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A formulation of an offline motion-planning method for avoidance maneuvers based on a lane-deviation penalty function is proposed,
which aims to decrease the risk of a collision by minimizing the time when a vehicle is outside of its own driving lane in the case of
avoidance maneuvers. The penalty function is based on a logistic function. The method is illustrated by computing optimal maneuvers
for a double lane-change scenario. The comparison with minimum-time and squared-error norm maneuvers shows that the use of the
considered penalty function requires fewer constraints and decreases the time that the vehicle stays in the opposing lane. The same
objective function, whose parameters are dependent on the road configuration, allows to obtain trajectories for varying obstacles with
many similarities between trajectories. This property is desirable for reuse of the resulting maneuvers in an online motion planner.

1 INTRODUCTION

Development of (semi-)autonomous vehicles allows utilization
of new optimal driving approaches that could increase vehicle
safety by combining optimal all-wheel braking and steering in
at-the-limit operation. Sophisticated offline methods are avail-
able to obtain an accurate motion plan in time-critical situations
using nonlinear optimization techniques together with realistic
tire and chassis models, see, e.g., [1]. Available vehicle and tire
models allow studying aggressive vehicle maneuvers, for exam-
ple a pendulum-turn maneuver, with results matching data ob-
tained from a racing car [2].

Results from offline motion-planning studies of evasive ma-
neuvers have been used, for example, to develop a better closed-
loop longitudinal controller for online use [3]. The development
of autonomous vehicles drives the interest for online motion
methods that are feasible to use onboard, but still capture desired
properties of the complex vehicle dynamics.

An approach for making complex vehicle models tractable
for online motion planning is to use a maneuver-based plan-
ner, where a database of maneuvers created offline is used to
obtain a motion plan. Such an approach is in [4] shown to work
for motion planning of a small aerobatic helicopter. The same
general approach can also allow to design a motion planner for
time-critical situations of ground vehicles. An example of such
a situation is a double lane-change maneuver. That maneuver is
considered in this paper and is inspired by the ISO double lane-
change test [5], which is also known in Scandinavian countries
as the “moose test” (i.e., the investigation of an evasive maneu-
ver for a moose on the road, see Figure 1).

To obtain maneuvers for a database, optimization techniques
to find optimal maneuvers for the considered setup can be used.
For that purpose, an objective function should be selected. Com-
mon ways to obtain at-the-limit maneuvers are to minimize the
final time of the maneuver [1] or to split the maneuver into sev-
eral segments with different optimization criteria [6]. Such ap-
proaches often lead to extreme values of the vehicle state vari-
ables (e.g., high vehicle sideslip values and maximum utilization
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Figure 1: Sketch of the double lane-change maneuver with a po-
tential obstacle.
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Figure 2: The single-track model.

of the tire forces), without necessarily taking a passenger’s per-
spective into account. It is dangerous for the vehicle to be in the
opposing lane, but it is safe to drive in the original lane again
after the obstacle. To capture this idea, we use a lane-deviation
penalty (LDP) objective function to avoid obstacles, which pe-
nalizes being outside of the own driving lane.

2 MODELING

The single-track model (see, e.g., [7]) is used to describe the
vehicle dynamics with the following equations:

v̇x − vyψ̇ =
1

m
(Fx,f cos(δ)− Fy,f sin(δ)) ,

v̇y + vxψ̇ =
1

m
(Fy,f cos(δ) + Fx,f sin(δ)) ,

IZ ψ̈ = lfFy,r cos(δ)− lrFy,r + lfFx,f sin(δ),

v̇x − vyψ̇ =
FX
m
, v̇y + vxψ̇ =

FY
m
,IZ ψ̈ =MZ ,

where vx, vy are the longitudinal and lateral velocities at the
center-of-gravity, ψ̇ is the yaw rate, δ is the steering angle, Fx,i,
Fy,i, i ∈ {f, r}, are the longitudinal and lateral forces for the
front and the rear wheels, respectively,m is the vehicle mass, lf ,
lr are defined in Figure 2, IZ is the vehicle chassis inertia in the
yaw direction, and FX , FY , and MZ are the global forces.

