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Email: {lime, jaasl, frisk, larer}@isy.liu.se

ABSTRACT
Supervision of the performance of an industrial gas turbine is im-
portant since it gives valuable information of the process health
and makes efficient determination of compressor wash intervals
possible. Slowly varying sensor faults can easily be misinter-
preted as performance degradations and result in an unnecessary
compressor wash. Here, a diagnostic algorithm is carefully com-
bined with non-linear state observers to achieve fault tolerant
performance estimation. The proposed approach is evaluated in
an experimental case study with six months of measurement data
from a gas turbine site. The investigation shows that faults in all
gas path instrumentation sensors are detectable and isolable. A
key result of the case study is the ability to detect and isolate a
slowly varying sensor fault in the discharge temperature sensor
after the compressor. The fault is detected and isolated before
the wash condition of the compressor is triggered, resulting in
fault tolerant estimation of compressor health parameters.

1 INTRODUCTION
In industrial gas turbines, deterioration of components through-
out the gas path is commonly occurring and contributes to overall
performance degradation of the engine. Monitoring and supervi-
sion of performance degradation is a widely studied topic in the
gas turbine diagnosis research field, see, e.g., [1, 2, 3]. With reli-
able performance estimations, the work for the service engineers
to efficiently plan service and maintenance of the gas turbine can
be significantly simplified. In papers [4, 5], several mechanisms
which cause degradation in gas turbines are presented. The ma-
jor contribution of degradation mechanisms in an industrial gas
turbine is fouling. The fouling is caused by small particles and
contaminants in the air that are caught by the compressor.

∗Address all correspondence to this author.

Performance degradation in the gas turbine is naturally oc-
curring and so is faults in the sensors mounted on the gas tur-
bine. It can be observed that it may be difficult to separate sensor
faults from performance degradation and thereby get false alarms
for sensor malfunction or premature cleaning of the compressor.
This is caused by the fact that the error in the performance model
increases with a high degree of deteriorated components which
can trigger a sensor fault alarm [6]. In [7, 8], an investigation of
performance degradation in industrial gas turbines using health
parameters and experimental data is evaluated. These case stud-
ies show good estimation of compressor degradation using ex-
perimental data from a site during a time period of six month.

Problem Statement and Motivation
A fundamental problem with the method presented in [7, 8] ap-
pears when a sensor or a actuator fault is present simultaneously
the performance degradation is estimated. For example, the effi-
ciency of the compressor is especially sensitive to a slowly vary-
ing fault in the sensor which measures the discharge temperature
of the compressor. A fault in this temperature sensor can re-
sult in an unnecessary early compressor wash or in a compressor
wash which is performed too late. This phenomenon is shown
in Fig. 1 where the estimated health parameters in the compres-
sor are plotted during a time period of six months. A compres-
sor wash is initiated when the estimated efficiency has dropped
about 2–3% and the solid line in Fig. 1a shows a wash at day 144.
However, with a 5% fault in the sensor, the estimate shown by the
dotted line in Fig. 1a indicates that the compressor would be be
washed at day 83 which is two months early. Thus, it is clear that
sensor faults could result in unreliable estimates of compressor
wash intervals.

Another problem with the method in [7] is that sensor or
actuator faults are only visible during the transient, i.e., while
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the fault develops. When the fault has reached a stationary value,
its effects can not be observed in the measurements. A typical
appearance of a residual that describe this phenomenon is shown
in Fig. 1c where it is clear that the residual indicates a fault during
the transient, but after t = 120, the residual goes back to zero
again.

The main objectives of this work are: (i) extend the earlier
developed supervision system for industrial gas turbines in [7,9]
to diagnose slow varying sensor or actuator faults while simulta-
neously estimating the performance degradation, and (ii) evalu-
ate the diagnosis system on experimental data.

2 EXPERIMENT SETUP
At the current site, the gas turbine is a 1-spool and 2-shafted gas
turbine with a specific power of 29 MW. Since the gas turbine
is 2-shafted, there is no mechanical connection between the gas
generator and the power turbine. This gives the opportunity to
adjust the speed of the power turbine independently of the gas
generator speed. Thus, a typical usage for this type of gas tur-
bine is a mechanical drive application. In these applications, the
power turbine is connected to a driven component such as a pump
or an external compressor.

