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Abstract

This paper presents an extensible object model for gas turbine engine performance simulation. The
extension method for gas path balancing is analyzed and a new design rationale is developed to
overcome de®ciencies of the traditional component-based object modeling method. A class framework
implementing this rationale is described and the dynamic performance of a three-shaft gas turbine
engine is simulated to evaluate the model's e�ectiveness. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Computer simulation plays a pivotal role during the development, testing, and veri®cation of
gas turbine engines. The size and complexity of a simulation package may vary from
calculating a few thermodynamic functions to coupling lots of computational ¯uid dynamics
(CFD) software into an ordinary di�erential equation (ODE) solver. As long as the engine's
conceptual and technological innovations are emerging, the package needs to be extended,
modi®ed or even rewritten from time to time. Although software extension is the most
economical way, the extendability, which is de®ned as ``the ease with which a system or
component can be modi®ed to increase its storage or functional capacity'' [1], is restricted not
only by the size and complexity, but also by the structure of the software.
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Many attempts [2±7] have been made to tackle this problem by applying the so-called
``object-oriented (OO) technology''. During the simulation, an engine's mathematical model is
no longer decomposed into segments of function call that implement certain algorithms.
Rather, it is mapped to collections of communicating software objects, each of which mimics
the behavioral and structural characteristics of a physical or conceptual entity. Each object
must represents an instance of a software class, while the classes are united into a hierarchy via
inheritance relationships.
The OO programming accommodates a convenient, safe, and seamless paradigm of software

extension. For example, there may already exist in the system, a software object
``compressorOfLM2500'', which is an instance of the class ``Compressor''. The class is used to
generalize and abstract di�erent kinds of compressors. It may inherit from a more generalized
class ``Component''. During the software extension, if a new compressor object, such as a
compressor of the LM6000 engine, needs to be modeled, it can be easily instantiated from the
existing class ``Compressor''. The embedded OO mechanism ensures that no incompatibility
may be introduced even though multiple objects reuse the same codes written for the class
``Compressor''. If a novel component object needs to be extended, a new subclass that inherits
from the class ``Component'' must be created before the new object can be instantiated. In this
manner, a well-planned class hierarchy provides the ``slots'' into which the future codes are to
be plugged.
The existing object models [2±7] focus mainly on extending new engine components and

plant con®gurations. The gas path balancing method, however, remains in¯exible.
Gas path balancing refers to the intermediate simulation phase during which all components

along the engine gas path are manipulated such that certain (but not all) balance conditions
are satis®ed. These balances must be established before any other equilibrium can be set up
and the system's state calculated. For example, during the o�-design performance simulation
using Newton±Raphson algorithm [8], gas path balancing requires the equilibrium of both the
mass ¯ow rate and the pressure ratio among all components. On the other hand, work
extracted from a turbine does not need to be equal to that consumed by the corresponding
compressor and/or load. This work imbalance will speed up or slow down the speci®ed rotor
speed, which in turn forms the initial condition for the next iteration of gas path balancing.
In addition to the conventional sequential method of balancing, various methods [9,10] have

already been proposed with improved simulation accuracy, speed, and/or stability. Since new
cases and simulation requirements emerge frequently, the adoption of other methods and
hence, the rewriting of those packages with limited gas path balancing choices, would be
inevitable.
To avoid the latter situation, an improved object model must be developed. This paper

proposes a new OO design rationale for gas turbine simulation, describes the resulting class
structure that improves extendability, and presents an example that demonstrates the model's
e�ectiveness.

2. Message-based modeling

Despite of the model di�erences, almost all the existing object models for gas turbine engine
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simulation adopt a design rationale called ``component-based modeling'' [4]. The software
designers wish to provide the users with the capability to assemble an engine the same way as
that in thermodynamics, which is, by coupling the physical components together using
thermodynamic linkages, such as the working ¯uid ¯ows and the shafts. However, the internal
structure and behavior of a real world thermodynamic linkage is very di�cult to emulate by a
single software object.
Take the working ¯uid ¯ow as an example. During the gas path balancing, it acts as a

means of data transmission between two components. As depicted in Fig. 1, if component A
and B are coupled together by a working ¯uid ¯ow, the value of any thermodynamic
parameter at A's outlet should be equal to that at B's inlet. If the value on one side is known
and that on the other side is unknown, the ¯uid ¯ow must assign the known value to the other
side. The transmitted data are of various types, ranging from temperature, pressure, to
enthalpy, mass ¯ow rate, and/or chemical composition. Some unexpected types of data may
also need to be involved when the components are of special type. Besides, although the
working ¯uid ¯ows are unidirectional from upstream to downstream, the data transmissions do
not have to behave in the same way. Their directions di�er from one parameter type to
another, and from one balancing method to another, as shown in Fig. 1. The previous models
tried to wrap all these complexities in one single object, whose mechanism of data transmission
turned out to be too complicated for new parameter types to be inserted in and hence new
component types and balancing methods extended and customized.
Realizing this, the authors try to split the structural and functional characteristics of a

thermodynamic linkage into multiple objects. During the process, a novel design rationale,
called ``message-based modeling'', is formed and introduced herein. The term ``message'' is
de®ned as an entity that abstracts the behavior of an independent data transmission. Although
there are many data transactions in the simulation, they do not function in the same way.
Some of the transactions imply more than the data transferred. Take Fig. 1 as an example. If
the temperature value at A's outlet is assigned to B's inlet, the enthalpy value at B's inlet can
be calculated immediately. This implies that the enthalpy value has already been transmitted
along with the temperature at the same time and in the same direction. These two pieces of
datum are interchangeable and the transmission of either one will result in the other being
transferred in the same direction. Therefore, they are grouped as one piece of message. On the