The slip angles αi and slip ratios κi are defined as in [8]:

α̇i
σ

vx,i
+ αi = −arctan

(
vy,i
vx,i

)
, κ =

Rωωi − vx,i
vx,i

, i ∈ {f, r},



where σ is the relaxation length, Rω is the wheel radius, ωi is
wheel angular velocity for wheel i, vx,i and vy,i are the longitu-
dinal and lateral wheel velocities for wheel i, with respect to its
own coordinate system.

The wheel dynamics are given by (see [1])

Ti − Iωω̇i − Fx,iRω = 0, i ∈ {f, r},

where Ti is the driving/braking torque and Iω is the wheel iner-
tia.

The nominal tire forces Fx0,i and Fy0,i are computed using
the Pacejka Magic Formula model [8]:

Fx0,i = µx,iFz,i sin(Cx,i arctan(Bx,iκi

−Ex,i(Bx,iκi − arctan(Bx,iκi)))),

Fy0,i = µy,iFz,i sin(Cy,i arctan(By,iαi

−Ey,i(By,iαi − arctan(By,iαi)))),

for each wheel i ∈ {f, r}, where µx and µy are the friction coef-
ficients and B, C, and E are model parameters.

The forces under combined longitudinal and lateral slip are
calculated using weighting functions Gxα,i and Gyκ,i [8] for the
longitudinal and the lateral directions:

Hxα,i = Bx1,i cos(arctan(Bx2,iκi)),

Gyα,i = cos(Cxα,i arctan(Hxα,iαi)),

Fx,i = Fx0,iGxα,i,

Hyκ,i = By1,i cos(arctan(By2,iαi)),

Gyκ,i = cos(Cyκ,i arctan(Hyκ,iκi)),

Fy,i = Fy0,iGyκ,i, i ∈ {f, r},

where B and C are model parameters.
The models were implemented using the Modelica language

[9], and numerical optimizations were performed using the plat-
form JModelica.org and the Ipopt software package for nonlin-
ear optimization [10], together with the MA57 linear solver [11].
Further details on the implementation and optimization of the
models are available in [1].

3 OPTIMAL CONTROL PROBLEM

This section describes how the motion-planning problem of the
double lane-change maneuver is represented as an optimal con-
trol problem. The particular choice of the parameters and pre-
requisites for the problem is given.

3.1 Formulation of the Optimal Control Problem

To represent the objective function and road constraints in the
optimization, a function H̃ar

ao
(a) is used that represents a smooth

approximation of the Heaviside step function with an offset ao
and a rising distance ar, which is also known as the logistic func-
tion (see Figure 3):

H̃ar
ao
(a) =

1

2
+

1

2
tanh

(
π

ar
(a− ao)

)
. (1)

Figure 3: Example of the H̃ function for ao = 2 and ar = 1.

To obtain optimal trajectories with the considered penalty
function, the motion-planning problem for the studied double
lane-change maneuver is formulated as an optimization problem
in the following way:

min.
∫ tf

0

H̃Yr
Yo
(Y (t))dt (2)

s.t. Ti,min ≤ Ti ≤ Ti,max,
∣∣∣Ṫi∣∣∣ ≤ Ṫi,max, i ∈ {f, r},

|δ| ≤ δmax,
∣∣∣δ̇∣∣∣ ≤ δ̇max,

√
v2x + v2y < v0, (3)

X(0) = X0, Y (0) = Y0,ψ(0) = 0, ψ(tf ) = 0,

vX(0) = v0, vY (0) = 0,X(tf ) = Xtf , Y (tf ) ≤ Ytf ,

Ybb(X(t)) ≤ Y (t), ẋ = G(x,u), h(x,u) = 0.

where Yo and Yr define the LDP and tf is the total time of the
maneuver, which is unknown a priori. The projection on the Y-
axis of the LDP used in the objective function is shown with the
purple curve in, for example, Figures 4 and 5. The vehicle dy-
namics, ẋ = G(x,u), is formulated for the states x and inputs u:

x = {X,Y,ψ, ψ̇, Tf , Tr, δ, vx, vy, ωf , ωr αf , αr},

u = {δ̇, Ṫf , Ṫr}.

