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Abstract: A sequential test selection algorithm is proposed which updates the set of active test quantities
depending on the present minimal candidates. By sequentially updating the set of active test quantities,
computational time and memory usage can be reduced. If test quantities are generated on-line, a
sequential test selection algorithm gives information about which test quantities that should be created.
The test selection problem is defined as an optimization problem where a set of active test quantities
is chosen such that the cost is minimized while the set fulfills a required minimum detectability and
isolability performance. A quantitative diagnosability measure, distinguishability, is used to quantify
diagnosability performance of test quantities. The proposed test selection algorithm is applied to a DC-
circuit where the diagnosis algorithm generates residuals on-line. Experiments show that the sequential
test selection algorithm can significantly reduce the number of active test quantities during a scenario
and still be able to identify the true faults.

Keywords: Fault detection and isolation, Sequential test selection, Quantitative diagnosability analysis,
Model-based diagnosis.

1. INTRODUCTION

A diagnosis algorithm uses test quantities to detect and isolate
faults present in the system. An overview of a diagnosis algo-
rithm is shown in Fig. 1. If different test quantities are sensitive
to different sets of faults a fault isolation algorithm can be
used to isolate and identify which faults that are present given
the alarmed test quantities, see de Kleer and Williams (1987).
Often, different sets of faults, candidates, are consistent with
the set of alarmed tests. The goal is to have a set of tests which
can identify the present faults.
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Fig. 1. A diagnosis algorithm consists of a set of test quanti-
ties and a fault isolation algorithm to compute (minimal)
candidates.

Since different test quantities are good at detecting and isolating
different sets of faults, not all available test quantities are nec-
essary to be active during a scenario in the diagnosis algorithm.
By choosing different sets of test quantities depending on the
present candidates, the total number of active test quantities can
be reduced while still having sufficient diagnosability perfor-
mance.

A sequential test selection algorithm becomes interesting, for
example, if there exists a large number of available test quan-

tities or if new test quantities should be automatically selected
and generated on-line. To use all available test quantities during
a scenario could be too computationally expensive. Therefore, a
smart test selection algorithm can be used to reduce the number
of active test quantities while maintaining a satisfactory diag-
nosability performance. As an example, a system considered
here is a re-configurable DC-circuit where a number of relays
are used to distribute power from three batteries to two load
banks. A number of sensors are used to measure voltages and
currents in the circuit. The DC-circuit is a part of the diagnosis
test bed ADAPT which is described in Poll et al. (2007), see
Fig. 2. The number of test quantities that can be generated
based on a model of the DC-circuit is large because of high
redundancy in the system.

A quantitative diagnosability measure called distinguishability
which is introduced in Eriksson et al. (2011b) and Eriksson
et al. (2011a) is used when implementing the diagnosis algo-
rithm to automatically generate residual generators with max-
imum fault to noise ratio. Distinguishability will be used to
quantify detectability and isolability performance of the resid-
ual generators in order to choose the residual generators which
fulfills a required quantitative diagnosability performance.

There are other works where sequential diagnosis are used to
improve fault isolation, for example de Kleer and Williams
(1987). In Krysander et al. (2010), a sequential test selection
algorithm, FlexDX, updates the active set of test quantities dur-
ing run-time to isolate the faults. In Svärd (2012), a greedy test
selection algorithm is used off-line to find a set of test quantities
which fulfills a required single fault isolability performance. In
these previous works, only deterministic fault detectability and
isolability performance are considered. In this work, a measure
for quantitative diagnosability performance is used to quantify
the performance of a test quantity when choosing the active set
of test quantities.



Fig. 2. Schematics of the diagnosis test bed ADAPT. The dark
area to the left represents the three batteries and the two
dark areas to the right are two load banks. Sensors in the
circuit are marked as circles. The DC-circuit considered in
this work is inside the dotted line.

First, the problem formulation is presented in Section 2. Then
some previous results regarding distinguishability are presented
in Section 3 and a generalization of distinguishability for mul-
tiple faults is presented in Section 4. A sequential test selection
algorithm is presented in Section 5. Some experimental results
when applying the test selection algorithm in a diagnosis al-
gorithm for a DC-circuit are shown in Section 6. Then some
tuning aspects of the test selection algorithm are discussed
and compared to other works in Section 7 and finally some
conclusions are presented in Section 8

2. PROBLEM FORMULATION

The purpose here is to develop a sequential test selection algo-
rithm to automatically compute which available test quantities
that should be active in the diagnosis algorithm during run-time
depending on the present candidates. A candidate is a hypoth-
esis about the system state given the alarmed test quantities,
de Kleer and Williams (1987).

