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ABSTRACT
Model based diagnosis and supervision of industrial gas

turbines are studied. Monitoring of an industrial gas turbine is
important as it gives valuable information for the customer about
service performance and process health. The overall objective
of the paper is to develop a systematic procedure for modelling
and design of a model based diagnosis system, where each step in
the process can be automated and implemented using available
software tools. A new Modelica gas media library is developed,
resulting in a significant model size reduction compared to if
standard Modelica components are used. A systematic method is
developed that, based on the diagnosis model, extracts relevant
parts of the model and transforms it into a form suitable for stan-
dard observer design techniques. This method involves techniques
from simulation of DAE models and a model reduction step. The
size of the final diagnosis model is 20% of the original model size.
Combining the modeling results with fault isolation techniques,
simultaneous isolation of sensor faults and fault tolerant health
parameter estimation is achieved.

1 INTRODUCTION
Monitoring of an industrial gas turbine is important as it

gives valuable information for the customer about service perfor-
mance and process health. The goal of the monitoring system is
to supervise components in the process like sensors, actuators,
compressors and turbine. Degradation of the gas turbine health is

∗Address all correspondence to this author.

typically described by health parameters, see for example [1–3].
Such health parameters are correcting factors for mass flow ca-
pacity and efficiency in compressors, turbines, nozzles, etc.

The overall objective of the paper is to develop a systematic
procedure for modelling and design of a model based diagnosis
system, where each step in the process can be automated and
implemented using available software tools.

With a given model, fundamental questions are: Is it at all
possible to detect and isolate faults of interest and how can sig-
nal processing algorithms be designed to detect and isolate the
faults? How can the model be transformed into a form suitable
for standard fault detection and isolation techniques? How can a
Modelica model, [4], developed for simulation purposes, be used
to obtain a diagnosis and process supervision system?

2 GAS TURBINE MODELS
Two different models are used in this paper. The first is a

simulation platform that has been provided by Siemens Industrial
Turbines AB and includes a gas turbine model as well as its sur-
rounding systems. This model will be referred to as the reference
model. The other is a gas turbine model that is of reduced or-
der and has been tailored for diagnosis applications and will be
referred to as the diagnosis model.

Reference Model and Simulation Platform
The available simulation platform provides a full featured

real world example of an industrial gas turbine with its support
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FIGURE 1. SIMULATION PLATFORM FOR SGT MODEL.

systems. Fig. 1 shows an overview of the complete system that
consists of a two shaft gas turbine, a controller, a starter engine, a
fuel system and a transmission system.

The platform can, for example, be used to simulate a start-
and stop trip and other dynamic operational cases. The diagnosis
model need to capture only the behavior of the system where
diagnosis is performed. Here, we consider diagnosis when bleed
valves BV1 and BV2 are closed and the gas turbine is working in
stationary operation.

The complete model introduced above will be used in the
evaluation of the diagnosis system, involving complete system
simulation and realistic trajectories. More details about the model
can be found in [5].

A Reduced Gas Media Package
One step in the design of a diagnosis system and its imple-

mentation is the handling of computational complexity. Modelica
provides libraries and gas components which makes it easy to
build very detailed models of gases, and a key part of a thermo-
dynamic model is the involved media package. This package is
very general, since different types of thermodynamic process can
be modeled. An ideal gas can for example be described by a gas
mixture with a number of species. A gas volume component that
is provided by the Modelica standard library has a mass state
for each species in the mixture, and when the number of volume
components and gas mixture species in a model increases, the
number of equations increases drastically. As an example, the
reference SGT model has about 2500 equations. However for the
implementation of a diagnosis system this level of detail can give
an unnecessarily high computational burden. With simple means
this drawback can be amended and a method that achieves this
will be developed below.