In the evaluation of the FDI system, an experimental data
set used for control and monitoring is available. The data is from
a mechanical drive site and the signals are collected at differ-
ent cross sections throughout the gas path. The cross sections
are numbered from low to high numbers, where the low num-
bers represent the inlet of the gas turbine. Before the measure-
ments are used in the FDI system some sub-sequences from the
whole data set are removed. The removed sub-sequences relate
to: (i) the start and stop of the gas turbine, and (ii) occasionally
frozen sensors values. The sequences where the gas turbine is
not running at operational conditions are removed since the di-
agnosis model, used in the FDI system, is not valid during these
conditions. Sensors which are occasionally frozen are assumed
to be non fault (since the phenomenon is uncommon) and are
therefore removed from the sequence. The original data set has
a sample time of 5 min. To reduce the number of data points,
the data is re-sampled with a sample time of 120 min. The to-
tal length of the data set is about six month. In the evaluation,
the data set is divided into the two groups: (i) input signals, and
(ii) output signals which are used in the FDI system.

Input Signals
The input signals to the diagnosis model are divided into two
groups. The first group consists of: pressure p0, temperature T0,
and relative humidity ϕ0 of the ambient air. These signals are
assumed to be non-faulty and are used to determine the gas prop-
erties of the ambient air. The second group of input signals are:
mass flow of fuel m f , and power generated by the application PA.
The signals in the second group may have a faulty value which
should be diagnosed by the FDI system. These signals are called
actuator signals in the sequel although they are measurements.
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(a) Health parameter ηC1 for efficiency in compressor.
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(b) Health parameter ∆ΓC1 for flow capacity in compressor.
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(c) Typical appearance of a normalized residual. Here, residual r5 =
y5− ŷ5 for an injected fault with an amplitude of 0 % (black), 3 %
(blue), and 5 % (red) in sensor y5 is viewed.
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(d) Injected fault in sensor y5 with an amplitude of 0 % (solid), 3 %
(dashed), and 5 % (dotted). The fault starts at day 67 and stops at
day 116.

FIGURE 1: Health parameter estimation when a slow varying
fault appears in sensor y5 (discharge compressor temperature).
The compressor is washed at day 15, 56, and 144. An appearance
of a sensor fault suggest a compressor wash at day ∼ 83.

Output Signals
The output signals, used in the diagnosis model, are the mea-
sured quantities of: (i) temperature t2 and pressure p2 before
compressor, (ii) temperature t3 and pressure p3 after compres-
sor, (iii) temperature t7 and pressure p8 after power-turbine, and
(iv) speed of gas generator nC1 and power-turbine nT 0. A chal-
lenge with this specific product model is the absence of an in-
strumentation sensor between the two turbines. The lack of these
type of sensors makes the diagnosis and monitoring procedure
more difficult to perform. Similar gas turbines, launched by
other manufactures, have thermocouples between the gas gen-
erator and the power turbine. Having ideal thermocouples in that
cross-section should reduce the uncertainty of the gas path pa-
rameters in the gas generator. In Fig. 2, a schematic view of the
gas turbine and its signals is shown.
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FIGURE 2: The gas turbine with the output signals (solid), the
input signals (dashed), the input ambient signals (dotted), and
health parameters (arrows). The secondary air flows, used to cool
the first turbine blades, are shown with dashed arrows.

3 GAS TURBINE DIAGNOSIS MODELS
Each test quantity Ti in the FDI system is based on a physical
model, i.e., the diagnosis model. The diagnosis model is de-
rived from a gas turbine model used for performance calculation,
i.e., the performance model. The performance model is validated
against a reference model [10] developed by Siemens Industrial
Turbomachinery AB in Finspång, Sweden. The two models used
for diagnosis and performance calculation are first presented in
[9] and are further elaborated in [8]. In the present work, the pre-
vious developed diagnosis model methodology is utilized where
different configurations are considered. All these models are im-
plemented in the object oriented and equation based language
Modelica [11]. The simulations are performed using the tool
Dymola marketed by Dassault Systems.

A key part of these gas turbine models is the involved me-
dia package GTLib. In GTLib, thermodynamic properties rely on
the well-known NASA Glenn Coefficients [12] and are described
using the states: pressure p, temperature t, and air/fuel ratio λ

under the assumption that the combustion is lean, i.e., λ ≥ 1.
Throughout the gas path before the combustion, the air/fuel ra-
tio is large (pure air) and after the combustion the air/fuel ratio
is about 2–3 (exhaust gas). According to the cooling of the first
blades in T1 and T0, gases with different air/fuel ratio are mixed
together. Modelica provides libraries to construct very detailed
gas models which can have an arbitrary number of species. All
these species increase the number of equations and states in the
global model which leads to increased computational complex-
ity. In the reference model, the species in the gas mixture are
specified using the mass fraction vector instead of the air/fuel
ratio concept. This results in a number of states and equations
which is strongly connected to the number of species in the gas
mixture. Using the air/fuel ratio concept, the number of states
and equations in the diagnosis and performance model can be
reduced compared to the reference model.