A candidate represents a set of faults d = {f1, f2, . . . , fl}, that
is consistent with the alarmed test quantities. If d is a candidate
where no subset d′ ⊂ d is a candidate then d is called a minimal
candidate.

Let T = {T1, T2, . . . , Tn} be the set of all available test
quantities T . Each test quantity T is sensitive to a set of faults
fi. The cost to use a test quantity Ti is defined as c(Ti). The
cost could, for example, be the computational cost of generating
and using Ti. Let D be a set of minimal candidates di, i.e.,
D = {d1, d2, . . . , dk}. We want to find a cheapest set of
tests T ∗ ⊆ T where each minimal candidate d ∈ D can be
rejected by at least one test quantity T ∈ T ∗. The test selection
problem can be formulated as a binary integer programming
(BIP) problem,

min
∑
T∈T

c(T )xT

s.t.
∑

T∈Edi,dj

xT ≥ 1,∀Edi,dj : dj ∈ D

xT = {0, 1},∀T

(1)

where Edi,dj ⊆ T contains a set of tests which can reject dj
for a new minimal candidate di = {fa} ∪ dj where fa 6∈ dj
and xT is a binary variable determining whether a test quantity
T should be active or not. The solution T ∗ contains all tests
T ∈ T where xT = 1.

To assure that each test T ∈ Edi,dj have satisfactory perfor-
mance, distinguishability is used to quantify the diagnosability
performance for each test T . Each set Edi,dj can be chosen such
that, for example, only test quantities which have a sufficiently
high distinguishability when rejecting dj for di are included.

3. BACKGROUND THEORY

Here, some useful results from Eriksson et al. (2011b) and
Eriksson et al. (2011a) are recalled. A definition of distin-
guishability and some useful properties are presented here
which will be used for quantifying detectability and isolability
performance. There are also some results of how to generate
residual generators with maximum fault to noise ratio, FNR.
For more details and proofs, the reader is referred to previous
mentioned papers.

3.1 Distinguishability

The models considered here are discrete-time linear models
written in the form

Lz = Hx+ Ff +Ne (2)
where z are known signals, x are unknown signals, f are fault
signals and e is Gaussian distributed with known co-variance
matrix Λ. Discrete-time descriptor models when observed for
a given time interval n can be written as (2), see Eriksson
et al. (2011a). Thus, model dynamics and fault time profiles
θ = (θ(t− n+ 1), θ(t− n+ 2), . . . , θ(t))

T , describing how
a fault changes over the time interval can be considered. It is
assumed that the model (2) fulfills

(H N) is full row-rank. (3)

The model (2) is written in an input-output form, see Polderman
and Willems (1998), by multiplying with NH from the left,
where the rows of NH is an orthonormal basis for the left null-
space of H , which gives

NHLz = NHFf +NHNe. (4)
If the linear model (2) fulfills assumption (3) the co-variance
matrix of the vector NHNe will be non-singular.

To be able to quantify diagnosability performance, a stochastic
representation of different fault modes is required. Let τ =
NHLz, then let p(τ, µ) denote a multivariate probability den-
sity function where µ(θ) = NHFiθ is the mean of τ where Fi
is the ith row of F corresponding to fault mode fi.

Let Θi denote the set of all fault time profiles θ of fault fi = θ
which could be explained by fault mode fi. Each fault mode can
thus be described by a set of pdf’s p(τ, µ) given the following
definition.



Definition 1. Let Zfi denote the set of all pdf’s, p(τ, µ), for
all fault time profiles θ ∈ Θi, describing τ which could be
explained by the fault mode fi, i.e.,

Zfi = {p(τ,NHFiθ)|∀θ ∈ Θi} . (5)
�

Definition 1 is a stochastic counterpart to observation sets in the
deterministic case, see Frisk et al. (2009). A specific pdf given
that fi = θ is denoted piθ = p(τ,NHFiθ) and pNF = p(τ, 0̄)
corresponds to the no fault case.

