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Abstract:

A method for on-line map adaptation is developed. The method utilizes the EKF as a
parameter estimator and handles parameter aging, operating point dependent model and
measurement quality. Map adaptation, by construction, gives marginally stable models with
locally unobservable modes, that are handled. The method is also suitable for off-line calibration
of maps where the only requirement of the data is that the entire operating region of the system
is covered. The method is applied to a truck engine where an air mass-flow sensor adaptation
map is estimated based on data from a diesel engine during an ETC. It is shown that an
adaptation map can be found in a measurement sequence not specially designed for adaptation.
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1. INTRODUCTION

Look-up tables and maps are frequently used to describe
relations in modern control and diagnosis systems where
physical models are unavailable, e.g. low level sensor and
actuator characteristics.

In engine control systems, maps of different types are com-
monly used for example to compensate for changed am-
bient conditions and aging engine subsystems like cooler
efficiency, injector characteristics, aftertreatment systems
etc. These are typical examples of maps that need continu-
ous on-line adaptation to avoid undesired system behavior,
like e.g. biased air mass-flow estimates, causing increased
emissions. A related topic of major concern in engine
control system development is the calibration process of
the complex control system with its variety of maps and
parameters.

An attractive idea of how to handle these problems is
to incorporate system models to aid in the development
of sufficiently robust and fast adaptation algorithms that
can be used both on-line to handle system aging and off-
line to automatize the calibration process of engine control
systems (Guzzella and Amstutz, 1998).

Basically map adaptation can be viewed as a desire to
reduce and store the compensation of an operating point
dependent estimation error, and a way to reduce station-
ary estimation errors in model based observers was devel-
oped in Höckerdal et al. (2008b). It utilizes an observable
default state space model

xt+1 = f(xt, ut) (1a)

yt = h(xt), (1b)

and measurements, y, u, from the system and estimates
a low order bias augmentation Aqq that, when used in
observer design, reduces the stationary estimation errors
of the resulting observer. The result of this method is an
observable augmented model

xt+1 = f(xt − Aqqt, ut) (2a)

qt+1 = qt (2b)

yt = h(xt), (2c)

that can be used with any suitable observer design to
construct an observer with reduced stationary estimation
errors compared to using the default model directly.

However, since the observer designed in Höckerdal et al.
(2008b) treats the bias as a random walk it is not able
to keep track of the changes in bias between operating
points over time. That is, as soon as the system changes
operating point, all information about the bias in the
previous operating point is discarded.

An observer that stores information about the bias could
be useful in applications where the system is such that
information with a certain quality only is present in some
operating points. Then information collected at these
operating points can be used to improve the quality of
the estimated variables throughout the entire operating
region of the system, e.g. air mass-flow adaptation in diesel
engines with exhaust gas recirculation (EGR) and variable
geometry turbine (VGT) (Höckerdal et al., 2008a). In
engine map adaptation schemes it is also important that
the algorithm is robust against outliers since occasional
spurious measurements are inevitable.

Hence, the goal is to design a robust observer with memory
that is able to handle old parameters, operating point
dependent models, and varying measurement quality, and
occasional spurious measurements.

2. METHOD OUTLINE

Based on the method developed in Höckerdal et al.
(2008b), an information preserving observer, i.e. with
memory, can be obtained by exchanging the assumption
of a bias modeled as a random walk

qt+1 = qt + vt, vt ∼ N (0, Q), (3)



driven by white noise, for a parameterized function, or
map, describing the bias

qt = qfcn(xt, ut, θt)

θt+1 = θt + vt, vt ∼ N (0, Qfcn).

Where qfcn(xt, ut, θt) is a parameterized function or map
with unknown parameters θ that describes the bias depen-
dence on the system states x, and inputs u. The parame-
ters are modeled as random walks in the same way as the
bias state in (3).

If this is done for the general state space model (2), the
following system is obtained,

xt+1 = f(xt − Aqqt, ut) (4a)

θt+1 = θt (4b)

qt = qfcn(xt, ut, θt) (4c)

yt = h(xt), (4d)

where Aqq adjusts the stationary points of the system.
Here and henceforth system, measurement, and random
walk noise terms are left out to increase readability. Note
that this is similar to the formulation used in Höckerdal
et al. (2008b), the difference is that the bias states have
been exchanged for a parameterized function and the
function parameters are introduced as new states. If (4c) is
inserted into (4a), a standard state space form is obtained
which means that any suitable observer design can be
applied. For example, one way of estimating states while
at the same time handling unknown parameters is to
apply a joint parameter and state estimating extended
Kalman filter (EKF) (Kopp and Orford, 1963). There the
parameters are introduced as new states with constant
time derivatives and augmented to the original states just
as in the system described by (4).