One key step for reducing the model lies in the formulation

of the equations for the gas medium. The most important step
is to lump the description of gas molecules together and use a
single mixture strength parameter to describe the essential gas
property. To exemplify this we can look at air, that consists of
N2, O2, CO2, H2O, Ar, and other molecules. These species can
be lumped into a single component called Air. This is the point
where the main reduction in states occur and a simpler, equivalent,
description is obtained under the assumption that the gases are fuel
and air. Further simplifications in the equations can be achieved
by utilizing knowledge that the gas turbine always operates at
fuel lean conditions. With these assumptions we can use the
oxygen (or pure air) in the burned gases as a state, see [6, 7] for
examples where this is done in internal combustion engines. To
describe this, the relative air/fuel ratio λ [8] is used as a state
for burned gases. To specify the state of the gas in the reduced
media package, it is necessary to give the pressure, temperature
and air/fuel ratio.

Combustion Stoichiometry. In the next step the equa-
tions that govern the state variable λ will be developed and it
is the combustion process that has a main influence here. The
hydrocarbon fuel considered in the reference model is discussed
in [5], and has the following chemical reaction formula:

nax̃a +n f S̃x̃ f → nbx̃b (1)

where ni is the number of mole and S̃ is the stoichiometry matrix

S̃ =


0 0 0 0 0
2 3 1 1 0
3 4 2 0 0
0 0 0 0 1
−3.5 −5 −2 0 0

 . (2)

x̃a, x̃ f and x̃b are the given mole concentrations of air, fuel and
burned gases as follow:

x̃a =


x̃a,Ar

x̃a,CO2
x̃a,H2O
x̃a,N2
x̃a,O2

 , x̃ f =


x̃ f ,Ar

x̃ f ,CO2
x̃ f ,H2O
x̃ f ,N2
x̃ f ,O2

 , x̃b =


x̃b,Ar

x̃b,CO2
x̃b,H2O
x̃b,N2
x̃b,O2

 . (3)

If mass concentrations are considered, the stoichiometric air/fuel
ratio is:

(ma

m f

)
s
=

3.5
x f ,C2H6
MC2H6

+5
x f ,C3H8
MC3H8

+2
x f ,CH4
MCH4

xa,O2
MO2

≡ (A/F)s (4)

where Mi is molecular weights of species i, and xk,l is mass con-
centration of gas k and species l. Indices S is used to denote that
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air/fuel ratio is expressed in masses. The definition of the relative
air/fuel ratio λ [8] is:

λ =
ma/m f

(A/F)s
(5)

If the combustion is lean, i.e., λ > 1, the mass concentration of
burned gases are:

X(λ ) =
mbxb

mb ∑i xb,i
=

maxa +m f Sx f

ma ∑i xa,i +m f Sx f ,i
=

(A/F)sλxa +Sx f

(A/F)sλ +1
(6)

where lambda definition (5) and reaction formula (1), expressed
in mass fractions are used. Since masses are conserved, the
normalization factor is simply equal to (A/F)sλ +1.

Perfect Mixing in a Control Volume. If all gases in
a volume are perfectly mixed, the change in mass fraction is
consequently described by the following differential equation:

dX(λ (t))
dt

=
m f low,in(t)

m(t)

(
X(λin(t))−X(λ (t))

)
(7)

where X
(
λ (t)

)
describes, as a function of λ , species concentra-

tion of the gas in the volume. Incoming mass flow, concentration
of incoming gas and total mass in the volume are m f low,in, λin and
m respectively. Differential equation (7) can be expressed in λ

only:

dλ

dt
=

m f low,in

m
· (A/F)sλ +1
(A/F)sλin +1

(
λin−λ

)
(8)

if (4), (6) and (7) are used. If more than one incoming mass flow
are considered, (8) has to be replaced with a sum over all λin. Note:
it is only positive mass flows that influence the concentration λ .

Combustion Temperature. For combustion it is as-
sumed an adiabatic constant-pressure combustion process. Then
it holds that enthalpy hu(T1) before combustion and enthalpy
hb(T2) after combustion are equal [8]. If hb(T2) is invertible, it is
possible to find a solution: T2 = h−1

b

(
hu(T1)

)
, which is the com-

bustion temperature. If the inverse isn’t available then a numerical
equation solver can be applied without loss of generality.

Gas Turbine Components Library – GTlib.mo
In the next step the most important components are pre-

sented. These components are included in the gas turbine li-
brary GTlib.mo and are used in the reduced SGT model. These
components are similar to those in the reference model with the
main difference related to the usage of λ for the state instead of
individual species components.