Now, the measure for quantitative diagnosability performance
can be defined by using the Kullback-Leibler divergence,
K(p‖q) =

∫∞
−∞ p(ν) log p(ν)

q(ν)dν, see Kullback and Leibler
(1951), as follows.
Definition 2. (Distinguishability). Given a sliding window model
(2), distinguishability Di,j(θ) of a fault fi with a given fault
time profile θ from a fault mode fj is defined as

Di,j(θ) = min
pj∈Zfj

K
(
piθ‖pj

)
(6)

where the set Zfj is defined in Definition 1. �

The definition of distinguishability fulfills the following two
propositions.
Proposition 1. Given a window model (2), a fault fi = θ ∈ Θi

is isolable from a fault mode fj if and only if
Di,j(θ) > 0 (7)

�
Proposition 2. If 0̄ is a boundary point of Θj , where Θj = Rn\
{0̄}, for a fault mode fj then

Di,j(θ) ≤ Di,NF(θ). (8)
�

It is assumed, without loss of generality, that
cov (NHNe) = I (9)

where I is the identity matrix, see Eriksson et al. (2011b). Since
the noise in (2) is Gaussian distributed, distinguishability can be
computed explicitly given the following theorem.
Theorem 3. Distinguishability for a sliding window model (2)
with Gaussian distributed stochastic vector e, under assumption
(9), is given by

Di,j(θ) =
1

2
‖N(H Fj)Fiθ‖

2 (10)

where the rows of N(H Fj) is an orthonormal basis for the left
null space of (H,Fj). �

3.2 Relation of residual generators

To design a residual generator r isolating faults from fault mode
fj , multiply (2) from the left with γN(H Fj) where γ is a row-
vector to obtain

r = γN(H Fj)Lz = γN(H Fj)Ff + γN(H Fj)Ne. (11)
The residual generator (11) is a scalar model in the same form
as (2). Therefore, distinguishability can be computed for the
residual generator, which is denoted Dγi,j(θ), where the su-
perscript γ is used to distinguish from when computing dis-
tinguishability for the model. The connection between distin-
guishability and FNR of r is given by the following theorem,
which also gives an alternative way of computing distinguisha-
bility for a scalar model.

Theorem 4. A residual generator (11), for a model (2) where e
is Gaussian distributed under assumption (3), is also Gaussian
distributed N (λ(θ), σ2) and

Dγi,j(θ) =
1

2

(
λ(θ)

σ

)2

where θ is the fault time profile of a fault fi, and λ(θ)/σ is the
fault to noise ratio with respect to fault fi in (11).

An important connection between Dγi,j(θ) and Di,j(θ) is given
by the inequality described in the following theorem.
Theorem 5. For a model (2) under assumption (9), an upper
bound for Dγi,j(θ) in (11) is given by

Dγi,j(θ) ≤ Di,j(θ)
with equality if and only if γ and N(H Fj)Fiθ are parallel. �

Theorem 5 shows that Di,j(θ) gives an upper limit of the FNR
which can be achieved by any residual generator (11). Note
that if a fault fi = θ is isolable from a fault mode fj , then
the theorem shows how to design a residual generator with
maximum FNR by choosing γ = (N(H Fj)Fiθ)

T . This will
be used when automatically generating new residual generators
by the sequential test selection algorithm described in the
following section.

4. GENERALIZATION OF DISTINGUISHABILITY

The definition of distinguishability in Section 3 only considers
fault modes containing single faults. Here, it is also interesting
to quantify how easy it is to isolate a fault fa from several
faults dj . This corresponds to quantifying how easy it is to
reject a minimal candidate dj for a new minimal candidate di =
{fa} ∪ dj . In order to handle fault modes with multiple faults a
generalization of the previous definition of distinguishability is
presented here. Most results presented here can be derived in a
similar way as for the single fault case in Section 3.

First, a generalization of the sets Zfj in Definition 1 is defined
by considering combinations of different fault time profiles
for each fault in the fault mode. Consider all faults present
given a fault mode dj and let θ̄ ∈ Θdj denote a matrix θ̄ =
(θ1, θ2, . . . , θk) where each column corresponds to a fault time
profile f = θ for each fault f ∈ dj . Then, a generalization of
Definition 1 can be made as follows.
Definition 3. Let Zdj denote the set of all pdf’s, p(τ, µ), for all
combination of fault time profiles θ̄ ∈ Θdj , describing τ which
could be explained by the fault mode dj ,

Zdi =
{
p(τ,NHFdj θ̄)|∀θ̄ ∈ Θdj

}
(12)

where Fdj contains the rows of F corresponding to the faults
f ∈ dj . �

Recall that paθ = p(τ,NHFaθ). Since isolating a fault fa from
all faults dj corresponds to rejecting dj for di = {fa} ∪ dj , a
generalization of Definition 2 can be formulated as follows.
Definition 4. (Distinguishability of multiple faults). Given a slid-
ing window model (2), distinguishability Ddi,dj (θ) of a fault
fa 6∈ dj where di = {fa} ∪ dj with a fault time profile θ from
a fault mode dj with multiple faults is defined as

