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Abstract: This paper investigates how model predictive control can be used to control the
acceleration of an over actuated vehicle equipped with a combustion engine and friction
brakes. The control problem of keeping appropriate comfort and low energy consumption and
simultaneously follow an acceleration reference is described. Vehicle and actuator models are
developed and the model predictive controller is tested for an adaptive cruise control cut in
scenario in simulation. To be able to quantify the benefit of the proposed model predictive
controller, the performance is analyzed and compared with a state of the art PID controller.
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1. INTRODUCTION

A modern conventional car is an example of a system that
is overactuated. To change the speed in the longitudinal
direction both friction brakes and combustion engine can
be used simultaneously. The friction brake can generate
a large negative torque while the combustion engine can
generate both negative and positive torques. This makes
the car overactuated since the negative torque can be
generated by the two different actuators. In modern cars
it is also common to have an electric machine which makes
the car even more overactuated.

The three properties of the actuators that is of particular
interest is the dynamics, controllability and the ranges of
the actuators. The dynamics refer to how fast the system
responds to a control signal. The meaning of controllability
in this context is the expected difference between the
requested and received torque on the system from the
actuator. The range here refer to the range of torque an
actuator can deliver to the system. An overview of the
specifications of the actuators is given in Table 1.

Table 1. Overview of the characteristics of the
two actuators.

Combustion Engine Friction Brake

Dynamics Slow Fast

Controllability Mediocre Good

Range [ -small , large] [-large, 0 ]

Today the coordination part of control system in cars for
the longitudinal propulsion is mostly rule based for the

different actuators and the control of the individual actu-
ators is typically done with a PID-controller. The benefits
with that solution is the simplicity and the robustness, but
the performance is not always optimal.

The goal with the paper is to investigate if it is possible
to achieve the same or improved performance with a
more sophisticated control structure, a model predictive
controller (MPC). An MPC combines the possibility to
predict the outcome through an open-loop controller with
the stability of a closed-loop controller and gives the
optimal solution for a finite horizon optimization problem.
Another major benefit of MPC framework is that it can
handles constraints in the control signals and states of the
system in a very good way. The paper contributes with
knowledge in how actuator redundancy should be utilized
for best comfort using model-based control.

Many papers have been written about how to optimize
the coordination of the actuators and find a global mini-
mum using offline optimization methods. In Lorenzo Ser-
rao [2011], Caiying Shen [2011] and Jinming Liu [2008]
dynamic programming (DP) and Pontryagin’s maximum
principle (PMP) algorithms are presented to illustrate the
possible benefits with hybrid electrical vehicles (HEV).

Lorenzo Serrao [2011] and Jinming Liu [2008] have also
compared the offline solutions with equivalent consump-
tion minimization strategy (ECMS) which is an instanta-
neous minimization method and the authors claims that
it is possible to implement in real time.
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An early MPC approach is used in M.J. West [2003] to
control an electric vehicle with multiple energy storage
units. The article also describe how zone control can be
used in the MPC framework when it is desired to let a
variable vary within a given interval. The performance
of an MPC for a HEV is compared with both a DP
and an ECMS approach in H.A. Borhan [2009]. The
conclusion is that the performance is good and there
is several advantages such as it is potentially real-time
implementable and rather easy to tune.

In Chris Vermillion [2007] and Bjarne Foss [2013] model
predictive control allocation (MPCA) is described, an
approach to coordinate the actuators for an overactuated
system when a specific behavior is desired. The focus in
Chris Vermillion [2007] is on how to do this for a system
with different limitations and dynamics for the actuators.
Karin Uhln [2014] is studying how control allocation
can be applied for controling the lateral dynamics for
overactuated vehicles, although the papers don’t handle
any prediction horizon.

In Shengbo Li [2011] it is shown that MPC is used for
adaptive speed control in order to minimize energy con-
sumption without sacrificing tracking performance. The
use of redundant actuator is however not adressed.

1.1 Outline

The paper is organized as follows. In section 2 the mod-
eling of the vehicle and the actuators are presented. The
problem formulation and the MPC algorithm are described
in section 3. Section 4 presents the driving scenario and a
comparison between the result from the developed MPC
and existing PID controller. Finally in section 6 the con-
clusions are presented.