Volume. The volume component has the following states:

dm
dt

= ∑
i

m f low,i (9a)

dEtot

dt
= ∑

i
H f low,i (9b)

dλ

dt
= ∑

i

m f low,in,i

m
· (A/F)sλ +1
(A/F)sλin,i +1

(
λin,i−λ

)
(9c)

where ∑m f low is the total mass flow, and ∑H f low is the total
energy flow into the volume. Note that in (9c), only positive mass
flows are considered. The mass m and total energy Etot are simply:
m =V d and Etot = mu, where V , d and u are volume, density and
internal energy respectively.

Orifice. The orifice is a simple pressure loss component
where no mass or energy are accumulated. The pressure drop is
described by: m f low = C

√
p1− p2 where C is a model specific

constant and p1, p2 are pressure upstream and downstream.

Shaft. In Modelica is the shaft angle ϕ , instead of angular
velocity ω , is used as a connection variable between mechanical
components. This results in an additional angle ϕ state as:

ϕ̇ = ω (10)
Jω̇ = ∆τ (11)

where ∆τ is the torque difference between applied and brake
torque. The angle state (10) is a pure integration of velocity if the
model has no angle dependencies.

Compressor. Basic equations for the compressor com-
ponent are the four functions fi that are used for characteristic
calculations. These functions are:

ϑnorm = f1(T,R,γ, p) (12)
ωnorm = ω f2(T,R,γ, p) (13)

ϑ =
1

mnorm
f3(Π,ωnorm) (14)

ηi = f4(Π,ϑϑnorm) (15)

which are implemented as look-up tables. These look-up tables
are developed by the manufacturer through a large number of
performance tests and component simulations.

Temperature T , gas constant R, isentropic coefficient γ and
pressure p are all calculated up-stream. Π is pressure ratio, ω

is rotational spool speed, and ϑ the mass flow. To calculate the
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isentropic enthalpy his, the built-in functions in Modelica media
package are used. These functions use the NASA polynomials
described in [9]. The actual enthalpy change, through the com-
pressor, can be calculated according to: ∆h = (his−h)/ηi, where
ηi is the isentropic efficiency according to (15). The connection
between mechanical and thermodynamic power is:

ϑ∆h+∑
i

riϑri = µω∆τ (16)

where ϑri is mass flow of air through bleed valve i and ri is the
given enthalpy ratio where valve i is placed. The mechanical
efficiency µ is assumed to be constant. Since no mass or energy
is stored in the compressor, the mass and energy flows through
the compressor are summed to zero.

Turbine. The turbine component is modeled in a similar
manner as the compressor, and functions gi are used as follows:

Nnorm = g1(R,γ, T̃ ,Π,ω) (17)
Anorm = g2(R,γ, T̃ ,Π,ω) (18)

A = g3(Nnorm,Π)Anorm (19)
ηi = g4(Nnorm,Π) (20)

These gi functions are also implemented as look up tables. Here
the cross section area A is used instead of mass flow. Here, T̃ is
the inlet temperature before exhaust gases are mixed with cooling
air.

Combustor. The combustor component has two modes,
i.e., with and without an ignition, IGN. With ignition means that
burned gases are produced. Enthalpy hb of burned gases can be
summarized according to:

hb =

{
haχa +h f (1−χa), if IGN
ha, not IGN (21)

where χa = ma
ma+m f

is actual mass fraction of air and λ that is
produced by the combustion is calculated according to definition
(5). The mass flows of air and fuel through the combustor are
described by a simple pressure drop model. Equations for con-
servation of mass and energy are similar to those in the earlier
defined components.

Diagnosis Model of the Gas Turbine
The diagnosis model consists only of the gas turbine model,

valid under stationary operating conditions when bleed-valves
are closed. The gas turbine model is composed of the above de-
fined components and is shown in Fig. 2. Primary and secondary

cooling air is used to lower the temperature of hot exhaust gases
to protect vanes in the first turbine stages of the high- and low
pressure turbine CT and PT. This phenomenon is captured by the
model, since cooling air (with a large λ ) is mixed with exhaust
gases to lower the overall gas temperature. The introduction of
the reduced media package resulted in a reduction of model equa-
tions from about 2500 in the reference model to about 800 in the
simplified SGT model.

