k were chosen close to 0.4 to min-
imise the cost function V(p).

Fig. 18(a) illustrates the dynamic behaviour of the mon-
itored mj(t) signal, a measurement of turbine mass flow,
while the fault fc(t) is shown in Fig. 18(b).

Fig. 19 shows the fault-free (see Fig. 19(a)) and faulty
(see Fig. 19(b)) residuals r(t) obtained from the difference
between the values computed by the observer related to
the output yi(t) = mj(t) and the ones given by the sensor.
These residuals indicate a fault occurrence when their val-
ues are lower or higher than the thresholds fixed in fault-
free conditions.

It is worth noting that, due to the nature of the fault
‘‘case 4’’, the fault dynamics cannot be described by using
a ramp function.

5.7. FDI in noisy environment using Kalman filters

Under the assumption of noisy measurements u(t) and
y(t), Figs. 20–23 show results from the application of
model-based FDI techniques exploiting Kalman filter for
residual generation [44].

As shown in Section 4.2, a decision process may consist
of a simple threshold test on the instantaneous values of
moving averages of residuals (Eq. (26)).

On the other hand, as described in this section, because
of the presence of noise, disturbances and other unknown
signals acting upon the monitored system, the decision
making process can exploits statistical methods. In such a
case, the measured or estimated quantities, such as signals,
parameters, state variables or residuals are usually repre-
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rbine mass flow signal. (b) The fault fc(t) concerning mj(t).
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Fig. 19. The fault-free and faulty residual signals. (a) Fault-free residual (b) Residual in the presence of fc(t) fault.
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Fig. 20. Fault and residual signal for component fault (case 1). The fault is simulated by a ramp signal commencing at t = 15 s. (a) System fault fs(t).
(b) Kalman filter residuals in fault-free (black line) and faulty (gray line) cases.
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Fig. 21. Fault and residual signal for output sensor fault (case 2). The fault is simulated by a ramp signal commencing at t = 15 s. (a) Output sensor fault
fy(t). (b) Kalman filter residuals in fault-free (black line) and faulty (gray line) cases.
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sented by stochastic variables with mean value and vari-
ance [48,2] as normal values for the fault-free process.

Analytic symptoms are then obtained as changes of the
faulty residuals [2]: with reference to the normal values.
Usually, a time instant represents the unknown instant of
the fault occurrence.

In order to separate normal from faulty behaviour, usu-
ally a threshold with a value 2 or 3 times the standard devi-
ation of the fault-free residual can be exploited. Hence, as
described by Eq. (26), by a proper choice of �, a compro-
mise has to be made between the detection of small faults
and false alarms. As an example, techniques of change
detection, as a likelihood-ratio-test or Bayes decision, a
run-sum test can be used [31,1,2].

In particular for the case study addressed in this work,
Fig. 20(a) shows the value of the fault fs(t) affecting the
r(t) residual concerning the torque measurement ql(t) (case
1), whilst Fig. 20(b) depicts fault-free and faulty residuals
generated by the Kalman filter having two inputs (a(t),
Mf(t)) and one output yi(t) = ql(t).

It is important to note that, in order to achieve the max-
imal fault detection capability, the output measurements
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Fig. 22. Fault and residual signal for component fault (case 3). The fault is simulated by a ramp signal commencing at t = 15 s. (a) System fault fs(t).
(b) Kalman filter residuals in fault-free (black line) and faulty (gray line) cases.
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Fig. 23. Fault and residual signals for actuator fault (case 4). The fc(t) fault commences at the instant t = 15 s. (a) Actuator fault fc(t). (b) Kalman filter
residual.
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corresponding to the most sensitive filter to a failure on the
ql(t) = yi(t) measurement was selected, according to Section
3.3.

Fig. 21(a) shows the simulated fault fy(t) affecting the
output sensor yi(t) for the measurement of the turbine tem-
perature tk concerning ‘‘case 2’’. In Fig. 21(b) fault-free and
faulty residuals regarding the tk = yi(t) signal are shown.
The residuals are obtained from the difference between
the values computed by the Kalman filter of Eq. (27) and
the ones measured by the temperature sensor tk.

It is worth noting that the non-zero value of the residual
in fault-free conditions is due to the identified model
approximation and to the actual measurement noise sig-
nals.

Fig. 22 shows simulated fault (a) and residuals (b) corre-
sponding to component fault (case 3).

According to results from the identification steps
exposed in previous sections, the residual is computed
monitoring the yi(t) pressure signal ph(t).

Finally, Fig. 23 shows the actuator fault fc(t) (a) and the
residuals (b) concerning yi(t) = mj(t) measurement due to a
ramped incipient actuator fault (case 4).

