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Abstract: Driving cycles are used for certification, for comparison of vehicles, and to an
increasing extent as an engineering tool in vehicle design. A situation with only a few fixed
driving cycles to use would then lead to the risk that a test or design would be tailored
to details in the driving cycle instead of being representative. Due to this, and due to the
increased use in the development process, there is now a strong need for methods to achieve
representative driving cycles that in a wide sense are similar but not the same. To approach this
problem area, we define equivalence between driving cycles based on mean tractive force, and
develop algorithms and methods for equivalence-modification and equivalence-transformation
of driving cycles. There are a number of applications for these methods but one example that is
demonstrated is to transform the well-known FTP75 into an equivalent NEDC, and the other
way around, to transform the NEDC into an equivalent FTP75.

Keywords: Drive cycle, vehicle operation, driver behavior, vehicle propulsion, automotive
emissions, test procedures, specific energy, equivalence measures.

1. INTRODUCTION

A driving cycle is a representation of how vehicles are
driven and is usually represented by a set of data points
of vehicle speed versus time. It is used for certification,
for comparison of vehicles, or as an engineering tool in
vehicle design (André, 1996), (Lin and Niemeier, 2002),
or (Stockar et al., 2010). Regardless of application, the
general idea behind a driving cycle is that it should be
representative for driving behavior in the region it is used,
and perhaps also that it should capture different driver
behavior and different traffic situations. A representative
driving cycle usually means that some statistical criteria of
interest is sufficiently close to data from real-world driving.

There are many examples of driving cycles, and as an
example a common one, is the New European Driving
Cycle (NEDC), is seen in Figure 1. This particular driving
cycle has low levels of acceleration compared to several
examples of real-world driving, and thus, the NEDC is not
representative of real-world driving conditions (Zaccardi
and Le Berr, 2012). The NEDC also underestimate the
CO2 emissions compared to real-world driving (Fontaras
and Dilara, 2012). Further, design parameters that are
optimized for a certain driving cycle are not necessarily
optimal for another driving cycle (Schwarzer and Ghor-
bani, 2013), and a reason for this is that vehicle manu-
facturers need only to focus on limited operating regions
of the engine (K̊ageson, 1998). If another driving cycle
excites the operating regions differently, different exhaust
gas emissions and fuel consumption characteristics are ob-
tained, and thus if the driving cycle is not representative,
the optimization on a single driving cycle, will be a sub-
optimal solution for real-world driving (Schwarzer and
Ghorbani, 2013; K̊ageson, 1998). With this background,
and the increased importance of using driving cycles in
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Fig. 1. The NEDC with marked traction regions which
indicates the instants where the powertrain needs to
deliver positive power to the wheels so that the vehicle
is able to track the driving cycle.

the vehicle product development process, it is natural
that there are new proposals for finding representative
driving cycles, see for example (Lee and Filipi, 2011), (Lin
and Niemeier, 2002), (Schwarzer and Ghorbani, 2013), or
(Kamble et al., 2009).

To avoid the single cycle problem, it would be highly
beneficial to have mechanisms to generate similar driving
cycles that are not the same. The approach taken here is
to define the concept of equivalent driving cycles, and this
is done by using integral measures on the driving cycles,
with mean tractive force (MTF) (Guzzella and Sciarretta,
2007) as the main example in this paper.



The main objective is to find algorithms that can modify
a given driving cycle into a different driving cycle that is
equivalent in the measure, or to modify a given driving cy-
cle into another one with a specified equivalence measure.
Formulating and approaching these problems are the main
topic of this paper.

2. DRIVING CYCLE EQUIVALENCE

A driving cycle excites and tests vehicles, and a vehicle’s
particular parameters determine the impact the driving
cycle has on the powertrain. To compare the performance
obtained in two different driving cycles is difficult since the
cycles have different characteristics. A naive way would be
to scale the driving cycles so they have the same mean
vehicle speed. However, this does not make the cycles
equivalent, since acceleration characteristics may still be
radically different. Thus, a more insightful characterization
of driving cycles is needed.

2.1 Mean Tractive Force Equivalence

The required torque at the wheels, from acceleration, is
higher in the FTP75 compared to the NEDC since the
FTP75 has more aggressive acceleration sequences. The
EUDC (the highway part of the NEDC), has higher mean
velocity than the FTP75 which yields that the rolling
resistance, which is dependent on the rolling coefficient of
the tires of the vehicle, has a higher impact on the vehicle
power. Hence, the torque and power are dependent on the
driving cycle, the vehicle mass and other parameters of the
vehicle.