The tire dynamics is formulated as h(x,u) = 0. The wheel
driving/braking torque Ti, i ∈ {f, r}, and the steering angle δ
are bounded as well as their first derivatives. The drivable area
is bounded below for Y (the position of the center-of-mass of
the vehicle) by the function Ybb(X(t)) representing the bottom
boundary. The vehicle starts the movement at the point (X0, Y0)
with the velocity v0 and zero heading (ψ = 0). The final point
is defined to be at Xtf with zero heading and below Ytf , where
the last condition is imposed, such that the vehicle ends on an
appropriate lane position.

The common way to navigate a double lane-change maneuver
(as it is also described in the standard [5]) is to only use braking
with the throttle released, so the maneuver is performed without
an increase in the velocity. The analysis in [3] showed the im-
portance of speed in some avoidance scenarios. In this paper, the
default version of the maneuver that we consider allows posi-
tive acceleration, but the velocity is upper bounded by the initial
velocity v0.

The bottom boundary of the drivable area Ybb(X(t)) is defined
as:

Ybb(X(t)) = Ybbp(H̃
Xr
Xou

(X(t))− H̃Xr
Xod

(X(t))), (4)

whereXou andXod define points on theX-axis where the bottom
boundary goes up and down in the Y-direction, respectively, Xr
determines the sharpness of the transition, and Ybbp defines the
peak value for the bottom boundary.

3.2 Optimization Prerequisites

The maximum allowed wheel angle δmax and wheel-angle
change rate δ̇max are set to 0.5 rad and 1 rad/s, respectively.

The vehicle starts at the point X0 = 0m and Y0 = 1m in XY
coordinates with the default initial velocity v0 = 70km/h along
theX-axis and zero velocity along the Y-axis. The vehicle moves
in the positive direction of X . The final point is at Xtf = 100m
and below Ytf = Y0.

The final pointXtf is set to 100m, which is more than defined
by the maneuver illustrated in Figure 1, where the maneuver is
shown with a total length along the X direction of 61m. Addi-
tional distance is added to verify that the vehicle goes back to the
own lane and could follow it. Since the last meters of the ma-
neuver, usually, are less critical from the lane-change perspec-
tive, most further plots are for illustration purposes presented in



Table 1: Chassis and wheel parameters. Adopted from [1] for the
single-track model.

Notation Value Unit Notation Value Unit
lf 1.3 m Rω 0.3 m
lr 1.5 m Iω 4.0 kgm2

m 2100 kg σ 0.3 m
IZ 3900 kgm2 g 9.82 ms−2

Table 2: Tire-model parameters for dry asphalt from [8].
Notation Front Rear Notation Front Rear
µx 1.2 1.2 Ey -1.21 -1.11
Bx 11.7 11.1 Bx1 12.4 12.4
Cx 1.69 1.69 Bx2 -10.8 -10.8
Ex 0.377 0.362 Cxα 1.09 1.09
µy 0.935 0.961 By1 6.46 6.46
By 8.86 9.3 By2 4.20 4.20
Cy 1.19 1.19 Cyκ 1.08 1.08

a truncated form to highlight the most interesting parts of the
maneuver.

The lower and upper constraints on the torque inputs are cho-
sen as:

Ti,min = −µx,iRωmg, i ∈ {f, r},

Tr,max = µx,rRωFz0,r, Tf,max = 0,

where the nominal load Fz0,r is given by mglr/(lr + lf ) and g
is the gravitational acceleration constant. The constraint on the
derivate of the torque inputs is chosen as:

Ṫi,max = 2.5µx,iRω, i ∈ {f, r}.