Because of the nature of the incipient ramp fault fc(t)
affecting the regulator in the feedback control loop, the
output measurements affected by the fault itself are differ-
ent from ramp signals, as depicted in Fig. 23(a).
It is worth noting that, as recalled in Section 4.2, the
detection strategy normally chosen in connection with Kal-
man filter methods for FDI, consists in monitoring the
residuals or Kalman filter innovations. In fact, if the linear
property of the monitored model holds and when the
effects of the faults on the system are additive, for FDI pur-
pose it can easily be exploited the additive effect of the
change on the innovation. Any abrupt change in measure-
ments due to a fault is reflected in a change in the mean
value and in the standard deviation of innovations. In par-
ticular, since the Kalman filter produces zero-mean and
independent white residuals with the system in normal
operation, a method for FDI consists in testing how much
the sequence of innovations has deviated from the white
noise hypothesis. The tests which are performed on the
innovations r(t) are the usual ones for zero-mean and var-
iance, as cumulative sum algorithms and independence, as
v2-type computed in a growing window.

However, due to the non-linear nature of the monitored
process considered here and because of the non-linear effect
of the considered faults, a system abnormality occurrence
can be easily detected and isolated by comparing r(t) with
a fixed threshold � fixed under no faults conditions. Then,
a simple geometric test with fixed thresholds of Eq. (26)
becomes the FDI rule (26) in Figs. 20(b), 21(b), 22(b)
and 23(b).



0 20 40 60 80

-1

1

3

5

7
x 10-4

e

Fig. 24. Detection delay definition.

S. Simani, C. Fantuzzi / Mechatronics 16 (2006) 341–363 361
5.8. Fault detection and isolation results

In order to summarise the FDI capabilities of the pre-
sented schemes, Table 9 shows the ‘‘fault signatures’’ in
case of a single fault in each actuator, component and
sensor. According to the fault effect analysis developed in
Section 3.3, Table 9 was thus obtained by performing mea-
surement (residual) sensitivity analysis, i.e. by selecting the
most sensitive output measurement (residual) to the faults.
Therefore, the residuals that are affected by faults are
denoted by a ‘1’ in the corresponding table entry, while
an entry ‘0’ means that the fault does not affect the corre-
spondent residual. Under these conditions, the entries ‘1’s
in Table 9 represent distinguishable residuals: it means that
their magnitude is greater than a fixed threshold. On the
other hand, a ‘0’ entry means that the residual is lower than
the fixed threshold. Note how faults occurring at the same
time in actuator, components and sensor can be isolated
since each fault affects only the residual function of the
observer driven by the same output.

Moreover, Table 10 summarises the performance of the
FDI technique both in noise-free and noisy environments.

The minimal detectable fault values are expressed as per-
centage of the signal values and are relative to the case in
which the occurrence of a fault must be detected as soon
as possible. The values of the faults obtained by using geo-
metrical analysis on Kalman filter residuals are different
from the ones computed in the noise-free environment
exploiting classical observers. It is worth noting how faults
modelled by ramp functions may not be immediately
detected, since the delay in the corresponding alarm nor-
mally depends on the fault mode.

The minimal detectable fault can be found by fixing a
detection delay, defined in Fig. 24. If a detection delay is
tolerable, the amplitude of the minimal detectable fault is
lower.

The minimal detectable faults on the various sensors
seem to be adequate for the industrial diagnostic applica-
tions, by considering also that the minimal detectable faults
Table 9
Fault signature

Fault/r(t) ql tk ph mj

Case 1 1 0 0 0
Case 2 0 1 0 0
Case 3 0 0 1 0
Case 4 0 0 0 1

Table 10
Minimal detectable faults by monitoring residual and innovation values

Faults Outputs Noise-free (%

Case 1 (compressor fault) ql(t) 0.5
Case 2 (thermocouple sensor fault) tk(t) 10
Case 3 (turbine failure) ph(t) 5
Case 4 (actuator fault) mj(t) 1
can be reduced if a delay in detection promptness is
tolerable.

6. Conclusion

This paper has described identification techniques for
the FDI of actuators, components and output sensors of
a gas turbine system. Although this is an application study
based on a gas turbine prototype, the principles and meth-
ods used are applicable to almost any industrial system
with dynamic behaviour and with sets of input–output
measurements.

The system identification and FDI tasks were performed
through the use of dynamic observers or, when the measure-
ment noises are taken into account, Kalman filters. In this
study single faults on components of the system, i.e. faults
in actuators and output sensors, were considered. This does
not mean that multiple (simultaneous) faults are not possi-
ble to isolate using model-based methods. Indeed, earlier
studies have shown that model-based methods for FDI are
particularly suited to the detection and isolation of multiple
faults, when certain modelling and design conditions are sat-
isfied. In a later study we will consider this issue further.