The diagnosis model is a nonlinear dynamic model with al-
gebraic constraints, i.e., a nonlinear differential algebraic equa-
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FIGURE 3: Graphical representation of the diagnosis model.

tion (DAE) model. In the characteristic calculations, corrected
parameters according to [13] are utilized together with look-up
tables. The diagnosis model is only valid during operational con-
ditions, i.e., not valid during start and stop. The diagnosis model
can be evaluated using a number of input signals, in contrast to
the performance model which must be simulated together with
the other components such as: a controller, a starter motor, a fuel
system, and a driven component. The advantage with the diag-
nosis model is the ability to generate test quantities Ti used in
the FDI system. The test generation procedure is first presented
in [9] and then summarized in [8].

A graphical representation of the gas turbine diagnosis
model is shown in Fig. 3. The intention with the figure is to give
an overview of the component based diagnosis model together
with the input and output signals. The number of equations in
the model is about 1000 including about 30 dynamic state vari-
ables.

Health Parameters
A common approach in the gas turbine diagnosis research field
to capture performance degradation is to introduce a number of
physical based quantities named health parameters. The intro-
duced parameters can be estimated with a number of techniques,
see, e.g., [14, 6]. Two main disadvantages appear when using
health parameters: (i) the observability of the system is affected,
and (ii) a faulty sensor value may be captured by the health pa-
rameters. The maximum number of health parameters, which
can be considered in the model due to the observability criteria,
is restricted by the number of sensors. The maximum number
of health parameters is equal to the number of sensors. In prac-
tise, this upper bound is much smaller and depends on where in
the model the health parameters and sensors are located. In a
case of a sensor fault, a faulty sensor value may be captured by
the health parameter which was shown in Fig. 1. Especially slow
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varying sensor faults can be difficult to detect in a noisy environ-
ment and disappear in the residuals when the fault has reached a
stationary value. Thus, if no compensation for the sensor fault is
done it is a balance between the ability to see a sensor fault in the
residuals and the ability to get good estimation of the health, i.e.,
many health parameters in the model.

Since the compressor performance is important to supervise,
two health parameters are introduced in the compressor to esti-
mate degradation in: (i) isentropic efficiency ∆ηC1, and (ii) mass
flow of air ∆ΓC1. In case when no sensor or actuator faults have
occurred, two more health parameters are used in the compressor
turbine T1 to estimate degradation in: (iii) isentropic efficiency
∆ηT 1, and (iv) turbine flow number ∆ΓT 1. The considered health
parameters are injected in the performance characteristic equa-
tions:

ηi = fi,η(. . .)+∆ηi, Γi = fi,Γ(. . .)+∆Γi (1)

where ηi is the isentropic efficiency, Γi is the turbine flow num-
ber, and fi, j represents the nominal characteristic function with
corrected quantities. Indices i represents the components: (i) C1
in case of a sensor or actuator fault, and (ii) C1 and T1 if no
sensor or actuator fault are present. Since the component dete-
rioration is very slow relative to other gas turbine dynamics, the
health parameters are modeled without dynamics and these con-
straints are added to the model:

∆η̇i = 0, ∆Γ̇i = 0 (2)

for each inserted health parameter.

Sensor and Actuator Faults
Sensor and actuator faults fi are modeled as unknown additive
signals,

yi = hi(x)+ fyi (3a)
unew, j = u j + fu j (3b)

ḟyi = 0, ḟu j = 0 (3c)

where i = 1, . . . ,8, j = 1,2,3, hi(x) are the measurement equa-
tions, and unew, j is the new input signal j. The diagnosed faults
are assumed to be slow varying which gives a derivative equal
zero. This has the attractive consequence that faults in actuators
can be treated in exactly the same way as fault in sensors and
performance degradation parameters.

Differential Algebraic Equation Form
The diagnosis model D0 in the non faulty case has the DAE form:

FNF(ż, z, u) = 0 (4a)
y = h(z) (4b)

z = (xT , ∆ηC1, ∆ΓC1,∆ηT 1, ∆ΓT 1 )
T (4c)

and the diagnosis model Dk, in case of a fault, has the DAE form:

Fk(ż, z, u) = 0 (5a)
y = h(z) (5b)

z = (xT , ∆ηC1, ∆ΓC1, fk )
T (5c)

where indices k ∈ [y1, . . . ,y8,u1, . . . ,u3]. The vector x consists of
the dynamic x1 and algebraic x2 variables. From these models,
diagnosis test quantities are generated.