Ddi,dj (θ) = min
pj∈Zdj

K
(
paθ‖pj

)
(13)

where the set Zdj is defined in Definition 3. �



In the Gaussian case it follows from Theorem 3 that (13) can be
computed explicitly using

Ddi,dj (θ) =
1

2
‖N(H Fdj

)Faθ‖2 (14)

where Fdj are the rows of F corresponding to the faults in dj .

Proposition 1 holds given the new definition of distinguishabil-
ity and a generalization of Proposition 2 can be formulated as
follows.
Proposition 6. Let dk ⊂ dj and fa 6∈ dk, dj . Then let dl =
{fa} ∪ dk and di = {fa} ∪ dj , then the following inequality
holds.

Ddi,dj (θ) ≤ Ddl,dk(θ). (15)
�

The proposition states that it performance always decreases
when isolating a specific fault from an increasing set of faults.
If we want to generate a residual generator which is sensitive
to few faults then a residual generator with maximum FNR can
never have higher FNR than if we would create an residual with
maximum FNR which is sensitive to a super-set of faults.

To design a residual generator which is sensitive to a fault fa
but no fault f ∈ dj multiply (2) from the left with γN(H Fdj

) to
obtain

γN(H Fdj
)Lz = γN(H Fdj

)Ff + γN(H Fdj
)Ne (16)

Theorem 4 and Theorem 5 can be generalized to the case
of multiple faults. As follows from Theorem 5, a residual
generator with maximum FNR isolating a fault fa = θ from
the faults dj is designed by choosing γ = (N(H Fdj

)Faθ)
T .

5. SEQUENTIAL TEST SELECTION

Here, an algorithm for sequential test selection is presented.
The algorithm updates the set of active test quantities in the
diagnosis algorithm given the present minimal candidates. The
algorithm applies the results in Section 4 to generate residual
generators and to quantify their diagnosability performance.
Finally, the sequential test selection algorithm is evaluated
using an academic example.

5.1 Principles

A diagnosis algorithm computes minimal candidates consistent
with the alarmed test quantities, see Fig. 1. New test quantities
are selected which are able to reject any present minimal
candidates and fulfills a required minimum distinguishabiliy.
Each time one or more test quantities alarms, D is updated and
a new set of test quantities is selected.

The fault isolation algorithm used here is described in de Kleer
and Williams (1987) and updates the set of minimal candidates
each time new test quantities alarms. A rejected minimal can-
didate dj is replaced by new minimal candidates di such that
di = {fa} ∪ dj where fa 6∈ dj . If any of the new minimal
candidates is a super-set of any other minimal candidate then
the new candidate is removed. Note that it is assumed here, that
the available test quantities are designed such that the risk of
false alarms is minimized.

To be able to reject a minimal candidate dj for another candi-
date di = {fa} ∪ dj requires a test quantity which is sensitive
to fa but not any f ∈ dj , see de Kleer and Williams (1987).

∅

{f1} {f2} {f3}

{f1, f2} {f1, f3} {f2, f3}

{f1, f2, f3}

Fig. 3. A lattice set representation of all possible candidates for
a system with three possible faults where ∅ corresponds to
the fault-free case. If D = {{f1}, {f2}} then tests, able
to reject {f1} for {f1, f2} and {f1, f3} and able to reject
{f2} for {f1, f2} and {f2, f3}, are needed to improve D.

The following example shows how a lattice set representation
of all possible candidates can be used to visualize what kind of
isolablity performance that is required by the active set of test
quantities.
Example 1. Consider a system with three possible faults f1,f2,
and f3. All possible candidates can be described using a lattice
set, see Fig. 3. Each node is a candidate where all nodes at each
level have the same cardinality. Each node have arrows going
to all nodes at the next level which are super-sets of the first
node. For example from node {f1} goes arrows to {f1, f2} and
{f1, f3}. The bottom node represents the fault-free case.