Using a measure on a driving cycle it is possible to
define equivalence among driving cycles and also to make
comparison between cycles possible. A measure can be
defined on the whole time interval τ = [0, tfinal], but
the characterization used here is based on the mean
tractive force (MTF) (Guzzella and Sciarretta, 2007).
The integration intervals for MTF are determined by the
vehicle traction regions where the powertrain of the vehicle
provides positive power (F (t) > 0), i.e. F̄trac is defined on
a subset τtrac = {t ∈ τ : F (t) > 0}, and the measure is

F̄trac =
1

xtot

∫
t∈τtrac

F (t) · v(t) dt, (1)

where xtot is the distance traveled in the driving cycle,
F (t) is the sum of the forces at the wheels, and v(t) is
the speed of the vehicle. The measure (1) can be used
for a preliminary estimate of the fuel consumed by the
propulsion system (Guzzella and Sciarretta, 2007).

For flat roads the forces at the wheels origins from aerody-
namic drag resistance force (Fair), rolling resistance force
(Froll), and also forces due to acceleration/deceleration of
the vehicle (Fm). These forces are here modeled as

F (t) = Fair + Froll + Fm (2)

Fair =
1

2
ρacdAfv

2(t)

Froll = mcrg

Fm = ma(t),

where ρa is the air density, cd is the drag coefficient, Af is
the frontal area. The rolling resistance is modeled as pro-
portional to the vehicle weight. The weight is the product
of vehicle mass (m), and the gravitational constant g. The
proportional constant is denoted cr. Finally, the force from
acceleration is the mass times the acceleration a(t).

The MTF quantity F̄trac in (1), can be partitioned into
three different parts originating from aerodynamic drag
resistance, rolling resistance, and acceleration resistance,

F̄trac = F̄air + F̄roll + F̄m (3)

F̄air =
1

xtot

∫
t∈τtrac

1

2
ρacdAfv

2(t) · v(t) dt = κα (4)

F̄roll =
1

xtot

∫
t∈τtrac

mgcr · v(t) dt = mgcrβ (5)

F̄m =
1

xtot

∫
t∈τtrac

ma(t) · v(t) dt = mγ, (6)

where κ = 1
2ρacdAf . The force components in (4 - 6) have

been split into two parts where the first part consists of
constants and vehicle parameters. The other part is driving
cycle specific, but is however influenced by the vehicle
parameters indirectly due to their influence on the coasting
velocity in (10), which affects the traction regions, τtrac.
The parameters related to the driving cycle are

α =
1

xtot

∫
t∈τtrac

v2(t) · v(t) dt (7)

β =
1

xtot

∫
t∈τtrac

1 · v(t) dt =
xtrac

xtot
(8)

γ =
1

xtot

∫
t∈τtrac

a(t) · v(t) dt. (9)

Based on the introduced MTF in (4 - 6) we are ready to
define an equivalence measure for driving cycles

Definition 1. For a given vehicle, two driving cycles, v1(t)
and v2(t), are said to be equivalent, denoted v1(t) ∼ v2(t),
if the following are fulfilled

α(v1(t)) = α(v2(t))

β(v1(t)) = β(v2(t))

γ(v1(t)) = γ(v2(t)).

2.2 Determining Traction Regions

A vehicle is in traction if the powertrain need to provide
positive power (F (t) > 0 in (2)). The other two modes are
coasting (F (t) = 0) and braking (F (t) < 0). Another way
to determine if the vehicle is in traction is to calculate
the coasting velocity which is determined by (2). Using
v̇(t) = a(t) and F (t) = 0, the vehicle coasting speed
(vcoast) is determined by

0 = Fair + Froll + Fm ⇒

v̇coast(t) = − 1

2m
ρacdAfv

2
coast(t)− crg

= −k2
1v

2
coast(t)− k2

2 ⇒

vcoast(t) =
k2

k1
tan(arctan(

k1

k2
vcoast(t0))− k1k2 · t). (10)

For discrete driving cycles and given an initial speed v(t0 =
tk−1) in the driving cycle, the vehicle is in traction at time
tk if v(tk) > vcoast(tk), otherwise the vehicle is in coasting
(v(tk) = vcoast(tk)), or in braking (v(tk) < vcoast(tk)). The
traction regions in the NEDC for a certain vehicle is seen
as the marked regions near the x-axis in Figure 1.