Four health parameters [1–3] are introduced in the diagnosis
model. Ideally, these health parameters should capture deviation
from nominal value for: isentropic efficiency ∆ηCC, ∆ηCT for CC
and CT, mass flow ∆ϑCC for CC and finally cross section area
∆ACT for CT. These health parameters are interesting for process
monitoring, but are also necessary to avoid false alarms when
supervising the sensors [10].

The supervised health parameters can be summarized:

ηCC = f4(Π,m f lowmnorm)+∆ηCC (22)
ηCT = g4(Nnorm,Π)+∆ηCT (23)

ϑCC =
1

mnorm
f3(Π,ωnorm)+∆ϑCC (24)

ACT = g3(Nnorm,Π)Anorm +∆ACT (25)
∆η̇CC = 0 (26)
∆η̇CT = 0 (27)
∆ϑ̇CC = 0 (28)
∆ȦCT = 0 (29)

where actual performance equations are extended with the devia-
tion parameter. Since the performance variables are assumed to
vary slowly, due to natural performance degradation over time,
the derivatives (26)-(29) are set to zero in the nominal model.

Sensors and Actuators. The diagnosis model has 2 ac-
tuator and 8 output signals. These signals are measured pressures,
temperatures and rotational speeds. Known actuator signals are
fuel pressure and demanded torque from the generator, which
are inputs to the diagnosis model delivered by the environment.
Ignition signal IGN is always true, and is therefore not considered
as an actuator signal. Where measurement sensors are placed can
be seen in Fig. 2.

The physical gas turbine is equipped with the same set of
sensors as in the model. In the transmission system power and
angular velocity of the PT shaft are measured so it is possible to
calculate the demanded torque. Further is the mass flow of fuel
measured in the gas turbine but in the model is fuel pressure used.

Measurement Noise. Band-limited white noise is added
to all known signals. The added noise has a Gaussian amplitude
distribution with a standard deviation, in percent, in the range of
0.1− 0.5 of the nominal value for each measured quantity, see
Tab. 1. Sensors y5 and y7 measure, more or less, the ambient
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FIGURE 2. REDUCED SGT GAS TURBINE MODEL USED FOR DIAGNOSIS.

TABLE 1. SENSOR AND ACTUATOR NOISE STANDARD DEVI-
ATION IN PERCENT OF THE NOMINAL VALUES.

Sensor Quantity σ

y5,y7 P1, P8 0.1 %

y1,y2,y3,y6 T2, T3, T7, P3 0.5 %

y4,y8 NCC, NPT 0.15 %

Actuator Quantity σ

u1,u2 P10, TT 0.4 %

pressure and are therefore assumed to be more reliable then the
high pressure sensor y6. It is also assumed that the rotational
sensors y4 and y8 are reliable and therefore have smaller noise
amplitude than the sensors y1,y2,y3 and y6.

Faults. Faults that are diagnosed in this paper are faults in
measurement sensors viewed in Tab.1. The considered faults are
modeled as additive signals,

yi = xi + fi (30)

for sensor i where xi is the measured quantity and yi the measure-
ment signal.

3 DIAGNOSABILITY ANALYSIS OF THE MODEL
The model of the gas turbine, developed in the previous

section, included descriptions of faults in 8 sensors and inclusion

of 4 health parameters capturing drift in important performance
parameters.

Before a diagnosis and supervision system is designed, a
fundamental question is what diagnosability performance is at all
possible, i.e., are faults and changes in parameters in (22)-(25)
and (30) detectable and isolable? Without becoming formal, a
fault is said to be detectable in a system if there exists operat-
ing conditions such that the observations deviate from what is
expected from a healthy gas turbine. Note that detectability is
dependent on the particular sensor configuration used. Isolability
among faults can be defined in a similar manner, a fault f1 is
isolable from a fault f2 if there exists operating conditions such
that the observations are consistent with fault mode f1 but not
with fault f2.