If the present minimal candidates are {f1} and {f2}, then tests
need to be activated with the capability of rejecting {f1} for
each of the candidates {f1, f2} and {f1, f3}, and rejecting
{f2} for each of the candidates {f1, f2} and {f2, f3} to be
able to refine the candidates. This is visualized in Fig. 3 by
thicker arrows going from the present minimal candidates to
new possible minimal candidates if a new test quantity alarms.
�

Sequentially updating the minimal candidates in the fault iso-
lation algorithm requires an active set of test quantities able to
reject each dj ∈ D for each di = {fa} ∪ dj where fa 6∈ dj . By
using the results in Section 3, the set of active test quantities can
be selected and generated for each minimal candidate dj ∈ D
if there exists a test quantity in the set which have maximum
distinguishability, or fulfills a minimum required distinguisha-
bility, when rejecting that minimal candidate dj .

5.2 Algorithm

In the previous subsection a discussion was made regarding
which types of test quantities to use depending on the present
set of minimal candidates D. How well the present faults can
be identified, depends on which test quantities T ∈ T that are
active in the diagnosis algorithm.

Let Ei,j contain each test quantity T ∈ T which can reject
dj for di, where di = {fa} ∪ dj and fa 6∈ dj , and fulfills
a minimum required distinguishability. If there exists at least
one test which is able to reject a minimal candidate dj for
a new minimal candidate di with at least minimum required
distinguishability then Ei,j 6= ∅. Otherwise if Ei,j = ∅, then dj
can not be rejected for di.



The sequential test selection algorithm is summarized in the
following steps.

I Initialize the set of minimal candidates, D = ∅.
II Solve (1) given D to compute a new set of test quantities.

III Replace the previous set of active test quantities by the new
set of test quantities.

IV Run the new set of test quantities until a test alarms.
V Update D given the alarmed test quantities.

VI Return to step II.

The optimization problem (1) is a minimum hitting set problem
which is NP-hard, see Moret and Shapiro (1985), but there
exists many heuristic search methods to find a solution, see
for example de Kleer (2011) and references. The following
example considers a small system and is used to describe how
the sequential test selection algorithm updates the set of active
test quantities as the minimal candidates are updated.
Example 2. Consider the system with three possible faults.
Here, a diagnosis algorithm applying the sequential test selec-
tion algorithm is designed to detect and isolate faults while
minimizing the number of active tests, i.e., c(T ) = 1 in (1),
∀T ∈ T . Assume that there are seven available test quantities,
T = {T1, T2, . . . , T7} where the detectability performance of
each test quantity and fault is quantified using distinguishabil-
ity, see Table 1. First in the considered fault scenario, a fault f1
enters the system and then later another fault f3 also enters the
system.

When choosing each set Edi,dj , the performance of each test
quantity is chosen to fulfill a required minimum distinguisha-
bility. In this example, we choose that if the cardinality of di is
1 then distinguishability should be at least 2.0, if the cardinality
of di is 2 then distinguishability should at least be 1.0, and if the
cardinality of di is 3 then distinguishability should at least be
0.5. Based on the distinguishability of the test quantities given
in Table 1, the sets will be
E{f1},∅ = {T1, T2, T3}, E{f2},∅ = {T1},
E{f3},∅ = {T1, T2}, E{f1,f2},{f1} = {T4},
E{f1,f3},{f1} = {T4}, E{f1,f2},{f2} = ∅,
E{f2,f3},{f2} = {T5}, E{f1,f3},{f3} = {T3},
E{f2,f3},{f3} = ∅, E{f1,f2,f3},{f1,f2} = {T5},
E{f1,f2,f3},{f1,f3} = {T7}, E{f1,f2,f3},{f2,f3} = {T6}. (17)

Note that some sets are empty, for example E{f1,f2},{f2} = ∅
because there are no test quantities which are sensitive to f1 but
not to f2 with sufficiently high distinguishability.

When the diagnosis algorithm is initialized the only minimal
candidate is the empty set, i.e., D = {d0} where d0 = ∅. The
first set of active test quantities is the solution to the problem

Table 1. The performance of each test is quantified
using distinguishability. Distinguishability of a test
Ti detecting a fault fj = θ is written in position

(i, j).

f1 f2 f3
T1 2.5 2.4 2.0
T2 2.2 1.5 2.3
T3 2.0 0.8 0
T4 0 1.3 1.5
T5 0 0 1.2
T6 0.5 0 0
T7 0 0.6 0

min

7∑
i=1

xi

s.t. x1 + x2 + x3 ≥ 1, (E{f1},∅)
x1 ≥ 1, (E{f2},∅)
x1 + x2 ≥ 1, (E{f3},∅)
xi = {0, 1}, i = 1, 2, . . . , 7.