2.3 Physical Interpretation of the MTF Components

The parameters β and γ have physical meanings as follows.
The parameter β in (8), which is related to the MTF
measure for the rolling resistance, is the quotient between



the distance traveled during traction, xtrac, and the total
driven distance xtot.

The MTF component (6) can be written as

F̄m = mγ =
1

xtot

∫
t∈τtrac

mv̇(t) · v(t) dt

=
1

xtot

∫
t∈τtrac

m

2
· dv

2(t)

dt
dt

=
1

xtot

#trac∑
i

[
m · v2(t)

2
]
ti,end

ti,start , (11)

where it is clearly seen that it is proportional to the sum
of the difference in kinetic energy for all the traction
intervals. The number of traction intervals is denoted
#trac and each traction interval has its start, ti,start, and
end point ti,end. Given that xtot is the same for two driving

cycles, they have the same F̄m if
∑#trac
i [m·v

2(t)
2 ]

ti,end
ti,start are

equal. If the start and end points of the traction regions are
not changed and xtot is kept constant this measure will be
the same before as after any changes in the driving cycle.
This observation will be used in the algorithms further on.

3. PROBLEM FORMULATION

A key problem studied is how to transform a given driving
cycle, into another driving cycle that is equivalent in the
sense of Definition 1. The first basic problem is thus

Problem P0: Given a driving cycle v(t), find ṽ(t) 6= v(t)
so that ṽ(t) ∼ v(t).

A second strongly related problem is to incorporate a
specified driving cycle segment, vspec defined on τspec ⊂ τ ,
within the driving cycle, where ṽ(t) = vspec(t), t ∈ τspec.

Problem P1: Given a driving cycle v(t), find ṽ(t) 6= v(t)
so that (i) ṽ(t) ∼ v(t) and (ii) ṽ(t) = vspec(t), t ∈ τspec.

Another problem is when a driving cycle is given, but it is
desired to change the excitation of the vehicle properties,
while maintaining as much of the vehicle speed character-
istics of the original driving cycle as possible. This can be
done by changing the MTF quantity to the new desired
target values (α′,β′,γ′). The problem formulation is

Problem P2: Given a driving cycle v(t) and a target
(α′,β′,γ′). Find ṽ(t) so that |α(ṽ(t))−α′| ≤ εα, |β(ṽ(t))−
β′| ≤ εβ , |γ(ṽ(t))− γ′| ≤ εγ .

The target MTF could be the values for another driving
cycle v2(t), (α(v2(t)), β(v2(t)), γ(v2(t))), and the resulting
driving cycle, ṽ(t), should resemble real-world driving
and not be unrealistic. The next section will describe
algorithms for the above mentioned problems.

4. ALGORITHM

A trivial solution to alter the driving cycle while main-
taining the same MTF components would be to shuffle
around the micro-trips to create a new driving cycle. This
cycle is obviously altered but it is basically the same cycle.
Instead we seek a solution that alter the driving cycle by
doing iterative changes and at the same time maintaining
the MTF quantities (3-6). To simplify the derivation of
the algorithms, the total distance traveled, xtot, and the
traction regions will not be changed.

4.1 Core Component: Analytical Local Modifications

Denote the original driving cycle as v0 (where the time
dependence is omitted) and a slightly altered driving cycle,
ṽ, with a speed difference vector δv that contains n non-
zero elements, δvi = δv(ti) = δi, i = 1, 2, ..., n. The altered
driving cycle is thus ṽ = v0 + δv. The algorithm will not
change the start or end points of traction intervals. This
results in that the MTF component (6) is kept constant
according to (11). This yields that only the integrals in (7
- 8) need to be considered, and thus two driving cycles has
the same MTF if∫

t∈τtrac
v3

0 dt =

∫
t∈τtrac

(v0 + δv)3 dt (12)∫
t∈τtrac

v0 dt =

∫
t∈τtrac

(v0 + δv) dt. (13)

It is possible to alter two speed points (v01, v02) and still
maintain the MTF. However, the solution is then the
trivial solution, the speed points change position (ṽ01 =
v02 and ṽ02 = v01). Hence, switching or sorting speed
points will not change the MTF as long the traction modes
remain unchanged, and the start and end points in each
traction region is not changed.