2. MODELING

2.1 Actuator modeling

The controllers internal model of the internal combustion
engine (ICE) is represented by a first order system with
time constant Te from input ue to the output force Feng.
A first order system is not optimal to describing the
combustion engine but is chosen to keep the complexity of
the system down. The dynamic of the combustion engine is
also very dependent on the internal states of the engine and
cannot be modeled with a higher order system that gives
good fit for every case. However we assume that a second
order model will improve the performance. The inertia of
the powertrain, Fpt, is taken into account in the model
as the expression in (2) where Jeng is the inertia of the
engine, i is the transmission ratio and a is the longitudinal
acceleration. The derivation of this is explained in detail
in Lars Eriksson [2014].

Feng =
1

sTe + 1
ue + Fpt,in (1)

Fpt,in = −Jengi
2

rw
a (2)

The friction brake has the ability to convert kinetic energy
to heat energy by friction. The brake system builds up
a hydraulic pressure during braking, which engages the

Table 2. Nomenclature used in the paper.

Aa Cross sectional area of car
Ab Contact area of braking pads
aref Reference signal in acceleration
Cd Aerodynamic drag coefficient
Crr Rolling resistance coefficient
Fair Longitudinal force from air resistance
Fbrake Longitudinal force from brakes
Fdrag Air and rolling resistance
Feng Longitudinal force from engine
Fpt,in Force from powertrain inertia
Fw,in Force from wheels inertia
Froad load Longitudinal force from road load
Froll Longitudinal force from rolling resistance
Fslope Longitudinal force from slope
g Gravity constant
i Transmission ratio
Jeng Inertia in the engine
Jw Inertia in the wheels
jlim Jerk limit
kcone No. of sample before increasing factor
Lb Time delay for brake model
m Mass of car
p Pressure in the braking system
Qcone Increasing cost for reference deviation
Qref Cost for reference deviation
Qref,total Total cost for reference
rb Wheel center to braking pad distance
rw Wheel radius
s Time derivative operator
Tb,down Time constant for brake pressure release
Tb,up Time constant for brake pressure build
Te Time constant for engine model
Ts Sampling time
u Control signal vector
ub Control signal for brake
ub,max Maximum braking force
ub,min Minimum braking force
ue Control signal for engine
ue,max Maximum force from the engine
ue,min Minimum force from the engine
v Longitudinal velocity of car
x State vector
α Slope of road
εj Slack variable on the jerk state
ηe Time delay for the engine (samples)
µ Tire to ground friction coefficient
ρ Density of air
τb Torque generated by the brakes

braking pads to generate a friction force and decelerate
the vehicle. When the system requests less braking force
on the other hand the pressure must be relieved. That is
a significantly faster process than building the pressure.
This is why the brake system is modeled as two separate
processes as in (3). The model will however be kept the
same under one prediction horizon and can only change in
the beginning of each time step.

Fbrake =


e−sLb

sTb,up + 1
ub if aref < a

e−sLb

sTb,down + 1
ub if aref ≥ a

(3)

The logic that determines which system to use is an
estimate on which side of the reference value the actual
acceleration is. If the actual acceleration is higher than
the reference value it is highly probable that the brake,
if used, is going to generate a larger negative torque. For
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Fig. 1. Step response for the combustion engine. The force
from the engine is plotted in blue and the reference
signal in red. The blue dashed line shows the response
from the combustion engine model.

the opposite case it is highly probable that the brakes are
going to be released if used.

To identify the time constants of the first order systems
that approximates the ICE, Te, and the friction brake, Tb,
along with the time delays for the friction brake Lb, step
response experiments are performed on the test vehicle.
The reason a simple first order system without any time
delay is chosen for the combustion engine is that it gives
a sufficiently accurate fit for the nonlinear system and
not adding any unnecessary complexity. For the ICE the
vehicle is allowed to run on the minimum torque keeping
the speed constant. A fixed torque-request is then applied
to the vehicle. A first order system is then fitted to the
torque response. This is shown in Figure 1. The parameter
is identified as Te = 0.1 s.

The same procedure is applied on the friction brake. The
difference is that the vehicle doesn’t have to be in motion,
a brake pressure is applied at standstill. The dynamics
are different when the pressure is building and releasing.
That is why step responses for both cases are made and
analyzed. This is shown in Figures 2 and 3. The parameters
are identified as Tb,upp = 0.1 s and Lb = 0.05 s when
building pressure and Tb,down = 0.05 s and Lb = 0.05 s
when releasing pressure.