The proposed method does not require physical knowl-
edge of the process under observation because the input–
output links are obtained by means of an identification
scheme, based on canonical input–output and state-space
models derived from the data. The choice of minimal
parameterisation state-space representations for MIMO
ARX or EIV models may avoid unexpected false alarm
problems.
) With noise (%) Accuracy Delay (s)

13 10% 30
13 15 [K] 30
17 15% 60
14 10% 10
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This identification approach was applied to a SIMU-
LINK� model of a single-shaft industrial gas turbine pro-
totype. In order to analyse the diagnostic effectiveness of
the FDI system in the presence of changes or drifts in mea-
surements, faults were generated by means of ramp
functions.

The results obtained indicate that the minimal detect-
able faults on the system actuator, component and output
sensors are of interest for the industrial diagnostic applica-
tions. However, since in real industrial applications incipi-
ent ramp faults develop slowly over a long period and in
order to avoid excessively long duration simulations, the
fault development rate was increased so that significant
effects were present after shorter periods. This is a factor
that must be taken into account for FDI performance
evaluation.
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[32] Isermann R, Ballé P. Trends in the application of model-based fault
detection and diagnosis of technical processes. Control Eng Pract
1997;5(5):709–19.

[33] Jazwinski AH. Stochastic processes and filtering theory. New York:
Academic Press; 1970.

[34] Kalman RE. System identification from noisy data. In: Bednarek AR,
Cesari L, editors. Dynamical system II. New York: Academic Press;
1982. p. 135–64.

[35] Kalman RE. Nine lectures on identification. Lecture notes on
economics and mathematical system. Berlin: Springer-Verlag;
1990.

[36] Korbicz J, Koscielny JM, Kowalczuk Z, Cholewa W, editors. Fault
diagnosis: models, artificial intelligence, applications. 1st ed. Sprin-
ger-Verlag; 2004, ISBN 3540407677.

[37] Ljung L. System identification: theory for the user. 2nd ed. Engle-
wood Cliffs, NJ: Prentice Hall; 1999.

[38] Mehrotra S. On the implementation of a primal–dual interior point
method. SIAM J Optimiz 1992;2:575–601.

[39] Patton RJ, Frank PM, Clark RN, editors. Fault diagnosis in dynamic
systems, theory and application. Control engineering series. Lon-
don: Prentice Hall; 1989.



S. Simani, C. Fantuzzi / Mechatronics 16 (2006) 341–363 363
[40] Patton RJ, Frank PM, Clark RN, editors. Issues of fault diagnosis for
dynamic systems. London: Springer-Verlag; 2000.

[41] Powell MJD. The convergence of variable metric methods for
nonlinearly constrained optimization calculations. In: Mangasarian
OL, Meyer RR, Robinson SM, editors. Nonlinear programming,
3. Academic Press; 1978.

[42] Powell MJD. A fast algorithm for nonlinearly constrained optimiza-
tion calculations. Numerical analysis. In: Watson GA, editor. Lecture
notes in mathematics, vol. 630. Springer-Verlag; 1978.

[43] Simani S, Fantuzzi C, Patton RJ. Model-based fault diagnosis in
dynamic systems using identification techniques. 1st ed. Advances
in industrial control. London, UK: Springer-Verlag; 2002, ISBN
1852336854.

[44] Simani S, Fantuzzi C, Beghelli S. Diagnosis techniques for sensor
faults of industrial processes. IEEE Trans Control Syst Technol
2000;8(5):848–55.
[45] Simani S, Patton RJ, Daley S, Pike A. Fault diagnosis of a simulated
model of an industrial gas turbine prototype using identification
techniques. In: SAFEPROCESS2000, vol. 1. 4th Symposium on fault
detection supervision and safety for technical processes, Budapest,
Hungary, 2000. p. 518–24.

[46] The MathWorks Inc. MATLAB user’s guide. Natick, MA, USA:
The MathWorks, Inc.; 1990.

[47] The MathWorks Inc. SIMULINK user’s guide. Natick, MA, USA:
Mathworks Inc.; 1991.

[48] Willsky AS. A survey of design methods for failure detection in
dynamic systems. Automatica 1976;12(6):601–11.

[49] Xie L, Soh YC. Robust Kalman filtering for uncertain systems.
Syst Control Lett 1994;22:123–9.

[50] Xie L, Soh YC, de Souza CE. Robust Kalman filtering for
uncertain discrete-time systems. IEEE Trans Automat Control
1994;39:1310–4.


	Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype
	Introduction
	Model description
	Modelling aspects of an industrial gas turbine prototype
	Gas turbine prototype model description
	Fault scenario description
	Failure mode effect analysis (FMEA)

	Identification and FDI integrated approach
	Dynamic linear model identification
	ARX identification
	EIV identification

	Residual generation

	Identification and FDI of the gas turbine prototype
	Dynamic process identification
	Turbine FDI using output observers
	Case 1: Compressor failure
	Case 2: Output sensor fault
	Case 3: Turbine damage
	Case 4: Actuator fault
	FDI in noisy environment using Kalman filters
	Fault detection and isolation results

	Conclusion
	Acknowledgements
	References