The optimal solution is x1 = 1, and xi = 0,∀i 6= 1, which
means that only T1 is activated. Then a fault f1 enters the
system and T1 alarms. The new minimal candidates are D =
{d1, d2, d3} where d1 = {f1}, d2 = {f2}, and d3 = {f3}. To
update the set of test quantities, the following problem is solved

min

7∑
i=1

xi

s.t. x4 ≥ 1, (E{f1,f2},{f1})
x4 ≥ 1, (E{f1,f3},{f1})
x3 ≥ 1, (E{f1,f3},{f3}) (18)
x5 ≥ 1, (E{f2,f3},{f2})
xi = {0, 1}, i = 1, 2, . . . , 7.

Note that E{f1,f2},{f2} and E{f2,f3},{f3} are empty sets and
therefore not included in (18). The new set of active test
quantities are T3, T4, and T5. Later T3 alarms and the remaining
minimal candidates are D = {d1, d2}. The corresponding new
set of active test quantities is T4 and T5. Since only f1 is
present in the system and there is no test quantity which have
sufficient performance to reject the other candidate {f2} for
{f1, f2}, {f1} can not be isolated from {f2}. Note that by using
another selection criteria when defining each set Edi,dj could let
E{f1,f2},{f2} contain T6 which is sensitive to f1 but not f2.

Later a fault f3 also enters the system which first results in that
T4 alarms. The new minimal candidates becomesD = {d2, d4}
where d4 = {f1, f3}. The corresponding new activated test
quantities are T5 and T7. Later T5 alarms which replaces d2
with d5 = {f2, f3} and activates the test quantities T6 and T7.
Finally T6 alarms which removes d5 since the new candidate
{f1, f2, f3} is a super-set of d4 which is the true and remaining
candidate. �

The properties of each set in (17) can be visualized using the
lattice in Fig. 3. If Edi,dj = ∅ then there exists no test quantity
which have sufficiently high distinguishability to reject dj for
di, see Table 1. Each set Edi,dj is related to an arrow from dj
to di, see Fig. 4. All non-empty sets Edi,dj are represented by
thicker arrows.

6. CASE STUDY: DC CIRCUIT

The sequential test selection algorithm presented in Section 5 is
applied to a DC-circuit. The DC-circuit is a part of the diagnosis
test bed ADAPT, see Poll et al. (2007). The analyzed system is
similar to the circuit analyzed in Gorinevsky et al. (2009) except
that some additional faults are included here while outputs and
faults in batteries and loads are unknown and not considered.

6.1 System

The system contains 19 sensors measuring voltages and cur-
rents in the circuit and 12 sensors measuring the positions of
the relays. The number of faults included in the model is 38,
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Fig. 4. A lattice set representation of all possible candidates for
a system with three possible faults. The set at each arrow
represents which test quantities that are able to reject dj
for di and fulfills a specified distinguishability criteria.

both relay faults and sensor faults. Not all faults are detectable
because there are not enough sensors and some parts of the
circuit are assumed unknown, e.g., the power consumption of
the loads and the output from the batteries. Some faults are not
fully isolable from each other because several faults affect the
same part of the system.

A model of the DC-circuit has been developed by formulating
the Sparse Tableau Analysis (STA) equations, see Gorinevsky
et al. (2009). Model uncertainties have been included as i.i.d.
Gaussian measurement noise and the faults are modeled as
additive signals. The model of the DC-circuit is linear and static
and is written in the form (2) where n = 1.

6.2 Diagnosis algorithm

The implemented diagnosis algorithm applies the result from
Theorem 5, i.e., how to generate residuals with maximum FNR,
to automatically design and generate residuals during run-time.
One problem when sequentially updating the set of active test
quantities is how to find residuals which have sufficiently high
distinguishability given the present minimal candidates. When
choosing which residual to generate the inequality (15) is used.
Based on the inequality, residuals should be generated where
as few faults are decoupled as possible while still being able
to reject dj for di to maximize distinguishability. Residuals
with maximum distinguishability can be generated, using the
result in Section 4, by considering each of the present minimal
candidates. As the minimal candidates are updated, new tests
with maximum distinguishability are automatically generated.

The distinguishability criteria when selecting the sets Edi,dj
are such that each set Edi,dj contains the residual with highest
distinguishability when rejecting dj for di. Also, if there are
more residuals able to reject dj for di, they are included in
Edi,dj if they fulfill a minimum required distinguishability.