An issue is that the speed difference vector, δv, is not
allowed to be chosen freely. The fact that the traction
regions shall be intact implies that a change in the driving
cycle is forced to not change the traction mode for any
points. An illustration of the boundaries for any change
in speed v(tk) is seen in Figure 2. The upper boundary
origins from a limitation in the maximum acceleration,
amax, at point v(tk) and also that the next speed point
v(tk+1) does not lose traction. The lower boundary comes
from that the current speed point will not lose traction
and that the acceleration for the next speed point is kept
within the maximum acceleration.

If three speed points are considered (n = 3), an extra
degree of freedom is introduced. The variable that is free
is δ2, and when it is set it determines δ1 and δ3. For discrete
driving cycles, the solution of (12-13) are
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Fig. 2. Limitations of changes of v(tk) which origins from
maintaining the traction regions and also considering
that the maximum acceleration is not exceeded.



∑
v0 =

∑
v0 + δv ⇒

δ3 = −(δ1 + δ2) (14)∑
v3

0 =
∑

(v0 + δv)3 ⇒

0 = δ2
1 · a(δ2) + δ1 · b(δ2) + c(δ2)⇒

δ1 =
b

2a
±
√

b2

4a2
− c

a
, (15)

where δ2 is the free variable and its dependency on the
factors a, b, and c is omitted in (15). Thus, by picking
a suitable δ2 (considering Figure 2) and using (14-15),
an altered driving cycle is achieved without changing the
MTF measures. The reason for this is that the traction
regions are intact, and (14) results in that the average
speed is unchanged, hence the distance traveled during
the traction regions is kept constant. Thus, xtot will not
be changed and the measures (3-6) will be the same.

The core component is this analytical solution to make lo-
cal modifications of a given driving cycle without changing
the MTF. In the most straightforward way the three speed
points are randomly selected. This can be iteratively done
and the results would be a driving cycle that varies around
the original driving cycle, and thus, a solution to problem
P0. In the next section this core component will be used
to make global modifications of the driving cycle.

4.2 Algorithm 1: Global Modifications of the Driving Cycle

Using the solution from the previous section iteratively
produces an altered driving cycle that is of little use.
It has the same MTF measures but due to the random
selection of the speed points the resulting driving cycle is
the original one with some fluctuations within it.

However, if the points that are changed in each iteration
would be chosen more wisely, it is possible to alter the
driving cycle in a more systematic way. For example,
given a driving cycle, v, and a specified segment of a
driving cycle, vspec, with corresponding time points τspec,
Algorithm 1 will produce an equivalent driving cycle ṽ
such that ṽ(t) = vspec(t), t ∈ τspec, and hence, a solution
for problem P1. The algorithm uses the analytical solution
in (14-15) as a base to change the driving cycle iteratively
until the specified driving cycle segment is achieved. The
pseudo-code for Algorithm 1 is seen in Figure 3.

procedure Alg1(v, vspec, τspec)
while any v(ti) 6= vspec(ti),∀ti ∈ τspec do

bounds = f(v, amax, vcoast(v))
Choose at random t1, t3 ∈ τtrac \ τspec

Choose t2 ∈ τspec

Set δ2 to reduce
∑
i |v(ti)− vspec(ti)|

δ1 = b
2a ±

√
b2

4a2 −
c
a . according to (15)

δ3 = −(δ1 + δ2) . according to (14)
v(t1) = v(t1) + δ1
v(t2) = v(t2) + δ2
v(t3) = v(t3) + δ3

end while
end procedure

Fig. 3. Algorithm 1 change a given driving cycle, v,
iteratively, so that a specified driving cycle segment is
incorporated within v, while maintaining the MTF.

4.3 Algorithm 2: Transforming to Target α, β, and γ

The core component and the previous algorithm consider
only that the driving cycle should maintain the MTF. To
change how a driving cycle excites the vehicle properties a
novel algorithm is proposed that, iteratively changes one
measure at the time until the MTF of the altered driving
ṽ is sufficiently close to target values (α′, β′, γ′).

Step 1: Transforming β As previously discussed, the
quantity β in (8) is the ratio between traveled distance
during traction regions and the total driven distance in
the driving cycle. To change the driving cycle such that
|β(ṽ) − β′| ≤ εβ the speed points within the traction
regions will be altered. This will change xtrac in (8) until
the difference between β(ṽ) and β′ is sufficiently small.