Unfortunately, to obtain exact answers to questions concern-
ing detectability and isolability, exact characterization of solutions
to the model equations are needed. In general, this is not feasible
unless the model is for example linear. See e.g. [11] for for-
mal definitions and how to compute isolability in the linear case.
The model developed in this paper is a non-linear, differential-
algebraic, model where no such characterization is possible. In-
stead, an approach that only utilizes the model structure is used.
The structure is a coarse description of the model where for each
model equation, it is noted which model variables that are in-
cluded in the equation. Fig. 3 show the model structure for the gas
turbine where each blue dot indicates that the variable is included
in the corresponding model equation.

In [12], such coarse model information is used to efficiently
determine detectability and isolability properties of the model.
Since only the structure and not the analytical expressions is used,
only best-case results are obtained.

The variables and equations have been permuted such that
Fig. 3 reveals detectability and isolability properties of the model.
This form can be obtained efficiently and fast for large models.
For precise details on how to obtain this form, see [12, 13]. The
main computational step utilizes the Dulmage-Mendelsohn de-
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FIGURE 3. STRUCTURE OF THE GAS TURBINE MODEL.

composition of graphs [14]. The first 250 equations belong to the
exactly determined part, i.e., parts where there are no redundancy
and thus any fault affecting this part of the system can not be
detected. The overdetermined part of the system that contains
redundancy is indicated by the large rectangle, and thus any faults
affecting this part are detectable. The figure also reveals the isola-
bility properties of the system. For example the small gray boxes
indicate sets of model equations that can not be isolated. This
means that if two faults appear in two equations with variables in
the same gray box, the faults can not be isolated.

Looking at the particular model described in Section 2, all
the considered faults belong to the overdetermined part, i.e., all
faults are detectable. It can also be directly verified that all faults
appear in equations with no variables in the same gray box and it
is therefore theoretically possible to detect and isolate the faults.
However, since the model is non-linear it may be the case that it
can be difficult to design a diagnosis system that can reach what
is theoretically possible.

4 METHOD DESCRIPTION
The objective, as stated in the introduction, is fault tolerant

estimation of the health parameters and simultaneous diagnosis
of faults in the sensors {y1, . . . ym}. The method is based on
a bank of observers that estimate the health status of the gas
turbine and a diagnoser that detects faults in the sensors and
chooses the appropriate health status estimator depending on
the current diagnosis. This means that as long as the diagnoser
delivers correct information to the estimator selector, reliable

health status estimation is given in spite of faults in the sensors.
One fundamental problem is that the diagnoser, in the case of a
sensor fault, may not be able to exactly determine which is the
faulty sensor, but may only be able to determine that one in a set
of sensors is faulty. How to deal with this is treated later, but first
a description of the detection and isolation procedure.

The fault detection and isolation logic is based on hypothesis
testing and there is one hypothesis for each sensor failure. Such
an approach is standard in general diagnosis methodology [14]
and has been used for supervision of gas turbines in, e.g., [3,
15–17]. Let Hi denote the hypothesis that sensor yi is faulty or
that there are no faulty sensors. For each fault hypothesis Hi,
a constant gain Kalman filter is designed where all except the
supervised sensor yi are used for feedback in the observer. Full
details on observer design are given in the next section. Now, let
Yi denote the vector that excludes sensor measurement yi, i.e., Yi =
(y1, . . . ,yi−1,yi+1, . . . ,ym)

T . Then for each hypothesis, an alarm
is generated if the estimated output deviates significantly from the
measured output. Each filter computes the output estimation error
vector ei as

ei(t) = Ŷi(t)−Yi(t) (31)

where Ŷi is the estimate of Yi. In case that hypothesis Hi is true,
it is expected that all estimation errors, except ei, will become
large, since they all use the faulty sensor yi for feedback in the
filter. The weighted sum of squared estimation errors

Ri(t) = eT
i (t)Σ

−1
i eT

i (t), Σi = diag[σ2
j ] j 6=i (32)

is computed, where σ j is the standard deviation for sensor y j, and
if Ri significantly deviates from zero, an alarm is generated. A
simple and effective way to determine a significant deviation of
Ri(t) from zero is to apply the CUSUM algorithm [18] where the
quantity Ti(t) is computed as

Ti(t) = max(0,Ti(t−1)+ |Ri(t)|−νi), Ti(0) = 0 (33)

and an alarm is generated when Ti(t) exceeds a specified threshold.
The parameter νi is a design parameter for the algorithm designer
to choose and a rule of thumb is that ν is of the same order of
magnitude as the size of Ri(t) in the fault free case.