In this implementation, when a new set of active residuals is
selected the residuals are activated when the next sample of
data is received from the system. This implementation has been
chosen to visualize how the number of active residuals changes
each time one or more residuals alarms. Note that this way of
implementation results in a delay in the fault isolation process
because a fault could be isolated faster if new residuals are used
directly on previous data samples, see Krysander et al. (2010).
Such a change in the implementation can easily be made and
do not affect the sequential test selection algorithm.
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Fig. 5. The number of active residuals during a scenario where
a relay gets stuck open, f10, occurs at 159 s. The total
number of active residuals during the scenario is 64.
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Fig. 6. The number of active residuals during a scenario where
a relay gets stuck open, f10, occurs at 159 s. The re-
quired minimum distinguishability for each residual is
lower compared to the result in Fig. 5 resulting in fewer
active residuals during the scenario. The total number of
active residuals during the scenario is 41.

Here, the optimization problem (1) is solved by using a simple
greedy test selection algorithm to find a solution. The greedy
search algorithm iteratively picks the residual with maximum
distinguishability in each set Edi,dj if no other residual in the
set is already selected.

6.3 Evaluation

The sequential test selection algorithm described in section 5.2
is evaluated using a number of different test scenarios. In the
first scenario, a relay breaks, f10, at 159 s. The number of
active residuals at any time during the scenario is shown in
Fig. 5. In the first evaluation, residuals are included in Edi,dj if
their corresponding distinguishability is higher than 0.5, which
corresponds to FNR = 1 if the fault amplitude is 1. Note that
if only the residuals which have maximum distinguishability
in each set Edi,dj is active from the start the number of used
residuals would exceed 370.

The total number of used residuals is 64 but the maximum
number of active residuals is mostly below 30, except right after
the fault is detected where the number of active residuals rises
to almost 40.

If the required distinguishability is chosen lower, for example
0.045 (FNR = 0.3), the number of active residuals used
during the scenario is reduced which is shown in Fig. 6. The
number of active residuals are less than 15 most of the time
and less than 25 when the fault is detected. The total number of
generated residuals during the whole scenario is 41.

The final minimal candidates for the two choices of minimum
distinguishability are in this case equal and are shown in Fig. 7.



Fig. 7. The final minimal candidates for the first scenario given
by the diagnosis algorithm, sorted by cardinality. The final
candidates are in this case the same for both choices of
minimum required distinguishability.
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Fig. 8. The number of active residuals during a scenario where
two sensors fail, f24 and f35, occurs at 168 s. The total
number of active residuals during the scenario is 54.

0 50 100 150 200

10

20

30

40

50

Fault

t [Time]

#
 o

f 
a
c
ti
v
e
 r

e
s
id

u
a
ls

Fig. 9. The number of active residuals during a scenario where
two sensors fail, f24 and f35, occurs at 168 s. The re-
quired minimum distinguishability for each residual is
lower compared to the result in Fig. 8 resulting in fewer
active residuals during the scenario. The total number of
active residuals during the scenario is 40.

Each row represent a minimal candidate and the only candidate
of minimum cardinality, {f10}, is also the correct isolated fault.

In the second scenario two sensor faults, one voltage sensor
f35 and one current sensor f24, occurs simultaneously. The
diagnosis algorithm have been run twice, first with minimum
required distinguishability chosen to be 0.5 and the second time
to be 0.045. The number of active residuals during the first run
is shown in Fig. 8. The total number of generated residuals is
54 and the number of active residuals is below 30 except right
after the faults are detected.

In the second run the number of active residuals is reduced to
12 during the whole scenario except right after the faults are
detected. The total number of generated residuals is 40.

The total number of minimal candidates is 121, see Fig. 10.
The number of candidates with minimum cardinality equal to
two are {f24, f35} and {f23, f35} where {f24, f35} is the true
candidate. The other candidate, {f23, f35}, can not be rejected
because f23 and f24 are not isolable from each other.
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Fig. 10. The final minimal candidates given by the diagnosis
algorithm, sorted by cardinality. In this case, both choices
of required minimum distinguishability resulted in the
same final candidates.

Choosing a lower required distinguishability when creating the
sets Edi,dj can result in solutions where the set of active test
quantities has lower cardinality. A lower number of active test
quantities is a trade off which will probably result in reduced
diagnosability performance since the diagnosis algorithm will
accept active test quantities with lower distinguishability when
rejecting some minimal candidates. In this analysis, the actual
faults in the measured data are relatively large compared to
the fault amplitudes used when analyzing distinguishability.
This could explain why the minimal candidates are equal in
the two scenarios even though the required distinguishability is
changed.