Fig. 1. Physical ¯uid ¯ow and data ¯ow.
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other hand, the transmissions of pressure, mass ¯ow rate, and temperature are independent
from each other. Each of them is deemed as one piece of message.
All data in the simulation are grouped into independent messages. Rather than connecting

the components with certain thermodynamic linkages, the design of an engine simulation is
converted to sending messages among autonomous component objects. The users will send out
initial messages to trigger a few components. These components will invoke the corresponding
simulation procedures, calculate the unknown data, and then send out messages to trigger
more components. Di�erent gas path balancing methods are thus implemented through the
di�erent layouts of messages that can be customized and extended at ease.
An extensible object model for gas turbine simulation is developed based on this idea and

the hierarchical class structure is described in the next section. At the core of the hierarchy,
there are three classes: Node, Connector, and Component.

3. Node-Connector-Component model

A node denotes the static state of a message. Before any message is passed out, it is only an
aggregation of dependant data contained by a component. There are many kinds of Node in a
simulation, e.g., temperature, pressure, rotary speed, etc. To guarantee extensibility to other
kind of node, an abstract base class ``Node'' is created to generalize all nodes. This relation is
depicted in Fig. 2. The notations used in Figs. 2±4 conform to Uni®ed Modeling Language
(UML) [11], the OO modeling standard from Object Management Group (OMG). As shown in
Fig. 2, an arrow with a triangle arrowhead stands for the inheritance, or rather, the ``Is-A''
relationship. The subclasses of Node are (from left to right) rotary speed's derivation over
time, speci®c work, mass ¯ow rate, fuel±air ratio, temperature of arbitrary ¯uid, pressure,
pressure's derivation over time, and rotary speed. The class NewNode stands for any new
subclass of Node, which must be extended to the hierarchy at the level shown in Fig. 2. The
subclasses of TFluidNode are temperature, along with other attached data such as enthalpy,
speci®c heat, etc., of pure air and pure gas' correlation over pure air, respectively.
The relationships between the classes Node and Component are shown in Fig. 3, using the

class Compressor as an example. In UML, a diamond decorated line or arrow stands for
``Has-A'' or ``Is-a-Part-Of'' relationship. With all necessary Node class extended, a novel
Component class can be created by applying these relationships in a proper way.
Messages must be passed among components. Therefore, a mechanism that implements this

communication must be created. To avoid coding for each kind of Node, a Connector class is
created over their root class, Node, as shown in Fig. 2. Modi®cations of class Connector for
future insertions of new parameter types are therefore unnecessary.
Component classes are still needed. However, their assembly may be heterogeneous to a real-

world engine. For example, a compressor with air leakage may be modeled by connecting a
Compressor object's mass ¯ow rate outlet node with of a Manifold object's inlet node. New
component classes must be appended to the hierarchy at the proper level, as shown in Fig. 4.
As a whole, the extensibility of the model is depicted in Fig. 4. By extending new Node

subclasses, new components and new gas path balancing methods can be expanded and
supplemented to the system at ease. New system state calculation methods, which are
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Fig. 2. Node and Connector class diagram.

Fig. 3. Compressor and node class diagram.
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practically numerical methods that solve the ordinary di�erential equations (ODE), may also
be appended.

4. Example

To demonstrate the e�ectiveness of the model, a three-shaft gas turbine engine's dynamic

Fig. 4. Class structure of the extensible object model.

Fig. 5. Layout of a three-shaft gas turbine engine.
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performance is simulated using the volume inertia balancing method [10]. The layout
con®guration of the plant is shown in Fig. 5. The air/gas leakage and pressure losses along the
gas path have all been modeled.
In this example, altogether 22 components and 56 connectors are created and assembled.

The simulation time step is set to 5 ms, and altogether 2000 steps are calculated. On a Pentium
II 233 MHz personal computer, this calculation task is completed in 5 s, which illustrates the
vast power of the volume inertia method. The engine's responses to small fuel ¯ow step
perturbations (both upward and downward) are depicted in Fig. 6, in which the relative rotor
speed is de®ned as the division of a rotor's speed at time t over that at time 0.
As stated before, an object model is only a programming re-mapping of the engine's

mathematical model. The validation of the mathematical model and algorithms are beyond the
scope of this paper. However, the results of this calculation are exactly the same as a previous
non-OO project [10] on the same problem, which presents the validity of this object model.

Fig. 6. The engine's dynamic response to a small fuel step perturbation: (a) upward perturbation, (b) downward
perturbation.
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5. Conclusions

An extensible model for general-purpose gas turbine engine simulation has been built. New
components and new engine con®gurations can be appended to the system. Extensibility on gas
path balancing methods is also provided. This attributes to the employment of the message-
based modeling, which overcomes the de®ciencies of traditional component-based modeling by
the introduction of concept ``message''. An implementation object model with the core
concepts of Node-Connector-Component is also described, and a three-shaft gas turbine
engine's dynamic performance over fuel step perturbation is simulated. The e�ectiveness of the
model has been proved.
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