State Space Form
The purpose with the diagnosis model is to introduce faults and
health parameters in an easy manner. Since the diagnosis model
is equation based, where algebraic and dynamic constraints are
mixed, some equation transformations are necessary to perform
to get it into a state space form. The first step is to transform
the set of equations in (4) – (5) automatically to a form which
can be used in a diagnosis test quantity based on state space ob-
servers. To get the test equation, two main steps are performed:
(i) check and reduce the DAE index of the system where Pan-
telides algorithm [15] is utilized, and (ii) find the overdetermined
part and remove the exactly determined part using the Dulmage-
Mendelsohn decomposition [16]. For these two steps, the struc-
tural model [17] of the diagnosis model is used. The test equa-
tions of diagnosis model Dk in state space form are:

ẋ1 = fk(x1,u) (6a)
y = hk(x1) (6b)

where x1 is the dynamic variables, u is the known input signals,
and y is the known measurements. The functions fk and hk have
appropriate dimension. The indices k is the same as used in (4) –
(5). In the vector x1, the health parameters and fault are included.
For a more detailed overview of each step, see [8] since these
transformation steps are not trivial.

4 OBSERVER DESIGN
A common solution in the gas turbine diagnosis literature to es-
timate health deterioration is to use state space observers. The
observers are often Kalman based which can be linear [14] and
nonlinear [18, 19, 20]. The main objective in this section is to
design an observer in the form:

˙̂x = f (x̂,u)+K(y− ŷ) (7a)
ŷ = h(x̂) (7b)

for each diagnosis model Di in (4) – (5). The functions f and
h can be non-linear, u represents the input signals, y represents
the measurement signals, and K is the observer gain which can
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be considered as a design parameter. A special type of a non-
linear Kalman filter are a Constant Gain Extended Kalman Fil-
ter (CGEKF) [21]. In the paper, the robustness and stability of
the observer are also investigated. For this kind of filters, the K
matrix is constant and calculated for a given stationary point to-
gether with the noise matrices Q and R. For the diagnosis tests,
K is calculated for the linearization of system (6). The R matrix
is diagonal and is given the noise variance according to Tab. 1 for
each diagonal element. The Q matrix is also diagonal where the
elements representing the model uncertainty of each each state
variable. Especially the states variables of health parameters and
faults have small uncertainty variance, i.e., the dynamics get slow
for these estimation parameters.

TABLE 1: Standard deviation σ of measurement noise in percent.

Sensor Quantity σ

y2 t2 0.05 %

y7 nC1 0.1 %

y1,y2,y3 p2, p3, p8 0.2 %

y5,y6,y8 t3, t7,nT 0 0.2 %

Before the observers are generated, it is necessary to check
if the states are observable. Here, the structural observability cri-
teria in [22] of the linearization of system (6) is considered. For
each diagnosis model Dk in (4) – (5), a Kalman filter CGEKFi is
generated. These Kalman filters are then gathered in a filter bank
which is a part of the FDI system shown in Fig. 5.

5 FAULT ISOLATION METHOD DESCRIPTION
The main objective is to design a fault tolerant FDI system of
an industrial gas turbine application using a bank of Kalman fil-
ters. The FDI system should diagnose single sensor or actuator
faults. The Kalman filters are used to estimate the outputs ŷ and
combine these outputs with the real measurement signals y to get
residuals. These residuals are then filtered and compared with a
given threshold value, which results in a logical test quantity Ti.
The test quantities Ti are then used in the fault isolation logical
component DIAG where the correct diagnoses are determined.
These components create the FDI system where the inputs are
the known quantities such as sensor and actuator signals. The
output is a set of diagnoses which are consistent with the obser-
vations. The FDI system is based on hypothesis testing and there
is one hypothesis for each sensor and actuator failure. Such an
approach is standard in general diagnosis methodology [17] and
similar approach was also utilized in [9].

In the actual application, let Hi denote the hypothesis that
the sensor yi or actuator ui−8 is faulty and let H0 denote the null-
hypothesis that no sensors or actuators are faulty. For each fault
hypothesis Hi the test quantity Ti is designed, given the diagnosis

model Di, where an additional state variable is introduced in the
measurement sensor yi or in the actuator signal u j. If the hypoth-
esis Hi is true, all filters except CGEKFi in Ti can not capture the
faulty sensor or actuator value and the estimations have ideally
a large error. If the hypothesis Hi is true, the estimator CGEKFi
is used to supervise the performance, and if the hypothesis H0 is
true, the estimator CGEKF0 is used.

Residuals
The output from each Kalman filter is an estimation of the state
variables x̂ and the sensor values ŷ. The estimated sensor values
from each filter are used to construct residuals in the form:

ri, j = (ŷi, j− yi, j)/σi, j (8)

where i ∈ [0, . . . ,10], j ∈ [1, . . . ,8], ri, j are the residual, and σi, j
is the standard deviation of ri, j in the fault free case. Since the
measurement sequence is available offline, the residuals can be
normalized with the standard deviation of the residuals in the
fault free case. With this normalization, the signals are in the
same interval.