To develop a model like (4) and use it for estimation and
identification entails that some new issues have to be ad-
dressed compared to Höckerdal et al. (2008b). Of these the
main concern in this paper is how to update the function
parameters, θt, in a controlled manner. Another related
issue is how to find a suitable parameterization (4c), with
its structure and regressors. This is not treated here and
the interested reader is referred to e.g. Lind and Ljung
(2008).

Even though any suitable observer design can be applied
to this system, the choice here is to use a stochastic filter.
An advantage of stochastic filters, like for example EKF,
compared to deterministic observers is that, not only the
state estimate, but also an estimate of the estimation error
distribution is computed. The estimation error statistics is
used in the computation of the filter feedback gain, which
gives the stochastic filters natural tuning parameters that
allow filter tailoring to handle unknown state initialization,
time dependent model and measurement quality, outlier
rejection etc.

For these reasons and because of simplicity the joint
parameter and state estimating EKF is used throughout
this paper.

3. OBSERVABILITY

In all estimation problems observability or, at least, de-
tectability of the system at hand is central. Since the
system considered here can be viewed as an extension
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Fig. 1. Air mass-flow correction map with the grid points
denoted with the pair (Wi, θi) corresponding to a
correction factor of θi at a mass-flow of Wi.

of the augmented system addressed in Höckerdal et al.
(2008b) it is natural to assume that the system

xt+1 = f(xt − Aqqt, ut) (5a)

qt+1 = qt (5b)

yt = h(xt) (5c)

is observable and analyze how the replacement of (5b)
by a parameterized function, (4b – 4c), affects the ob-
servability. The observability is therefore directly depen-
dent on the properties of the parameterized function (4c)
that describes the operating point dependence of the bias
qt = qfcn(xt, ut, θt).

If for example (4c) is an engine map, implemented as a
look-up table with the grid points as parameters, and an
interpolation algorithm computing the output. Then the
system will have locally unobservable states (Hermann
and Krener, 1977), i.e. parameters that are not used
in the interpolation in the current operating point are
not observable. In Figure 1 the local observability of
the parameter states in linear interpolation is illustrated
using an air mass-flow correction map from an inline six
cylinder Scania diesel with EGR and VGT (Höckerdal
et al., 2008a). If the operating point, in this case defined by
the air mass-flow measurement, lies in the shaded region
of the figure then only the two grid points constituting the
border of the region are observable.

3.1 Growing Estimation Error Covariance

At any given time there are generally, for systems like (4),
some parameters θi that are locally unobservable. A prop-
erty of systems with locally unobservable modes is that
the estimation error covariance matrix in an EKF frame-
work grows linearly for the unobservable modes if system
noise for these modes is present. That is, in regions where
the system seldom operates the estimation error covariance
matrix coefficients, corresponding to locally unobservable
modes or parameter states, will grow linearly without
bound. This linear growth in covariance matrix elements
have two sides. 1) It offers a way to achieve fast update of
old parameters while protecting often updated parameters
from spurious measurements. 2) It may cause numerical
problems affecting the system stability when considering
the life-time of the system, which has to be handled.
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Fig. 2. The figure shows the evolution of the estimation
error variance for three parameter states.

This effect is illustrated in Figure 2, where the variance
of three parameter states, θ5, θ8, and θ10 from Figure 1
are plotted versus time. In Figure 2(a) θ5 corresponds to
a parameter that is not observed at all for the studied
trajectory, while the parameter θ8 is observable during the
first half of the trajectory and unobservable for the second
half. For the parameter θ10 the case is reversed, that is the
parameter is first unobservable and then observable.