7. TUNING THE TEST SELECTION ALGORITHM

Here, some extra tuning steps which could be added to the
test selection algorithm are discussed. The proposed algorithm
is also related to test selection algorithms presented in other
works. It is shown how the problem formulation in this work
can be used to describe other test selection algorithms.

7.1 Off-line

If the available set of test quantities T is large and many of the
sets Edi,dj have high cardinality then it will be computationally
expensive to find an optimal solution to (1). There might be
several test quantities that will never be used because there are
other test quantities that have better performance. This might be
the case if tests quantities are generated automatically off-line
or sequentially during run-time or if a developer have not been
able to remove not so good redundant test quantities.

If the set of available test quantities T is generated off-line,
the computational time for solving (1) on-line, and the memory
needed for storing all test quantities, could be reduced by first
solving (1) for all sets of possible minimal candidates off-line,
i.e., D = {all possible minimal candidates}. By using only the
set of test quantities in the solution as available test quantities
T will remove unnecessary test quantities when the diagnosis
algorithm is on-line.



Another approach to reduce the computational time for solving
(1) could be to neglect minimal candidates of higher cardinality.
If multiple faults of cardinality higher than q > 0 are assumed
to be unlikely then only test quantities able to reject minimal
candidates of lower cardinality need to be considered. In Svärd
(2012), an algorithm for automatically generating residuals off-
line for a non-linear system uses a greedy search algorithm to
find a set of test quantities able to detect and isolate single
faults. This corresponds to solving (1) for all minimal candi-
dates dj of maximum cardinality one. In Svärd (2012), only de-
terministic performance of test quantities are considered which
is the same as letting Edi,dj contain all test quantities able to
reject dj for di independent of quantitative performance.

7.2 On-line

In Krysander et al. (2010), the proposed sequential test selec-
tion algorithm solves the optimization problem (1) every time
the minimal candidates are updated, but do not consider any
quantitative diagnosability performance which is done in this
work. Although, in Krysander et al. (2010), an extra constraint
to the solution of (1) requires that any combination of faults
should always be detectable if possible. For example, there
could be situations where two faults could cancel out each other
which would in such a case not be detectable. An example is a
residual r = f1 + f2 which would be zero if f1 = 1, f2 = −1.
Such cases could be assumed highly unlikely, and therefore
neglected, but this extra constraint can also easily be included
in the algorithm proposed in this paper.

One approach to save computational time is to let each set Edi,dj
only contain the best test quantity, i.e., the test quantity with
highest distinguishability. Then, all sets Edi,dj would either
contain one element or no elements depending on whether there
exists a test quantity able to reject dj for di or not. Then the
optimal solution to (1) is found by simply selecting the test
quantity in each set Edi,dj where dj ∈ D. This assures that
the diagnosis algorithm always uses the best set of tests given
D at the cost of requiring more active tests used at the same
time. Note that in such a case where each set Edi,dj maximally
contains one element, it is trivial to find the optimal solution.

7.3 Other measures of diagnosability performance

Here, distinguishability has been used to quantify diagnosabil-
ity performance when selecting a set of test quantities with suf-
ficient detectability and isolability performance. The proposed
test selection algorithm is not limited to the use of distinguisha-
bility but could use any type of measure to quantified diagnos-
ability performance to compare the performance of different
sets of test quantities, see for example Wheeler (2011).

8. CONCLUSION

A sequential test selection algorithm to update an active set
of test quantities given the present minimal candidates is pro-
posed. A contribution here is the use of a measure for quanti-
tative diagnosabiltiy performance, distinguishability, to choose
which test quantities to be used to reject the present minimal
candidates. A generalization of distinguishability is introduced
in order to handle isolability from multiple faults.

The test selection algorithm proves useful when, for example,
implementing a diagnosis algorithm where the set of tests are

automatically selected and generated on-line. As an example, a
diagnosis algorithm for a DC-circuit is evaluated which auto-
matically generates new residuals with maximum distinguisha-
bility given the present minimal candidates. The example shows
that the number of test quantities can be greatly reduced by
using the test selection algorithm while fulfilling a required
quantitative detectability and isolability performance.

The proposed sequential test selection algorithm is also com-
pared and related to other works, including both off-line and on-
line test selection algorithms. Different tuning parameters can
be used to reduce computational time or change the properties
of the solution. The proposed algorithm can be used for both
on-line and off-line test selection algorithms.
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