CUSUM Algorithm
For change detection in signals, low-pass filtering combined with
a static threshold can be considered. A disadvantage with low-
pass filtering is the time response for the detection of a fault. A
more suitable choice for change detection is to use the CUSUM
algorithm [23]. The CUSUM algorithm, together with a static
threshold Ji, j are used to decide if the actual residual ri, j indicates
an abnormal behaviour according to a sensor or actuator fault.
The CUSUM test quantity Ti, j, for each residual, is computed:

Ti, j(t) = max(0, Ti, j(t−1)+ |ri, j(t)|−νi, j), Ti, j(0) = 0 (9)

where t is time, i ∈ [0, . . . ,10], j ∈ [1, . . . ,8], νi, j is a tuning pa-
rameter to ensure that Ti, j(t)< 0 in the fault free case, and |ri, j(t)|
is the absolute value of residual in (8). The threshold Ji, j = J is
equal for all CUSUM tests since the the normalization in (8) was
performed. The test quantity trigger an alarm if Ti, j(t) exceeds
the specified threshold J. The design parameter νi, j is tuned so
the test does not give any unnecessary alarms in the fault free
case. A good rule of thumb is that νi, j has the same order of
magnitude as the residual ri, j in the fault free case, i.e., about 1.

Test Quantity Ti(t)
For each Kalman filter a test quantity Ti(t) is generated (see
Fig. 4). The test quantity of Kalman filter i is constructed as a
logical or operation of the logical expression Ti, j(t)> J for each
CUSUM test in the filter i. This means that if any of the CUSUM
tests Ti, j(t) alarm, the logical test quantity Ti(t) will also trigger
an alarm.
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Diagnosis Procedure
In an ideal case, if a slow varying fault is present in sensor signal
yi all test quantities except Ti(t) should trigger an alarm. In prac-
tise, this is not always true since, e.g., measurement noise, fault
size, and model uncertainty are always present together with the
tuning procedure of the CUSUM tests Ti, j(t). All these things
affect the alarm ability and reaction rate of each test quantity.

Another aspect is the ability of the method to discriminate
between different faults, i.e., isolability properties. It will be
shown that faults in the speed sensor y8 of the power turbine
is difficult to isolate from a fault in the power sensor u2 of the
application.

No Fault Hypothesis Most of the time, when the sys-
tem has no sensor or actuator faults, no tests triggers. To re-
duce unnecessary false alarms, the condition when the system is
faulty is tightened. A design parameter is chosen for how many
tests that need to trigger before an alarm is generated. Thus, if
no more than 5 tests alarm it is assumed that the NF diagnosis
is most probable. When the no fault hypothesis H0 is true, the
CGEKF0 is used to supervise the performance, i.e., the Kalman
filter which utilizes 4 health parameters and no sensor or actuator
faults. The CGEKF0 filter is utilized in the fault free case for best
performance since extra estimation parameters in the sensors al-
ways affect the health estimation negative. Also the performance
degradation of the compressor turbine may be relevant to super-
vise.

Unique Diagnosis Statement If all tests except test
Ti(t) alarm, a unique diagnosis can be selected. When a unique
diagnosis is decided, the performance is supervised with the ob-
server CGEKFi. This Kalman filter utilizes 2 health parameters
to supervise the degradation in the compressor. In this case, the
amplitude of the sensor or the actuator fault can be estimated
with the filter.

Multiple Diagnosis Statement A unique diagnosis is
obtained if all tests except one trigger an alarm. For each test
that exceeds its threshold, a diagnosis candidate from the diag-
nosis set is excluded until only one candidate remain. However,
in certain operating conditions or when the faults are particularly
small, it may be the case that not all tests alarm which they ide-
ally should do. In such a situation, it can be concluded that there

is a fault but the algorithm can not uniquely isolate the faulty
component. In such a situation, for example when all except 3
tests give an alarm, it can be useful to alert the gas turbine op-
erator and generate a so called soft alarm, indicating that it is
not possible to isolate the actual fault, but 3 diagnosis candidates
are available. The value 3 is chosen here since its gives a good
balance between false alarms and missed fault detections for the
considered data set.

When a soft alarm is generated the operator can make three
main decisions for continued operation: (i) wait until a unique di-
agnosis is identified, (ii) check the fault candidates. Some candi-
dates cannot be isolated, e.g., fy8 and fu2 . In this case, it doesn’t
matter which of the observers (not alarming) that are used for
health parameter estimation since it is a strong connection be-
tween the faults, and (iii) further investigation of the health pa-
rameters in the observers which are not alarming. Perhaps give
all filters except one strange estimations of the health parame-
ters. A remaining choice is to stop the operation and replace all
possible faulty sensors.