The parameters for the objective function (2) are set to
Yo = 2 m and Yr = 2m, and the parameters defining the bound-
aries of the drivable area are set to Xou = 23.5m, Xod = 36.5m,
Xr = 2m, and Ybbp = 4m.

The constraints for the vehicle position are imposed on the
center-of-mass. All boundaries of the drivable area are adjusted
based on the consideration that the full vehicle chassis in the
middle of the lane has unoccupied space of 1m on both sides,
making the width of the drivable lane 2m in total.

The values for the chassis and wheel parameters are provided
in Table 1. The values of the tire parameters are presented in
Table 2.

4 PARAMETER VARIATIONS

Motivated by the desire to create a sparse data set of maneuvers,
we are interested in studying changes in the resulting trajectories
for different parameter variations. In this section, we study vari-
ations in the problem for the obstacle width and length, for the
distance to the obstacle, as well as for the initial velocity of the
vehicle and influence of steering dynamics.

4.1 Obstacle Width

Variations in the obstacle width w, i.e., the road width occupied
by the obstacle along the Y-direction, are studied. The obtained
paths are shown in Figures 4. The same LDP objective (2) is
used for all optimizations with parameters that are motivated by
the road width, but the bottom drivable area is modified, namely
Ybbp in (4). The shapes of the XY-paths are very similar when
comparing different widths of the obstacle. The increase in the
obstacle width shows an expected increase in the extreme values
for the vehicle orientation ψ.

In Figure 4, the velocity profiles for obstacles up to 4.5m
width have almost the same shape for the major part of the ma-
neuver. For wider obstacles, the velocity profiles are no longer
the same, but they change in a predictable manner. For the ob-
stacle width w = 2m, which allows the vehicle to perform a ma-
neuver without leaving its own lane, the optimal steering strategy

differs for the middle part of the maneuver (δ in Figure 4), be-
cause the LDP penalty around Y = 2m has a nonzero gradient,
so steering toward the obstacle is optimal.

Figure 4: Paths and selected vehicle variables found for differ-
ent obstacle widths (in meters), with the initial velocity v0 =
70km/h. The same LDP objective, but different Ybbp is used.
Red arcs show the top boundaries of the obstacle for different
obstacle widths.

4.2 Obstacle Length

Several paths, where the length l of the obstacle, i.e., the size of
the obstacle along the X-direction, is varied from 5m to 20m,
are shown in Figure 5. The shapes of the paths, where the ob-
stacle lengths are in the range 5–11 meters, are different from
the shapes where the obstacle lengths are 15 and 20 meters. The
difference corresponds to different extreme values of the vehicle
orientation ψ around X = 40m. The vehicle orientation for the
first set of paths could be approximated with straight lines be-
tween extrema around X = 20m and X = 40m, but for the sec-
ond set, there is a noticeable bend between these points, which
also corresponds to a change in the steering direction for the cor-
responding segment.

For the considered optimization formulation, it is beneficial
to immediately return to the original lane once the obstacle is
passed. In all obtained maneuvers, the shape of the XY-path is
such, that the vehicle touches the farthermost corner of the ob-
stacle. Information about the obstacle length in optimizations re-
sults in different optimal steering strategies and different velocity
profiles (Figure 5) for X > 20m.

Figure 5: Paths and selected vehicle variables found for differ-
ent lengths of the obstacle (in meters), with the initial velocity
v0 = 70km/h. The same LDP objective is used. Red arcs show
the farthermost corner of the obstacle for different widths. All
obstacles start at the same X coordinate.

4.3 Initial Velocity

Several maneuvers were computed with different initial veloci-
ties v0 (see Figure 6). The velocity profiles for v0 from 50 km/h



up to 70 km/h are almost equidistant from each other when
plotted over X. This property could be used to predict an inter-
mediate velocity profile for the range in between. The velocity
profiles for v0 = 80 km/h and v0 = 90 km/h have a different
behavior; the vehicle slows initially down more to be able to per-
form the maneuver.

For a relatively low initial velocity (50–60 km/h), the vehicle
behavior is different compared to higher initial velocities; the ve-
hicle first drives to the right relative to its direction of movement
and then drives to the left to avoid the obstacle.