Step 2: Transforming γ If the traction regions are intact
and xtot is held constant, it is only possible to alter
γ(ṽ) by changing the speed at the start and end of each
traction interval. By iteratively changing the end points
it is possible to achieve |γ(ṽ) − γ′| ≤ εγ . Every change
in the end points need to be compensated so that the
average speed is kept constant and hence also xtot. If the
traction region shall remain intact it may be necessary to
scale certain traction intervals. Keeping xtot constant is
still vital for not changing β(ṽ).

Step 3: Transforming α Finally, to modify the driving
cycle to get |α(ṽ)− α′| ≤ εα while maintaining both β(ṽ)
and γ(ṽ), can be achieved by expanding or contracting
of the speed points (keeping the average speed) in the
driving cycle. If the average speed is kept constant and
the traction regions are maintained it will result in that
xtot is the same and hence will not affect β(ṽ). If addition
the start and end points of each traction regions is kept
constant this will neither affect γ(ṽ).

Algorithm Summary The algorithm is summarized in
Figure 4, and is a solution for problem P2. For illustra-
tion of the use of Algorithm 2, the NEDC, v1, will be
transformed to the target MTF of the FTP75, v2. Hence,
producing an altered version of the NEDC, denoted ṽ1

which has an MTF that is sufficiently close to the MTF of
v2. A comparison between the original NEDC, the output
from the intermediate step 2 (after the second while-loop
in Figure 4), and the output after the last step is seen
in Figure 5. The dash-dotted line correspond to a driving
cycle that has similar MTF components as the FTP75 for
(8) and (9). The solid line correspond to a driving cycle
that has similar MTF as the FTP75. As can be seen in
the figure, the resulting driving cycle is unrealistic since
it varies to much. To get a smooth driving cycle an MTF
invariant low-pass filtering algorithm can be used and it
will be explained in the next section.

4.4 Algorithm for Reducing Fluctuations

The algorithms that have been proposed have problems
that the resulting driving cycle fluctuates to much and can
be unrealistic. These problems origins from the random
selection of the point, in the algorithms, that causes the
acceleration from point to point to not be so smooth.
To remedy this, we propose a filtering step that sorts
the points in each traction interval so the change in
acceleration from point to point is smoother. Such a
smoothing of the driving cycle does not affect the MTF



procedure Alg2(v, α
′
, β

′
, γ

′
)

while |β(v)− β′ | > εβ do
bounds = f(v, amax, vcoast(v))
Choose t ∈ τtrac
Set δβ regarding bounds, β(v)− β′

v(t) = v(t) + δβ
end while
while |γ(v)− γ′ | > εγ do

bounds = f(v, amax, vcoast(v))
Choose t1 ∈ τtrac, within end points
Choose t2 ∈ τtrac
Set δγ regarding bounds, γ(v)− γ′

v(t1) = v(t1) + δγ
v(t2) = v(t2)− δγ

end while
while |α(v)− α′ | > εα do

bounds = f(v, amax, vcoast(v))
Choose t1 ∈ τtrac
Choose t2 ∈ τtrac
Set δα regarding bounds, α(v)− α′

v(t1) = v(t1) + δα
v(t2) = v(t2)− δα

end while
end procedure

Fig. 4. Algorithm 2 transform a driving cycle to pre-defined
target measures (α

′
, β

′
, γ

′
). The acceptable difference

are determined by thresholds (εα, εβ , εγ).
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Fig. 5. Comparison between different stages in algorithm
2 where the NEDC is transformed so that it gets
similar MTF as the FTP75. Intermediate step after
transforming β and γ (dash-dotted), final step after
also transforming α (solid) and the NEDC (dashed).

as long as the start and end points of each traction region
are not altered and the traction region intervals are not
changed.

The algorithm is applied on each traction interval and sorts
and smooths the speed points depending on the speed
of the start and end points, v(ti,start) and v(ti,end). For
example, for the case v(ti,start) ≤ v(ti,end) and the interval
Ii = (ti,start, ti,end) the filtering becomes a sorting in
ascending order if v(ti,start) ≤ v(t) ≤ v(ti,end),∀t ∈ Ii.
If there exists speed points and t ∈ Ii such that
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Fig. 6. Results from Algorithm 1 when a specified driving
cycle segment is wanted within an existing driving
cycle, while the MTF are kept constant.

v(ti,start) > v(t) or v(t) > v(ti,end) these points will be
partitioned in such a way that the change in acceleration,
from point to point, will be reduced in each traction inter-
val. The outcome of the filtering step is seen in Figure 7
compared to the non-filtered (solid line) in Figure 5.