2.2 Vehicle modeling

The vehicle is represented by a point mass where the
longitudinal movement is modeled by Newton’s second law
according to (4). The inertia of the wheels is taken into
account in the model in Fw,in where Jw is the inertia of all
four wheels. It is assumed that the actuated longitudinal
force will be significantly less than the maximum available
force due to e.g friction and normal load, hence the tire
longitudinal slip is low such that rw · ω ≈ vx.

mv̇ = Feng + Fbrake + Froad load + Fw,in (4)

Fw,in = −Jw

rw
a (5)

Fig. 2. Step response for the brake when building pressure.
The brake force is plotted in blue and the reference
signal in red. The blue dashed line shows the response
from the brake model.

Fig. 3. Step response for the brake when releasing the
pressure. The brake force is plotted in blue and the
reference signal in red. The blue dashed line shows the
response from the brake model.

All the force components that is non-linear in v by the laws
of physics will be linearized around v = v0, where v0 is the
speed of the vehicle when the linearization is made. The
same linearization will be applied during the prediction
horizon and then update in the next time sample. If
equation (4) is known to be linear in v it can be expressed
in state space form.

The road load is modeled as the linearization of the
expression derived in equation (6).

Froad load = −1

2
ρCdAv

2 − Crrmg −mg sinα (6)

The expression is linearized around v = v0 using the first
order Taylor expansion.

IFAC AAC 2016
June 19-23, 2016. Norrköping, Sweden

523



F̄roadload

∣∣∣∣
v=v0

= Froad load(v0) +
dFroad load

dv

∣∣∣∣
v=v0

(v − v0)

= −1

2
CdAρv

2
0 −mg sin (α)

− Crrmg − CdAρv0 (v − v0)

= C1v + C2

(7)

Where the constants C1 and C2 are

C1 = −CdAρv0

C2 =
1

2
CdAρv

2
0 −mg sin (α)− Crrmg

(8)

The expression in (7) is now linear and can be used when
expressing the full system in a state space form.

All the parts from the internal model is combined to a
state space form. This is done by reshaping (4) when all
the sub models are inserted.

mv̇ =
1

sTe + 1
ue −

Jengi
2 + Jw

rw
v̇+

+
e−sLb

sTb + 1
ub + C1v + C2

(9)

(
m+

Jengi
2 + Jw

rw

)
v̇ (sTe + 1) (sTb + 1)

= (sTb + 1)ue + (sTe + 1) e−sLbub
+ (sTe + 1) (sTb + 1) (C1v + C2)

(10)

To simplify further calculations the constant Cm is defined
as in equation (11).

Cm = m+
Jengi

2 + Jw

rw
(11)

Since s is the Laplace transform of the time derivative
operator, (10) can be rewritten.

Cmv
(3)TbTe + Cmv̈(Tb + Te) + Cmv̇

= Tbu̇e + Tee
−sLb u̇b + ue + e−sLbub

+ TbTeC1v̈ + (Tb + Te)C1v̇ + C1v + C2

(12)

v(3) =
Tb

CmTbTe
u̇e +

Te

CmTbTe
e−sLb u̇b +

1

CmTbTe
ue

+
1

CmTbTe
e−sLbub −

m (Tb + Te) − TbTeC1

CmTbTe
v̈

+
(Tb + Te)C1 − Cm

CmTbTe
v̇ +

C1

CmTbTe
v +

C2

CmTbTe

(13)

The state vector x and the input signal vector u is then
defined as in (14). An advantage with the choice of this
states is that all of them have a straight forward physical
interpretation. The first state is the jerk, the second is the
acceleration and the third is the velocity.

x =

[
v̈
v̇
v

]
u =

[
ue
ub

]
(14)

From (13) a state space model can then be expressed.

ẋ = Ax+Bu+Du̇+ c (15)

where

A =

[
−

Cm (Tb + Te) − TbTeC1

CmTbTe

(Tb + Te)C1 − Cm

CmTbTe

C1

CmTbTe
1 0 0

0 1 0

]
(16)

Table 3. A summary of vehicle specific param-
eters that are needed in the controller.