Figure 6: Paths and selected vehicle variables found for different
initial velocities v0 (km/h). The same LDP objective is used.

4.4 Distance to the Obstacle

Paths and selected variables for different initial distances to the
obstacle are presented in Figure 7. The major parts of the shown
state variables for different distances are very similar to each
other, with some shift along the X-variable. Similarly to the re-
sults in Figure 6, the vehicle in Figure 7 steers opposite to the
obstacle-avoidance direction in the beginning of the maneuver.

Figure 7: Paths and selected vehicle variables found for dif-
ferent obstacle distances (in meters), with the initial velocity
v0 = 70km/h. The LDP objective is used. Red arcs show the
top boundaries of the obstacle for different obstacle distances.

4.5 Maximum Steering Speed

One of the limiting factors for avoiding an obstacle at a given
initial velocity is the steering dynamics of the vehicle steering
servo. Lower bandwidth of the steering servo affects the steer-
ing strategies that are applicable in a certain scenario. Several
trajectories were obtained for different values of the maximum
steering rate, δ̇max. The resulting XY-paths are very similar, but
with lower values of the objective function for higher allowed
steering rates. Lower values of δ̇max were limiting the pendulum-
like steering behavior, noticeable by variations in the optimal
steering and vehicle orientation before the obstacle.

4.6 Comments on Minimum Stopping Distance

In the case of a sudden obstacle appearance on the way of a
car, there could be several different choices to try to cope with
the situation. This paper mostly focuses on studying avoidance
maneuvers by using the space in the opposing traffic lane. An
alternative approach is to apply an emergency braking maneuver
if possible.

For the considered setup, the minimum stopping distance
varies from 9.7m to 29.3m for initial velocities in the range
from v0 = 50km/h to v0 = 90km/h. For the highest velocity,
the vehicles is not able to stop completely before the obstacle,
decreasing the speed from 90km/h to 42.3km/h right before
it. For v0 = 80km/h, the minimum stopping distance is 23.4m,
which means that the vehicle is able to completely stop before
the obstacle, but results in an aggressive peak deceleration of
about 11.8m/s2. In practice, it could be a dangerous maneu-
ver to perform, also because of the vehicles behind in the same
lane. Considering uncertainties in the tire-road friction estima-
tion and vehicle parameters, the total stopping distance could be
significantly longer than estimated. For the same initial velocity,
v0 = 80km/h, decrease in the distance would omit the possibil-
ity of a safe stop, but it is still possible to make an avoidance
maneuver for the same initial velocity, as it is shown in Figure 8.

Figure 8: Paths and selected vehicle variables found for dif-
ferent obstacle distances (in meters), with the initial velocity
v0 = 80km/h. The LDP objective is used. Red arcs show the
top boundaries of the obstacle for different obstacle distances.

5 LDP COMPARISONS AND VARIATIONS

In this section, solutions to the considered problem using the
LDP objective function are compared with solutions obtained
using the minimum-time objective function. Several variations
of the problem are considered to study the benefit of the observed
pendulum-line behavior of the vehicle before the obstacle.

5.1 Comparison of Objective Functions

A comparison of the solutions to the optimization problem with
the LDP objective function and minimum-time objective func-
tion is shown in Figures 9 and 10. Two variants of minimum-
time optimization are considered: an minimum-time (MT) for-
mulation with the same constraints as for the LDP case, which
results in paths where the vehicle is comparably slower to return
to the original lane (Figure 9), and an minimum-time with a top
boundary (MTTB) formulation, where an additional lane-change
boundary is added (the red dotted line in Figure 10), which is
formulated as:

Y (t) ≤ Ytb

Ytb(X(t)) = Yrw − Ytbp(1− H̃Xr
Xotu

(X(t)) + H̃Xr
Xotd

(X(t))),

where Ytbp is the road width and Xotu, Xotd are the points where
the top boundary goes up and down, respectively. The values



of these parameters used in the optimization are 4, 12, and 47
meters, respectively.