Experiences from adaptive maps in engine applications,
not using the EKF and joint parameter and state es-
timation, indicate problems concerning parameter aging
and occasional spurious measurements. For example an
engine that, during normal operation, does not cover the
entire parameter space and only occasionally enters some
areas, may suffer from undesired system behavior caused
by old parameters. Many of todays adaptation schemes
apply the same adaptation algorithm in each update step
and do not adjust the update procedure with respect to
when the parameters were last updated (Wu, 2006; Peyton
Jones and Muske, 2007). In these cases, a linearly growing
uncertainty for seldom updated parameters enables a fast
parameter update rate of old parameters without risking
large errors in the state estimates. This can in some sense
be thought of as a dynamic forgetting factor similar to
recursive least square (RLS) techniques and is a highly de-
sirable property in engine adaptation algorithms not only

to handle aging parameters but also to protect updated
parameters from occasional spurious measurements, that
are fairly common in engine applications.

A direct and intuitive way of handling the linear growth
of estimation covariance of locally unobservable parameter
states, i.e. 2), is to introduce an upper limit for the cor-
responding estimation error covariance matrix elements.
A possible upper limit is the initializing error covariance
matrix, P0. Since it is desirable to limit the estimation
error covariance of only the locally unobservable param-
eters it is appropriate to perform the limitation element
wise, i.e. compare Pi,i to P0 i,i, and limiting Pi,i by setting
Pi,i = P0 i,i when Pi,i ≥ P0 i,i. It is straightforward to
show (Jaynes, 1996) that the off-diagonal elements in P
do not affect the estimation error covariance for a single
parameter, and by using P0 as an upper limit, the intro-
duction of yet another tuning parameter is avoided.

4. FILTER TUNING – Q VS. QFCN

Even though the method developed here is quite similar
to the one developed in Höckerdal et al. (2008b) there are
some important differences. One difference is the rate at
which the bias and parameter states are updated.

For the observer designed in Höckerdal et al. (2008b) it
is necessary for the bias state to change approximately as
fast as the system dynamics, otherwise it will not be able
to track a change in system operating point. However, a
rapidly changing bias state captures also high frequency
disturbances, and is thereby sensitive to outliers, which
makes the bias state in this method unsuitable for engine
map adaptation.

In an observer utilizing a parameterized function to de-
scribe the bias, the parameter states operate with an
update rate determined by system aging, which is substan-
tially slower than for a bias state that has to track changes
in system operating point. This makes the observer based
on a model containing a parameterized function or map
less sensitive to temporary disturbances, compared to an
observer using only one state to describe the bias. However,
both methods can be used to find an adaptation map, the
first estimates it directly and the latter after some post
processing like mean value computations, which makes it
less suitable for on-line applications.

Another issue that is, to some extent, straightforwardly
handled by stochastic filters is initialization of the un-
known bias or function parameters. By proper tuning of
the corresponding elements in the estimation error covari-
ance matrix, P0, a temporary faster update of unknown
bias or function parameter states is achieved. That is, due
to an initially faster update rate of unknown parameters,
in the same way as old parameters are allowed a faster
update rate, a rapid convergence of the otherwise quite
slow parameter states is achieved.

5. METHOD EVALUATION

To evaluate the method two studies, a simulation study
and a study utilizing experimental data, are performed
where the aim is to adapt the air mass-flow sensor in
diesel engine, characterized by a 1-D adaptation map. The



simulation study shows the convergence of the method
and includes a minor analysis of model error, and noise
sensitivity while the experimental part shows the result of
the method applied to experimental data.

In both studies a non-linear model of a heavy duty truck
engine developed in Wahlström and Eriksson (2006) is
used together with measurements from an engine in an
engine test cell. The model has three states, intake and
exhaust manifold pressures, and turbine speed which all
are present in the model output together with the air mass-
flow through the compressor. The data used are collected
during a European transient cycle (ETC).

5.1 Observers

Three observers are designed and evaluated both in sim-
ulation and on experimental data. The observer designs
are: An EKF based on the default model developed
in Wahlström and Eriksson (2006) directly,

xt+1 = f(xt, ut)

yt = hWcmp
(xt),

referred to as Def. An EKF with an extra bias state
introduced in the measurement equation to reduce the
estimation error from the method developed in Höckerdal
et al. (2008b),

xt+1 = f(xt, ut)

qt+1 = qt

yt = hWcmp
(xt) + qt,

referred to as Aug. A joint state and parameter estimating
EKF based on the default model and a parameterized bias,

xt+1 = f(xt, ut)

θt+1 = θt

yt = (1 + qfcn(hWcmp
(xt), θt))hWcmp

(xt),

referred to as Map. where qfcn is presented in Figure 1.