No Diagnosis Statement Finally, if all tests alarm no
diagnosis is possible under a slow varying single fault assump-
tion. If this case appears in connection with a diagnosis, it can be
assumed that the previous diagnosis is valid. If this case occurs
during a longer period of time, it can be a multiple fault which is
not diagnosable with the presented method. The design param-
eters νi, j and threshold J can also be tweaked so the test is to
sensitive. If an abrupt fault is introduced, all test quantities will
be triggered during a period of time. This happens since the extra
parameter needs time to capture the fault value. In an ideal case,
the correct diagnosis is obtained after this period of time.

Method Summary
The fault isolation method can be summarized in:

1. Calculate the residuals ri, j(t) according to (8), where i =
1, . . . ,n, j = 1, . . . ,m, n is the number of Kalman filters, and
m is the number of measurement signals.

2. Compute the CUSUM test Ti, j(t) of each residual and com-
pare it with a static threshold J according to (9).

3. Obtain the test quantity Ti(t) using a logical or operation of
all Ti, j where j = 1, . . . ,m.

4. If no more than six tests triggers an alarm, use the CGEKF0
filter with 4 health parameters to estimate the performance.

5. If all tests except one are triggered, a unique diagnosis is
obtained. The test which is not triggered can be used to su-
pervise the performance and estimate the sensor fault. If the
diagnosis is not unique, check which tests are not alarmed
and an idea is to investigate how the health parameters are
affected. Another alternative is to wait to see if a unique
diagnosis can be obtained.

The FDI system is shown in Fig. 5 where also the interaction with
the other gas turbine components are shown.
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6 EXPERIMENTAL CASE STUDY
In this section, the FDI system is evaluated on experimental data
from a gas turbine site. The environment air at this site consists
of a high grade of air pollutions such as: sand, salt, oil, and other
contaminations which affect the compressor performance. This
results in compressor fouling frequently, so the customer needs to
shut down the gas turbine for maintenance quite often. In Fig. 1
(solid line), the compressor efficiency and mass flow through the
compressor is estimated with an observer plotted for a time pe-
riod of six month. This observer was developed in [7,8] with two
typical disadvantages when a sensor fault occur: (i) the health pa-
rameters are affected by a sensor or actuator fault (Fig. 1a), and
(ii) the possibility to detect the fault in the residuals disappears
when the fault go back to a constant value (Fig. 1c). In [9], a fault
isolation method was presented. A problem with the purposed
technique is the inability to detect slow varying sensor fault since
the health parameter capture the faulty sensor value. This results
in test quantities which are not alarming. Another disadvantage
with the method is the ability to decouple actuator fault in an
easy manner. In the present work, actuator faults are modeled in
the same way as a sensor fault which is preferred.

In the measurement sequence, compressor washes are per-
formed at day: 15, 56, and 144. Before a compressor wash the
efficiency has degraded 2–3 % from the nominal value. As shown
in the figure, the compressor efficiency is especially sensitive to
a fault in the discharge temperature sensor y5. Therefore, it is im-
portant to detect and isolate the sensor fault before the efficiency
has degraded 2–3 %, i.e., at day 83. The focus in the case study is
on detection and isolation of faults in the sensors: y2 (compres-
sor discharge pressure p3), y5 (compressor discharge temperature
t3), and y6 (exhaust gas temperature t7). These sensor faults are

shown here because they are important for the process and early
investigations show that they are difficult to detect and isolate.

For the evaluation of FDI system, a ramp fault is injected
in each measurement sequence. The injected fault corresponds
to the appearance seen in Fig. 1d. Each injected sensor fault is

TABLE 2: Fault modes and amplitude of injected sensor or actu-
ator ramp faults in percent of the nominal values at the standard
operational condition.

Fault Mode Signal Quantity Amplitude Duration

FNF - - -

Ft2 ,Ft3 ,Ft7 y4,y5,y6 t2, t3, t7 3 (5) % 50 days

Fp1 ,Fp3 ,Fp8 y1,y2,y3 p2, p3, p8 4 (5) % 50 days

FnC1 ,FnT 0 y7,y8 nC1,nT 0 5 % 50 days

Fm f ,FPA u1,u2 m f ,PA 5 % 50 days

denoted with a faulty mode Fi shown in Tab. 2 together with the
fault amplitude in percent of the nominal value. The time scale
of each fault is 50 days.