Figure 9: Paths and selected vehicle variables found for different
initial velocities (km/h) and objectives (LDP and MT). The solid
lines show the results for the LDP formulation and the dashed
lines show the results for MT. The same constraints for all cases.

Figure 10: Paths and selected vehicle variables found for differ-
ent initial velocities (km/h) and objectives (LDP and MTTB).
The solid lines show the results for the LDP formulation and the
dashed lines show the results for MTTB. The additional bound-
ary in MTTB is shown as the red dotted line.

The tire-road friction admits the vehicle in MTTB optimiza-
tions to keep the maximum allowed velocity (which is equal to
the initial velocity for the cases considered). However, in the
MTTB case, the vehicle stays in the opposing lane for a longer
time compared to the LDP optimization. Table 3 compares the
time the vehicle is in the opposing lane and the maximum ac-
celeration for a given optimization criterion and initial velocity.
LDP optimizations give paths and trajectories that are safer in
terms of the time that the vehicle stays outside its own lane. At
the lower initial velocity, that difference is bigger (60%) than
at the higher velocity (15%). Compared with MTTB optimiza-
tions, LDP optimizations result in higher changes in longitudinal
ax and lateral ay accelerations, as well as bigger body-slip an-
gle β (see Figure 10). The difference is caused by combination
of the imposed speed limit (3) and the MTTB objective function
(minimum-time), so the longitudinal component of the acceler-
ation for MTTB trajectories is almost zero, resulting in lower
values for the maximum acceleration (Table 3).

An alternative approach to formulate the objective function
was evaluated by penalizing the integral squared-error norm
(SEN) of lateral displacement that was used in [6] for the recov-
ery part of the double lane-change maneuver. Here, it is applied
for the full maneuver by using the following objective function:∫ tf

0

(Y (t)− Y0)2dt.

This function exhibits similar results compared to LDP opti-
mizations in terms of trajectories (Figure 11), but the time in the

opposing lane is 12% and 2% longer for the low (50km/h) and
the high (70km/h) velocity, respectively. Also, more aggressive
braking after the obstacle is obtained, since the vehicle tries to
return to the original lateral position, not just to its own lane.
The lateral accelerations are very similar for LDP and SEN with
differences for the area where X = 30–40m, where for the SEN
optimization the vehicle steers more aggressively (δ in Figure
11) and for the slower velocity the slip angle is smaller for this
part (dotted blue line in Figure 11).

Figure 11: Paths and selected vehicle variables found for dif-
ferent initial velocities (km/h) and objectives (LDP and SEN).
The solid lines show the results for the LDP formulation and the
dashed lines show the results for SEN.

5.2 Pendulum-Like Behavior

At the beginning of the maneuver for the low velocities in the
LDP optimizations, the vehicle steers in the opposite direction
of obstacle avoidance (the vehicle orientation ψ and the steering
angle of the maneuver δ decrease in Figure 10). This behavior
might be counterintuitive, but it is optimal for the considered
problem formulation. The scale of pendulum-like movements is
limited by the width of the initial straight road considered in this
double-lane change scenario. This scale is much smaller here
than the scale of the pendulum-turn maneuver from racing driv-
ing experiments studied in [2].

Interesting to note is that even with a modification of the driv-
able area before the obstacle:

Y mod
bb (X(t)) = 1+ (Ybbp − 1)H̃Xr

Xou
(X(t))− YbbpH̃

Xr
Xod

(X(t)),

such that the vehicle is unable to take the right side of its lane,
it is still optimal to perform pendulum-like movements for the
vehicle orientation and steering (Modv1 LDP in Figure 12).

Only when the minimum value of the steering variable δ is set
to zero before the obstacle (the vehicle is unable to steer to the

Table 3: Time interval the vehicle is outside its own lane
(Y > Y0) and maximum acceleration for different initial ve-
locities and objectives.