In the simulation study all observers use only feedback
from the air mass-flow sensor, hWcmp

(xt), whilst in the
experimental evaluation, feedback from all sensors except
the exhaust manifold pressure sensor, x2, is used. Even
though the model is observable from any of the outputs
the model errors are such that an augmented feedback
is needed in the experimental evaluation. The estimation
performance evaluation is with respect to all states and
outputs, i.e. intake and exhaust manifold pressures, tur-
bine speed, and air mass-flow through the compressor.

For the study utilizing experimental data, all observers
are augmented with an additional bias state, in addition
to those introduced to handle the measurement error,
with the purpose of reducing estimation errors due to
model errors in the compressor model causing incorrect
prediction of the compressor mass-flow, i.e. for Def.

xt+1 = f(xt, ∆Wcmp,t
, ut)

∆Wcmp,t+1
= ∆Wcmp,t

yt =
(

x1,t x3,t hWcmp
(xt, ∆Wcmp,t

)
)T

.

5.2 Simulation data

The simulation study serves two purposes, 1) to compare
modeling errors as stationary biases (Höckerdal et al.,
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Fig. 3. Simulation set-up with sensor error from Höckerdal
et al. (2008a).

2008b), or as parameterized functions, and 2) to analyze
the effect of incorrect noise description and model error
sensitivity when using the EKF as a parameter estimator.

Both these utilize the simulation set-up presented in
Figure 3 for creating the data. The data is created by
simulating the model with input data from an ETC
segment. The segment is chosen to contain a wide range of
air mass-flows such that a trajectory for which the system
is observable is created. To simulate incorrect air mass-
flow measurement a 1-D sensor error map is used in the
simulation that adjusts the air mass-flow according to

Wmeas = (1 + q(Wtrue))Wtrue, (6)

where q(Wtrue) is the engine map presented in Figure 1.
The distorted air mass-flow, Wmeas, is then used for
feedback in the observers.

Convergence One property of the estimation bias cor-
rection method developed in Höckerdal et al. (2008b) is
that since no information about the bias in each operating
point is saved the observer convergence speed depends on
the speed of the bias states. While the extension presented
here use a parameterized function and the convergence
speed of the filter, when the parameters are adapted, will
therefore not be dependent on the speed of the parameter
states.

To analyze and compare the convergence speed of filters
utilizing parameterized bias to filters utilizing bias states
is a difficult task. A reason for this is that the convergence
speed is highly dependent on the filter tuning. Since
the maximum errors occur in transients, see for example
the transient at the time 5 s in Figure 4, they give an
indication on how well the estimator is able to track
transient behavior. Figure 4 presents the estimation errors
from Aug., where the bias state has been tuned to be too
slow and does not manage to track the change in bias. As
references the estimation errors from Map. and Def. are
also presented. Since a bias state has to be approximately
as fast as the system dynamics and the parameters as fast
as the system aging, filters tuned with these aspects in
mind will have about the same performance with respect
to estimation quality during normal operation, which is
confirmed in Table 1. Nevertheless, since the bias state is
allowed to change much faster than the parameter states,
a filter utilizing that method will be more sensitive to
disturbances, i.e. outliers as mentioned in Section 4. A
filter with a parameterized function with slow parameters
does not allow disturbances to affect the estimation of
neither model nor parameter states to the same extent
as a filter with a bias state, i.e. have a stronger smoothing
effect.

Figure 5 shows the true and estimated map from Map.,
and the correction made by the slowly varying bias from
Aug. computed according to
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r =
q̂t

ŷt − q̂t

.

From this figure it is obvious that Map. manages to
estimate a correction map out of a cycle, not specially
designed for map adaptation, without any post processing.
Also, the correction made by Aug. captures the true map
but some post processing, like for example mean value
computations, is needed to get a map that can be used
for interpolation etc.

Evolution of adaptation map In an application where the
method is used for engine map adaptation it is important
that the method converges. However, since the model
description probably never will be entirely correct, it is
impossible to converge to something that can be called
the true map. However, for simulated data this can be
achieved. Figure 6 shows the evolution of the adaptation
map over time. The parameters are all initiated to zero,
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Table 1. Def., Aug. and Map. estimation error.