Sensor Fault in T3 with an Amplitude of 3 %
The proposed approach is first demonstrated on a particularly
difficult fault case with a fault in sensor y5. The considered fault
is a ramp with an amplitude of 3 % of the nominal value and is
shown in Fig. 1d. The aim is to detect, and isolate the fault before
the estimated performance has degrade more than the compres-
sor wash condition which is about 2–3 %. Therefore have the
injected faults an amplitude of > 3%.

In Fig. 6, the residuals of CGEKF2 filter in fault mode Ft3
are compared with the fault mode FNF . The CGEKF2 is selected
in the example because the filter estimates a fault in the pressure
sensor y2 which measure the pressure in the same cross section.
Thus, it is possible to expect that this parameter will pick up the
injected sensor fault and make the detection problem difficult.
In an ideal case when the model is different, all these residuals
should differ from the nominal residuals. As shown in the fig-
ure, three of the residuals: r2,1, r2,3, and r2,4 show only marginal
changes. However, since it is sufficient that only one residual
generates an alarm, the fault will be detected by the test. In Fig. 7
it clearly shows that the CUSUM test quantities based on r2,5 and
r2,6 clearly give an alarm as expected.

The results for all tests Ti are presented in Fig. 8a-j. The
Fig. 8k indicates when a soft alarm (red) and a unique diagno-
sis (blue) are obtained. The unique diagnosis is obtained when
all tests except T5, corresponding to the correct fault mode, have
generated an alarm. Thus, here the diagnosis system draws the
correct conclusion. A soft alarm appears at day 90 if 2.5 % degra-
dation is assumed for the compressor was conditions, which is
about 5 days to late. The actual diagnosis at day 90 are: Dt3 ,
Dt7 , and Dm f which means that tests: T5, T6, and T9 have not
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FIGURE 6: Residuals r2,i of the CGEKF2 when a ramp fault of
amplitude 3 % (red) is injected into the measurement of y5 are
viewed together with residual where no fault (blue) is injected.
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FIGURE 7: CUSUM tests of residuals r2,5 and r2,6.

triggered. At day 105, the unique diagnosis Dt3 is obtained. It is
shown that some false alarms appear at day 45. The false alarm
depends on an abrupt changes in two of the residuals, shown in
Fig. 6a and 6c, for all CGEKFs.

Fault Isolability
To investigate how the fault isolation procedure works for each
fault mode, the evaluation presented in the previous section is
generalized. A ramp fault with an amplitude according to Tab. 2
is injected in each measurement signal and an analysis corre-
sponding to Fig. 8 is performed. The diagnosability for each fault
mode is presented in Fig. 9. According to Fig. 9, the fault modes:
Fp1 , Fp3 , Fp8 , Ft2 , Ft3 , FnC1 , and Fm f are isolable for the consid-
ered fault signals. Thus, all faults can not be isolated from each
other. According to Fig. 9, a fault in the temperature sensor y6 is
not isolable from a fault in the mass flow sensor u1. However, it
turns out that the opposite is true, a fault in u1 is isolable from a

(a) T1 (b) T2 (c) T3 (d) T4

(e) T5 (f) T6 (g) T7 (h) T8

30 90 150
(i) T9

30 90 150
(j) T10

30 90 150
(k) D

30 90 150
(l) −

FIGURE 8: All test quantities Ti in the FDI system are shown
when a fault in the sensor y5 is injected. These tests result in a
diagnosis candidate set D. When all tests except one exceeds its
threshold a unique diagnosis statement (blue) is available. When
all tests except 3 exceeds its threshold, a soft alarm (red) is gener-
ated. When all tests alarm (black) fault isolation is not possible.
For the unique diagnosis, all tests except test T5 alarm.

(a) Fp1 (b) Fp3 (c) Fp8 (d) Ft2

(e) Ft3 (f) Ft7 (g) FnC1 (h) FnT 0

30 90 150
(i) Fm f

30 90 150
(j) FPA

30 90 150
(k) FNF

30 90 150
(l) −

FIGURE 9: The figure shows all modes when the faults from
Tab. 2 are added to the input/output signals. For the soft alarm
(red) all test except 3 need to be triggered, and if all test except 1
triggered (blue) a unique diagnosis is obtained. If all tests trigger
(black), the single fault diagnosis assumption is not valid.

fault in y6. None of the fault modes: FnT 0 , and FPA can be isolated
from each other. For example, an extra estimation parameter in
the power signal can capture a fault in the speed sensor, and vice
versa.