Name \v0 50km/h 70km/h
LDP 1.64 s 9.6m/s2 1.57 s 10.0m/s2

MT 3.61 s 4.7m/s2 2.47 s 6.5m/s2

MTTB 2.66 s 4.6m/s2 1.80 s 7.4m/s2

SEN 1.85 s 9.3m/s2 1.60 s 9.3m/s2

Modv1 LDP 1.68 s 9.6m/s2 1.59 s 10.0m/s2

Modv2 LDP 1.69 s 9.7m/s2 1.57 s 10.0m/s2



Figure 12: Paths and selected vehicle variables found for differ-
ent modifications of the LDP problem formulation, with the ini-
tial velocity v0 = 50km/h. The red dashed line shows the mod-
ification of the bottom boundary, Y mod

bb (X(t)), for Modv1 LDP.

right before the obstacle), the resulting optimal trajectory does
not have the pendulum-like behavior (straight lines for δ and ψ
initially for Modv2 LDP in Figure 12). The steering constraint is
formulated as:

δ ≥ δmin(X(t)),

where δmin(X(t)) is defined as:

δmin(X(t)) = −δmaxH̃
Xr
Xoδ

(X(t)),

where Xoδ = 15m.
The observed pendulum-like behavior allows the vehicle to

stay in the opposing lane for a shorter time. When it is prohib-
ited (Modv2 LDP in Table 3), the vehicle stays outside its lane
2.5% longer time, for the same initial velocity. For the high ve-
locity, there is almost no difference, but such a pendulum-like
behavior appears if a sufficiently long distance to the obstacle
is available for the higher velocities (see Figure 7). The longer
the distance, the more significant such behavior is, i.e., if time
allows it is advantageous to control the vehicle to achieve pen-
dulum behavior.

6 DISCUSSION AND CONCLUSIONS

A lane-deviation penalty (LDP) motion-planning formulation
was considered. It is based on a smooth approximation of the
Heaviside step function, i.e., the logistic function. The same sin-
gle objective function is used to obtain the full maneuver, only
constraints implied by the road and obstacle are needed.

The LDP maneuvers obtained for different parameter varia-
tions show that the paths and the state variables have many sim-
ilarities for the different optimizations with LDP objective (e.g.,
Figures 6 and 7). This property supports the idea of a maneuver-
based online motion-planner for future development, where in-
termediate maneuvers are obtained by interpolation of the model
inputs and simulation of the vehicle model.

Use of LDP also results in maneuvers with pendulum-like be-
havior before the obstacle. It is noticeable at low initial velocities
(Figure 6) or longer obstacle distances (Figure 7), i.e., if time
to the obstacle permits. The scale of the maneuver is observed
to be much smaller than in previous studies of the pendulum
maneuver. The available time before the obstacle is one of the
limiting factors for pendulum-like maneuvers to be feasible and
optimal for the used formulation. Also the performance of the
steering servo and the width of the obstacle (Figure 4) are limit-
ing the application of the pendulum-like maneuvers. For the ma-
neuver to be effective, there should be a drivable space available
on the side of the vehicle opposite to the avoidance maneuver
(Figure 12).

Results for the high initial velocity (Figure 5) and additional
optimizations for the low initial velocity showed that the length

of the obstacle has no significant influence on the maneuver be-
fore the obstacle.

This paper studies evasive maneuvers, but it was also con-
cluded that for the default version of the considered setup, v0 =
80km/h is the maximum initial velocity when it is still possible
to fully stop before the obstacle.

No significant difference in computational complexity was
observed between different optimization formulations since the
total time of the maneuver is computed as part of the optimiza-
tion in all cases.

Maneuvers from LDP-based optimizations, a minimum-time
approach, and minimization of an integral squared-error norm
from previous research were compared using an evaluation cri-
terion (Table 3). The evaluation criterion was based on the con-
sideration that the main danger in the double lane-change ma-
neuver is proportional to the time a vehicle is forced to be in the
opposing traffic lane. The LDP formulation allows to decrease
this time. Lower initial velocities and longer distances to the ob-
stacle give higher gains from LDP by employing pendulum-like
maneuvers.
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