Meas.
Max abs. error Mean error

Def. Aug. Map. Def. Aug. Map.
pim[Pa] 13901 1156 1075 2521 47 46
pem[Pa] 13482 1071 999 2383 43 42

ntrb[rpm] 3118 446 432 769 23 22
Wair[kg/s] 0.02 0.003 0.003 0.003 0.00007 0.00006

indicated by the straight line at time t = 0, and converges
to the true map as the operating region is covered.

In Table 1 it is seen that all measures, both maximum
and mean, are approximately the same for Aug. and
Map. for all system states and the system output, while
Def. has significantly larger errors. From this it can be
concluded that the estimation performance with respect
to the default states and outputs are similar for the two
observers Aug. and Map. Though, Map. also automatically
estimates a map that describes the air mass-flow sensor
error, that can be used by other algorithms or functions
in the engine control unit (ECU).

Robustness The robustness of the proposed algorithm is
only briefly analyzed by i) introducing a variety of model
errors in minor sub models known to have inaccuracies,
e.g. the EGR system, ii) tampering with model and
measurement noise structures and intensity.

The first to study the properties of filter divergence due
to modeling errors and the second to analyze the effect
due to incorrect noise properties. None of the experiments
showed any tendencies of divergence or lack of convergence
consistency.

5.3 Experimental data

To see how the method can be expected to work in a
real application an evaluation using measurements from
an engine in an engine test cell is conducted. Since in this
case there are other model errors present besides the air
mass-flow sensor error an extra bias state is introduced
that compensates for incorrect mass-flow through the
compressor, see Section 5.1. With the introduction of an



Table 2. Mean estimation error using experi-
mental data for Def., Aug and Map.

Meas.
With ∆Wcmp,t

Without ∆Wcmp,t

Def. Aug. Map. Def. Aug. Map.
pim[Pa] 4208 169 -210 13875 13176 13019
pem[Pa] -10987 -13746 -14420 -2339 -3454 -3450

ntrb[rpm] 69 16 29 -57 -19 5
Wair[kg/s] 0.008 -0.020 -0.020 0.031 0.035 0.035
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extra state compensating for the compressor mass-flow,
known to be biased, the estimate of the intake manifold
pressure becomes significantly better at the expense of the
exhaust manifold pressure estimate, while the estimates of
turbine speed, and air mass-flow is almost unaffected, see
Table 2.

In Section 4 the tuning of Aug. and Map. are discussed,
especially the different philosophies of the bias describing
states – the relatively fast bias state in Aug. and the slow
map states in Map. In Figure 7, and Table 2 the similarity
in estimation performance between Aug. and Map. is strik-
ing, which is an expected result. The mean estimation er-
rors for pim and ntrb are reduced while the mean estimation
errors for pem and Wcmp are slightly increased. That is, in
absence of outliers Aug. and Map. are comparable with
respect to output estimation performance. The benefit
with Map. is that it also estimates an adaptation map.

From Figure 7 it is seen that, even though there are
unknown model errors present, besides the compressor
mass-flow, the method manages to estimate a map that
describes the difference between modeled and measured
air mass-flow through the compressor well. Figure 7 shows
the correction factor between modeled and measured air
mass-flow, similar to what was observed in Figure 5.

Finally, all this shows that an adaptation map can be
estimated even though the data used is from the highly
transient ETC, not specially designed for air mass-flow
sensor adaptation.

6. CONCLUSIONS

A method for storing bias information from different
operating points is developed. With this method it is
possible to achieve simultaneous estimation of original

model states and parameters, like for example adaptation
of engine maps.

Stochastic filters together with a parameterized bias that
has locally unobservable states is in fact an asset that
handles seldom updated parameters and gives robustness
against occasional spurious measurements in ordinary map
adaptation algorithms. The linear growth of estimation
error covariance, that comes as a result of local unobserv-
ability of the parameters, also form a potential numerical
problem for the filter and a way to limit this growth
without extra filter parameters is provided.

The method shows promising results in a simulation study,
where it manages to estimate the engine states while at
the same time estimating a parameterized air mass-flow
adaptation map. In an evaluation with experimental data
it is shown that while maintaining the same estimation
quality with respect to mean and maximum absolute error,
as the method developed in Höckerdal et al. (2008b), an
engine adaptation map can be estimated as well. That
is, simultaneous state estimation and map adaption is
achieved without, for adaptation, specially designed cycles.
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