To summarize, each observer is insensitive to a fault in the
corresponding sensor yi but sensitive to faults in all other sensors
which means that the faulty sensor can be isolated by observing
which hypothesis whose test triggers an alarm.

In addition to the fault hypothesis, the no fault hypothesis
HNF is included in the framework and all sensors are used as
feedback in the corresponding Kalman filter. Thus, if there is no
alarm, the health parameter estimates are taken from the observer
which utilizes feed-back from all sensor signals. In case of an
alarm and a unique isolation of a faulty sensor, the filter for which
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the hypothesis is not rejected is used to obtain estimates of the
health parameters.

In an ideal case, where the model perfectly describes the real
system and where there is no measurement noise, it would be
sufficient to consider the test quantities Ti(t) to detect and isolate
single faults. A single fault would result in all hypothesis except
the correct one being rejected. However, due to uncertainties
and noise some of the test quantities, that ideally should trigger
an alarm, do not alarm. This means that a fault is detected but
there is not a unique diagnosis, two or more candidates for faulty
sensors are produced by the fault isolation logic and we do not
know exactly which health parameter estimates to use. What we
need then is sometimes referred to as focusing of the diagnoses,
i.e., an estimation of the most likely sensor to have failed. For that
reason, a second type of residual is introduced as a complement
to the test described above:

ri = |ŷi− yi|/σi (34)

where ŷi is the estimate of yi obtained using the filter correspond-
ing to hypothesis Hi. A property of this residual is that it is
sensitive to all sensor faults since all but senor yi is used in the
estimation of ŷi and sensor yi is used when computing residual ri.
In addition, the residual ri can be expected to be more sensitive
to a fault in sensor yi than those in vector Yi since the latter set
of sensors are fed back in the observer. If there is more than one
candidate diagnosis, a simple approach to choose the most likely
is to evaluate which of the corresponding ri has the strongest
response.

The method can now be summarized as:

1. Compute Ti(t), i = 1, . . . ,m according to (33).
2. If no test triggers an alarm, obtain the health parameter esti-

mates from an observer using feedback from all sensors.
3. In case of an alarm, candidate diagnoses are those sensors

that correspond to Ti(t) that have not exceeded its threshold.
If only one test quantity Tifault(t) is below its corresponding
threshold, a unique isolation has been achieved. In case the
isolation is not unique, let ifault correspond to the case where
ri in (34) has the most significant response.

4. Obtain the health parameter estimates from the observer cor-
responding to hypothesis Hifault

5 OBSERVER DESIGN
The observer design problem is to take the Modelica model

and automatically design an observer, estimating the state and
health parameters. Since the diagnosis model is in a general
differential algebraic equation (DAE) form, standard observer
design techniques are not directly applicable. Therefore, a number
of model transformations are needed, and then a standard Kalman
filter design will be used.

The flat form of the Modelica representation of the diagnosis
model, where the measurement equations are excluded, is in the

form

Eẋ0
1 = f 0(x0

1,x
0
2,u) (35a)

0 = g0(x0
1,x

0
2,u) (35b)

where E is a constant matrix, u are known actuator signals, x0
1 are

the dynamic variables, including the health parameters h, and x0
2

are the algebraic variables. Thus, the non-linear function f 0 de-
scribes the dynamic behavior and g0 are the algebraic constraints
in the model.

DAE Index Analysis
A model with a DAE differential index 0 or 1 is generally

easier to handle in practise than a system with a higher index [19].
Index analysis of (35) shows that the DAE has differential index
equal to 2 and that it is possible to reduce the index if some of the
equations are differentiated. Pantelides algorithm [20] is used to
determine which equations that need to be differentiated.