Sensor Fault in p3, T3, and T7 with an Amplitude of 5 %
The problem illustrated in previous section where it is not pos-
sible to uniquely isolate the faults is related to fault sizes; the
bigger the amplitude of the faults are, the easier are they to de-
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tect and isolate. To further illustrate this, faults in the sensors:
y2,y5, and y6 with increased fault sizes (5 %) are investigated.
The diagnosis schemes for the faulty modes are shown in Fig. 10.
The isolation property of Ft3 increases, while a soft alarm is now

30 90 150
(a) Fp3

30 90 150
(b) Ft3

30 90 150
(c) Ft7

FIGURE 10: The diagnosis statements when the sensor faults in
y2,y5, and y6 are increased to 5 %.

generated at day 77 which is before the compressor wash condi-
tion is triggered. The faulty mode Ft7 is now isolable, while the
performance of Fp3 is nearly the same as before. A fault in pres-
sure sensor y2 affect the health parameter estimation according to
Fig. 11. Thus, since the health parameter increases it is enough
to isolate the fault before the compressor wash is performed at
day 144. The fault in y2 is isolated at day 115.

t

[%]

[days]0 30 60 90 120 150

−2

0

2

FIGURE 11: Health parameter estimation of ∆ηC1 with the
CGEKF0 when a sensor fault in y2 is present with amplitude:
0 % (solid), 3 % (dashed), and 5 % (dotted).

Fault Tolerant Performance Estimation
The estimated states by the Kalman filters are used for: (i) su-
pervision of performance degradation, and (ii) as input signals to
the controller. The estimated states depend on the actual sensor
or actuator fault mode of the system. When the null-hypothesis
H0 is valid, the states are estimated with the CGEKF0 filter. In
case when a unique diagnosis is achieved, the test which has not
exceeds its threshold is used to estimate the states. The actual
fault can also be estimated. In other cases, when a soft alarm is
generated, any of the remaining tests can be used to estimate the
states, i.e., the tests which have not exceed its threshold.

In Fig. 12, the health parameters are shown for the fault
modes: FNF , Fp3 , Ft3 , and Ft7 . The estimated health parameters
for the faulty modes are not so good as in the non faulty case, but
it is clear that the estimates clearly outperform the initial situation
shown in Fig. 1a and Fig. 11. A fault in y5 has a strong influence
on the health parameter ∆ηC1 while a fault in y6 is unaffected.
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2

(a) Parameter ∆ηC1 – NF (red), fault in y2 (dotted), y5 (solid), and y6
(dashed).
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(b) Parameter ∆ΓC1 – NF (red), fault in y2 (dotted), y5 (solid), y6
(dashed).
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(c) Estimated sensor fault (solid) when injected in y5 (dashed).

FIGURE 12: Health parameter estimations in the case of a fault.

7 CONCLUSION
An undetected sensor or actuator fault affects the performance
estimation in an industrial gas turbine. Especially slowly vary-
ing sensor faults are difficult to detect and isolate. Thus, it is of
great importance to have a FDI system which can estimate the
performance even if a sensor or an actuator fault has occurred.
The performance estimations are used to, e.g., decide if it is time
to wash the compressor. It is desirable, if the sensor fault can be
diagnosed before an unnecessary compressor wash is performed.

The developed FDI system consists of a bank of logical test
quantities and a fault isolation component. A test quantity is de-
signed for each fault mode and consists of a CGEKF which is
used to detect abnormal behaviour in the residuals and estimate
the performance using a number of health parameters. The ad-
vantage with the proposed method is the ability to consider ac-
tuator fault in the same manner as sensor faults. In a case of a
fault, an extra parameter is used to estimate the fault at the same
time as it compensates for the error in the residuals. This results
in a test quantity which is not sensitive to the fault and is used to
estimate the performance.

In the experimental case study, changes in all gas path pa-
rameters are detectable and isolable given the considered fault
size. In the occurrence of a sensor fault and if a unique diagnosis
statement is possible, the proposed algorithm switches to a spe-
cific Kalman filter that provides performance estimates that are
not affected by the sensor fault. It is shown, using experimental
data from a gas turbine site, that unnecessary stops according to
faulty sensors can be avoided if the proposed approach is utilized.
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NOMENCLATURE
FDI Fault Detection and Isolation System
CGEKF Constant Gain Extended Kalman Filter
C1 Compressor
T1, T0 Compressor- and power turbine
Dk Diagnosis model k
λ Air/fuel ratio
∆ηi Health parameter of efficiency in comp. i
∆Γi Health parameter of flow capacity in comp. i
p2, p3, p8 Pressure at cross section i in [Pa]
t2, t3, t7 Temperature at cross section i in [K]
nC1,nT 0 Speed of C1 and T0 in [rpm]
y1,y2,y3 Measurement signals of p2, p3, p8
y4,y5,y6 Measurement signals of t2, t3, t7
y7,y8 Measurement signals of nC1,nT 0
ri, j Residual of CGEKF i and sensor j
Ti Test quantity i
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