Parameter Value

vehicle mass (m) 2200 kg
wheel radius (rw) 0.37 m
inertia in the engine (Jeng) 0.25 kg· m2

inertia in the wheels (Jw) 1.2 kg· m2

time constant, engine (Te) 0.1 s
time constant, brake up (Tb,up) 0.1 s
time constant, brake down (Tb,down) 0.05 s
time delay, brake (Lb) 0.05 s

B =
1

CmTbTe
·

1 e−sLb

0 0
0 0

 (17)

D =
1

CmTbTe
·

Tb Tee−sLb

0 0
0 0

 (18)

c =

 C2

CmTbTe
0
0

 (19)

To express this on a standard state space form, without
derivatives on the input signals, a variable substitution is
made. A fictive state vector x′ is defined as

x′ = x−Du (20)

The time derivative of the new state is then
ẋ′ =ẋ−Du̇ = Ax+Bu+ c

= A(x′ +Du) +Bu+ c

= Ax′ + (B +AD)u+ c

(21)

This is now expressed on a state space form

ẋ′ = A′x′ +B′u+ c (22)

where A′ = A and B′ = AD +B.

The controller needs some parameters from the vehicle for
its internal model. These are presented in Table 3. The
parameters mass and wheel radius are not expected to be
correct. The mass will be slightly different every time due
to different fuel levels and load in the car while the wheel
radius will change with different tires and tire pressures.
The parameters that are used in the end are reasonable
estimates that are close enough for the controller to func-
tion as intended. The time constant parameters from the
different systems needs to be extracted from experiments
as described earlier in this section.

3. PROBLEM FORMULATION

When solving an optimization problem the solution will be
optimal for that specific problem formulation if the solver
is allowed to run a large number of iterations and if the
criteria for stopping is set to be very accurate. Since the
computational power is a limited resource it is crucial for
the implementation to work that the optimization problem
is formulated in a computationally efficient way.

The optimization problem needs to be convex to make
sure the globally optimal solution is found (see for example
Stephen Boyd [2004]). For a non-convex problem the solver
may find a locally optimal point but not the wanted
globally optimal solution. Also for the solver to converge
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to a desired solution the problem cant be too flat either.
The optimization problem can be formulated as equation
(23).

minimize
u

N∑
k=0

f(x′, u, k)

subject to Hu ≤ b
(23)

The design of the objective function, f , and the design of
the constraints, H and b is what is going to be the design
of the controller.

3.1 Objective Function

The decision to make here is what behaviors to be put a
cost on in relation to all the behaviors that are considered
to be of interest. These behaviors are listed below.

• How well the reference is followed.
• How much energy is consumed by the actuators.
• How quickly does the actuators signal energy change.
• How well the comfort criterion are fulfilled

A cost will be assigned to each of these properties as a
quadratic cost term in the objective function since all of
these are only dependent on the magnitude of the quantity
and not on the sign.

The cost for deviation for the reference is expressed as
equation (24). Here it is possible to assign a cost to
deviation from the reference signal. Inspired by one of
the methods to improve the stability, the terminal cost
function is inconstant during the time horizon. Unlike
that method with an extra cost on the last sample in the
prediction horizon, the cost for the deviation is increased
by a linear factor for every sample starting at a specified
sample. This results in a smoother behavior compared to
the terminal cost function. The idea is to make sure that
the solver gets a larger freedom early in the prediction
horizon, but later it gets more important to follow the
reference. The parameters that can be changed for tuning
the controller is Qref, Qcone and kcone. Qref is the start
cost for deviations from the reference. Qcone is the linear
increasing factor, for which the cost for deviations from
the reference increases every sample after kcone.

fr(x
′
, u, k) = (ak − aref)

T
Qref,total(ak − aref)

Qref,total(k) =

{
Qref (1 + (k − kcone)Qcone) when k > kcone

Qref when k ≤ kcone

(24)

Compared with other methods like terminal equality con-
straint and contraction constraint Alberto Bemporad
[1999], this method never cause infeasibility and are very
straightforward to implement and tune.

For this system a nonzero control signal is required in most
cases to keep the desired acceleration. Therefore adding a
cost for the signal energy to the objective function, the
result is a trade-off between minimizing the signal energy
and following the reference. By substituting the cost for
the energy to a cost for change in the control signal,
which is described in (25), one can avoid this behavior
and integral action will be achieved.

f∆U = ∆UTQ∆U∆U (25)

Another benefit with this term in the objective function
is that the MPC gets a smoother behavior and it prevents
the signals from become too noisy.

As already mentioned, energy efficiency have become more
crucial for today’s vehicles. For an overactuated vehicle as
the one considered in this paper, where redundancy exists,
it is therefore of great importance to find a solution to the
optimization problem with a desired behavior. In this case
the desired behavior of the controller is one that is not
consuming more energy than needed to achieve the target
behavior of the vehicle.