To explain the high index property of the model, observe that
in the Modelica standard library, angle dependencies are used in
the equations that connect mechanical rotation components. These
equations have the form: ϕ1 = ϕ2,ϕ2 = ϕ3, . . . and Pantelides
algorithm differentiate these equations to obtain, ϕ̇1 = ϕ̇2, ϕ̇2 =
ϕ̇3, and so on. Extending the model with these differentiated
equations yields a DAE with differential index 1.

Semi-explicit DAE
The next step is to obtain a semi explicit form:

ẋ1
1 = f 1(x1

1,x
1
2,u) (36a)

0 = g1(x1
1,x

1
2,u) (36b)

This is done by simple algebraic manipulations of the model
equations, i.e., QR decomposition of E. For example, the relations
ω1 = ϕ̇1 and ω2 = ϕ̇2 are substituted into the dynamic equation
ϕ̇1 = ϕ̇2 to obtain the static equation ω1 = ω2, which is now part
of the algebraic constraint g1 = 0. Now, a DAE with index of 1
means that the Jacobian ∂g1/∂x1

2 is non-singular.

Model Reduction
In this step, parts of the model are removed that are not rele-

vant for a particular observer design problem. For example, con-
sider the Kalman filter for hypothesis Hi. Since the measurements
in Yi are used in the filter, it is necessary that the corresponding
variables are included in the model. Furthermore, since the signal
yi = xi is used in the residual (34), this variable should also be
included in the model.

The objective is to transform the model into a set of ordi-
nary differential equations. This will be done by eliminating the
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algebraic variables using a numerical solver, and it therefore nec-
essary that the number of algebraic equations and the number of
algebraic variables are equal. Note that the number of dynamic
variables and the number of dynamic equations in (36a) are equal
by construction.

To summarize the discussion, a submodel is sought that in-
cludes all the measured variables, and where there are as many
equations as unknowns. One way to find the smallest subset
that fulfills these requirements is to first add the sensor equations
yi = xi to the model and then compute the overdetermined part
of the model, which was introduced in Section 3. By removing
the measurement equations from the set of equations obtained by
this operation, the sought set is obtained. This follows from the
theory developed in [12].

After this operation, about 500 equations remain in the model
which is in the form

ẋ2
1 = f 2(x1,x2,u) (37a)

0 = g2(x1,x2,u) (37b)

For example, the dynamic equations ϕ̇i = ωi are removed in this
step of the design procedure. This indicates that the values of
angles ϕi, which are computed by integrating these equations, are
not needed in the diagnostic system.

State-Space Form
The main objective with the series of model transformations

is to obtain a standard state-space description and now a final step
finalizes this transformation. It can be shown that the DAE index
is also 1 after the submodel is extracted from the original model.
Hence, the the Jacobian matrix ∂g2/∂x2 is non-singular and it is
possible, at least locally, to use a numerical solver to compute x2 =
G(x1,u) from the algebraic condition 0 = g2(x1,x2,u). Insertion
of x2 into f 2 then gives the model

ẋ1 = f (x1,u) (38)

where f (x1,u) = f 2(x1,G(x1,u),u) which is the desired ODE
form.

Observer Design
Now that the system has been transformed into a state-space

description, standard observer design techniques can be utilized.
A possible first choice is an Extended Kalman Filter but here a
simpler approach is adopted. Let Yi = hi(x1) be the measurement
equation, then the non-linear model is numerically linearized in
a suitable operating point to obtain a linear approximation of
the system. A standard, stationary, Kalman filter design is then
performed to obtain a constant feedback gain Ki. The non-linear
observer is then formed as

˙̂x1 = f (x̂1,u)+Ki(Yi−hi(x̂1)) (39)

which provides an estimate of the dynamic variables x1, which
includes the health parameters, based on the measurement signals
in Yi. It is straightforward to extend the design with linearizations
in more than one operating point together with a gain switching
procedure.