5. CASE EXAMPLES

Solving problems P0-P1, can be done using Algorithm 1.
Assume, for the sake of illustration, that the highway part
of the NEDC is wanted to be more aggressive to test some
transient behavior, but the new test cycle should still be
equivalent to NEDC. In the example, τspec = [1009, 1180],
and the new speed profile in that segment, vspec, with
more aggressive acceleration is seen in Figure 6 as the
solid curve. In addition, the rest of the cycle, defined
on [0, 1008], needs to be modified so that the complete
driving cycle, defined on [0, 1180], still affects the vehicle
parameters in a similar way. By giving vspec to Algorithm 1
the output will be a driving cycle that is equivalent to the
NEDC, and that has the desired driving cycle segment,
vspec, within it during τspec = [1009, 1180]. The result of
this, including a filtering step for reducing fluctuations, is
seen in Figure 6.

Given a driving cycle, v, and specified equivalence mea-
sures (α′, β′, γ′), Algorithm 2 transforms the driving cy-
cle until the α(v), β(v), and γ(v) are sufficiently close
to target measures, and thus a solution for problem
P2. For illustration of the use of Algorithm 2, the
NEDC, v1(t), is transformed to the target measures
of the FTP75, v2(t). The filtered results from Algo-
rithm 2 is seen in Figure 7. The values for the FTP75
for a certain vehicle are (α(v2(t)), β(v2(t)), γ(v2(t))) =
(231, 0.83, 0.14) and corresponding values for the NEDC
are (α(v1(t)), β(v1(t)), γ(v1(t))) = (324, 0.85, 0.11). Due
to β(v1(t)) > β(v2(t)) the speed points during traction
intervals have to be lowered, and this can also be seen
in Figure 7 where the average speed of the equivalent
driving cycle is lower than the original NEDC. When the
first step in Algorithm 2 has been performed, the MTF
measures have been changed. Denote γstep1 to be the γ-
value after step 1. Due to γstep1 < γ(v2(t)) the end points
of each traction region need to be raised. Finally due to
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Fig. 7. Comparison between NEDC (dashed) and an al-
tered driving cycle (solid) which has MTF values
close, in the sense of (εα, εβ , εγ), to the FTP75.
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Fig. 8. Comparison between FTP75 (dashed) and an
altered driving cycle (solid) which has MTF values
close, in the sense of (εα, εβ , εγ), to the NEDC.

αstep2 > α(v2(t)), the speed during traction has to be
contracted to fully be transformed to a driving cycle that
has an MTF sufficiently close to the FTP75.

The other way around (from FTP75 to NEDC) is seen
in Figure 8. Notice that due to β(v1(t)) > β(v2(t)) this
will result in that the average speed in the transformed
FTP75 driving cycle will be raised even if the average
speed of the NEDC is lower than the FTP75 from start.
The reason for this is that (8) is proportional to the ratio
between distance traveled in the traction regions and the
total distance traveled. It is a fairer measure of the tractive
power at the wheels than the average speed, which does
not consider the coasting or braking regions.

6. CONCLUSIONS

Driving cycles are used for certification, for comparison
of vehicles, and as an engineering tool in vehicle design.
Due to the increased use and importance of driving cycles,

especially in the vehicle development process, there is a
strong need for methods to find or design representative
driving cycles, but also to work with them and to modify
them in the engineering process. A key step taken here was
to define the concept of equivalent driving cycles based on
mean tractive force. Using this measure two main problems
were defined, namely how to modify a driving cycle into
a different one but with the same equivalence measure,
and how to modify a driving cycle so that its measure
comes sufficiently close to a predefined equivalence mea-
sure. Algorithms solving these problems were presented,
a core component where used for local modification and
using this repeatedly achieved global modifications of the
driving cycle. This fits well with the engineering situation
when there is a representative driving cycle at hand, and
the wish is to modify it slightly without loosing its char-
acteristics. With our approach the level of modification
can be controlled, and, furthermore, the modifications
can be directed to parts of the driving cycle of specific
interest. One such example is to request for a little differ-
ent behavior in a certain transient, but where one would
still like to have an MTF-equivalent driving cycle to get
comparable results. Even though the algorithms are not
yet optimized they show the feasibility of the methods
and also gives interesting results. Two examples that were
demonstrated was to transform the well-known FTP75
into an equivalent NEDC, and the other way around, to
transform the NEDC into an equivalent FTP75. We foresee
further development and more applications for the ideas
and methods presented.
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