The method for control allocation is handled. The idea is
to first calculate a desired virtual control signal, uref, and
add the deviation from uref to the objective function as
in (26).

furef
= (u− uref)

TQuref
(u− uref) (26)

To calculate the desired control signal for a stationary
reference to follow is fairly straightforward. To minimize
the energy consumption the brake should only be used
when needed, i.e. the brake should only be used if the
desired deceleration is greater than what the minimum
engine torque and the road load can provide.

uref =


ue = F rw

ub = ub,max
when F rw ≥ ue,min

ue = ue,min

ub = F rw − ue,min
when F rw < ue,min

(27)

F in (27) is the force needed to achieve the required
acceleration and is calculated as in (28) where Froad load

is the rolling resistance and aerodynamic drag and Fpt,in

describing the inertia in the powertrain.

F = maref − Froad load − Fpt,in (28)

3.2 Constraints

A large benefit with the MPC framework is the possibil-
ities to include constraints on the control signals and the
states in the optimization problem.

The constraints on the control signals may seems natural.
The brake can never generate a propulsive force while the
largest force it can generate is estimated as the friction
coefficient times the normal force. For best performance
it is assumed that the vehicle has a friction estimator on
board. This is summarized in (29).

−µmg ≤ ub ≤ 0 (29)

For the powertrain the minimum and maximum torque
that can be generated is calculated from a map depending
on the engine speed. The map is visualized in figure 4.

One factor that contribute to discomfort for the driver is
the derivative of the acceleration; jerk. For that reason
there is a limit for the maximum level of jerk that are
allowed. Unlike the constraints on the control signals a
constraint on the jerk may not always be possible to fulfil.
If the states initial violates the constraints it may not be
possible to find a feasible solution given the dynamics of
the system.

The solution to this is to use soft constraints. The soft
constraints are used to ensure that a feasible solution exist.
By adding a slack variable as in (31) and add a cost for
the size of εj . To optimize the problem formulation and
make sure that the slack variable only is used when the
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Fig. 4. The map that is used for setting the constraints
on the engine control signals. The maximum and
minimum torque is a function of the engine speed.

constraints already are violated, two different solvers are
used as shown in (30). Otherwise the solver might find
a solution to the optimization problem that violate the
constraints even when it’s not needed.

fj =

{
fj,hard constraints when |j| ≤ jlim
fj,soft constraints when |j| > jlim

(30)

− (jlim + εj) ≤ j ≤ jlim + εj
εJ ≥ 0

(31)

3.3 Implementation

When implementing the MPC CVXGEN was used chosen
to solve the optimization problem, described in Jacob Mat-
tingley [2012]. CVXGEN is a web based tool that lets the
user enter the optimization problem in a custom language.
The syntax of language is very strict to ensure that the
problem stated is a convex problem. The outcome of CVX-
GEN is a generated high speed solver optimized for the
specific optimization problem that has been stated. The
generated solver is available in both C code and Matlab
code which allows the controller to run both in simulation
and real time applications.

4. DRIVING SCENARIOS AND SIMULATION
RESULTS

This section describes the driving scenario used to evaluate
the controllers and compares simulation results between
the MPC and PID controllers.

4.1 Scenario description

Consider driving in a multi-lane road as a host vehicle (H),
following a target vehicle (T) using ACC. The controller
will try to follow the estimated acceleration of T to keep
a desired distance to it. This driving scenario considers
another vehicle cutting in between the target vehicle,
called cut in target (CIT), and the target vehicle from
another lane. At some point the CIT will become the new
T and the distance is changed instantly. This will result
in a step in the acceleration reference shown in Figure

Fig. 5. In the start of the driving scenario the host
vehicle is driving in a lane following a target vehicle
when suddenly a cut in target is entering the lane
between them. The cut in target has become the new
target vehicle and the distance to the target changes
momentarily.

Fig. 6. The resulting request in acceleration in the driving
scenario. The cut in target becomes the new target at
time t = 2 and it has reached the desired distance at
time t = 4.

6. Figure 5 is a visualization of the scenario where it is
obvious how the distance changes instantly.

4.2 Simulation results

The driving scenario is simulated using the developed
controller and presented in figure 7. The result is compared
with the performance of a PID controller that exists in a
series production premium vehicle.

The tests are performed with the same step sizes, jerk lim-
its, initial states and a fixed gear to get a fair comparison.
The steps sizes are 0.5 m/s

2
, the jerk limit is set to jlim =

1,m/s
3

and the initial state is set to x =

(
30

3.6
0 0

)T

.