6 SIMULATION RESULTS
The diagnosis system consists of 9 observers that are automat-

ically generated in Matlab for simulation in a Modelica simulation
tool. Design parameters for the observers are the noise covariance
matrices Q and R, corresponding to process and measurement
noise. The observers are tuned such that the dynamics for the
health parameters are much slower than the dynamics for other
state variables.

Experiment Setup
Data for the diagnosis system are collected from the full-scale

simulation platform where the SGT gas turbine model, viewed in
Fig.1, is used. The simulation study is a start-and-stop trip and
data are collected when the gas turbine reaches the operational
point. A sensor fault is modeled as a bias term that is added to the
sensor signal.

Degradation in performance parameters, with a certain pro-
file, are inserted in the actual performance parameter in the SGT
gas turbine model. The simulated degradation in efficiency ηi is
0.03 for CC and 0.02 for CT. Degradation in mass flow ϑCC and
area ACT are 0 in both cases. See Fig. 6.

Test Case – Sensor Fault in Temperature Sensor y2
To demonstrate fault detection a sensor fault is considered

here. In this case, a constant bias term with an amplitude of 5%
of the fault free value is added to sensor y2 at time 14 h.

The residual for four of the hypothesis can be seen in Fig. 4.
It can be seen a response in R1, R6, and R8, as expected, and none
in R2. The remaining residuals, omitted due to space limitations,
show a similar behavior. Since the residuals are affected by noise,
the CUSUM algorithm is applied to obtain more reliable test
quantities, which are shown in Fig. 5. The only test quantity that
does not trigger an alarm by the fault is T2. Hence, the fault is
correctly detected and isolated.

Now, it can be concluded that hypothesis H2 is the correct one,
and the corresponding observer can be used as health parameter
estimator, see Fig. 6, after the fault has been detected. Before
detection of the fault, the health parameter estimates are provided
by the observer where all measurements are used.

The difference between the faulty sensor and estimated tem-
perature T3 of observer 2 can be seen in Fig. 7. Here a strong
response can be seen, which means that the fault will be clearly
visible in the residual r2 defined in (34).

To summarize the discussion, these simulations show how
the proposed method can simultaneously isolate sensor faults and
estimate health parameters.
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FIGURE 4. RESIDUALS FOR DECOUPLED SENSOR y1,y2,y6 and
y8 WITH A FAULTY SENSOR y2.
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FIGURE 5. CUSUM APPLIED TO THE RESIDUALS IN FIG. 4.

7 CONCLUSIONS
A gas turbine model suitable for diagnosis analysis and de-

sign has been developed. The diagnosis model is based on a
Modelica model developed for simulation purposes, where the
standard Modelica library is used. The diagnosis model is equiv-
alent, but has a significantly reduced number of equations. This
reduction was accomplished by development of a new media li-
brary. For the gas turbine considered here, the reduction is from
2500 to 800 equations.

The second main contribution is a systematic method that,
based on the diagnosis model, extracts relevant parts of the model
and transforms it into a form suitable for standard observer design
techniques. This method involves standard techniques from simu-
lation of DAE models and another model reduction step, where
the number of equations are reduced to about 500. Combining
these methods with standard fault isolation techniques, simultane-
ous isolation of sensor faults and fault tolerant health parameter
estimation is achieved.
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The method has been successfully evaluated in a simulation
study, where a fault is introduced in a temperature sensor while
the health parameters for isentropic efficiency and mass flows in
the compressor are degraded.
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NOMENCLATURE
CC Compressor
CT High-pressure turbine
PT Low-pressure turbine
P1 Compressor inlet static pressure, measured
T2 Compressor inlet total temperature, measured
P3 Compressor outlet static pressure, measured
NCC Compressor spool speed, measured
T3 Combustor inlet total temperature, measured
P8 Combustor inlet static pressure, measured
NPT Low-pressure turbine spool speed, measured
P10 Fuel static pressure, actuator signal
TT Demanded torque, actuator signal
BV1 Bleed valve position
BV2 Bleed valve position
IGN Ignition, actuator signal
η isentropic efficiency
ϑ mass flow
A cross section area
ϕ angle
ω angular velocity
λ relative air/fuel ratio
h enthalpy
n number of mole
m mass
m f low mass flow
X concentration vector
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