These are chosen such as the expected behavior of the
controller is that both actuators will need to be used.

The prediction horizon used in the simulations was chosen
large enough to cover the slowest dynamics in the system
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Fig. 7. The simulation result, the MPC with solid line and
the PID with dashed line. The first plot is the vehi-
cle velocity, the second is the requested acceleration
plotted together with the resulting acceleration. In the
third plot are the jerk and the jerk limits.

and increase the stability. In this case the prediction
horizon was 1.25 seconds.

When verifying the controller a more advanced model than
the internal model in the MPC was used as plant model.
The dynamics used for the brakes and powertrain was of
higher order systems with nonlinearities introduced to get
a more realistic result. Instead of using the model in (6)
a map was used to model the road load which cause some
bias that most likely will occur if implementing in a car.

In figure 7 the plots shows the velocity, acceleration
compared to reference and jerk with limits while figure
8 and 9 shows control signals and actual output from the
actuators. The blue represent the control signal to the ICE
and the red is the control signal to the friction brake. The
dotted lines in each colour shows the actual output from
each actuator. Figure 8 present the result from the PID
and in figure 9 is the result from the MPC. In figure 7 are
the two controllers compared.

When comparing the MPC with the PID in scenario there
are obvious differences in the control signal. In figure 8
it can be seen that the control signals is controlled by a
rule-set, specially when observing the control signal to the
ICE. When the change in reference comes it directly sends
the minimum force as control signal. In the MPC in Figure
9 on the other hand it has a different shape.

When analyzing the result on the states it can be seen
that the MPC takes more advantage on the jerk limits

Fig. 8. The simulation result using the PID. The plot shows
the requested force from the two actuators with the
solid lines and the dotted lines are the measured force.
The blue lines represent the force from the ICE and
the red represent the force from the brakes.

then the PID. Followed by that is that the acceleration
decreases faster in the MPC resulting in a lower final
velocity. Since the MPC gives larger speed reductions it
is also expected that the energy consumption is increased.
Furthermore, the MPC uses larger friction brake forces
and hence more actuator wear is expected. However, with
the MPC framework this can be handled by modifying the
jerk constraints. In this case lower jerk constraint would
result in lower energy consumption.

To summarize the scenario it can be said that the MPC
is better on using the jerk limit to maximize the perfor-
mance. There is a problem with a steady state error that
can be minimized by a better tuning of the controller. The
acceleration is still closer to the reference for the MPC
than the PID during the step, which is the important part
of this scenario.
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Fig. 9. The simulation result using the MPC. The plot
shows the requested force from the two actuators with
the solid lines and the dotted lines are the measured
force. The blue lines represent the force from the ICE
and the red represent the force from the brakes.

5. CONCLUSIONS

The MPC has been evaluated by comparison to the PID
implementation similar to the one implemented in today’s
vehicles to answer the problem formulation. The main
question in the problem formulation is whether it is
possible or not to achieve similar or better performance
using the MPC than the PID controller. The answer to
this question is yes. However, there are several points that
needs to be considered if the question had been if its a
motivated switch.

A drawback with the MPC is that it is very dependent
on a good model. If the internal model in the controller
differs too much from reality the performance is quickly
degraded. For example the controller might easily differs
slightly from the reference when keeping zero acceleration
if the internal models for air and rolling resistance differs
too much from the plants corresponding models. In reality
the rolling resistance is a parameter that is very difficult
to get an accurate estimate of. Another example is that
the MPC sometimes violates the jerk limits due to model
errors. The advantage of the MPC is that it results in a
faster response than the PID does in general. As soon as
step in reference is known for the MPC it can prepare how
to get there as fast as possible during its prediction horizon
and will therefore be faster.

When summarizing the advantages and disadvantages of
the MPC as it performs today, conclusions can be made
that the MPC outperforms the PID on fast events like
the one in the scenario where a rather fast deceleration is
needed and still fulfil the comfort criteria. In longer events,
when a constant acceleration needs to be kept the PID is
a better choice since the correctness of the model becomes
even more important.

To tackle engine model uncertainties mentioned in the
paper it is suggested for future work to consider alternative
engine models and robust MPC solutions. We also suggest
to verify the developed MPC controller in a real world car.

In this paper the focus have been on comfort and perfor-
mance. By extend the model and the constraints or use a
more advanced control allocation other areas could also be
considered for future work such as actuator wear and fuel
consumption.
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