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To decrease the complexity of motion-planning optimizations, a segmentation and merging strategy for maneuvers is proposed. Ma-
neuvers that are at-the-limit of tire friction are of special interest, since they appear in many critical situations. The segmentation
points are used to set constraints for several smaller optimization problems for parts of the full maneuver, which later are merged and
compared with optimizations of the full maneuver. The technique is illustrated for a double lane-change maneuver and for a 90◦-turn
maneuver. The results are obtained for the case when the desired splitting points are directly available from a database and when a
linear interpolation of available splitting points is used. The resulting segmented and merged paths are close to optimal, with other
state variables showing good match with the optimal solutions in general.

1 INTRODUCTION

Self-driving cars recently got a lot of attention, as well as other
technologies that are used by them. Several competitions were
held to promote driverless vehicle technology, notable examples
are DARPA Grand Challenge and DARPA Urban Challenge, as
well as events by private companies, of which one is the au-
tonomous drive of the Bertha-Benz historic route [1]. With the
development of new sensors, improved situation awareness, and
increased available computation power, the cars could be made
safer and more reliable, for example by making optimal deci-
sions and maneuvers in case of a potentially dangerous situa-
tion [2]. One step to achieve this is to use online motion plan-
ners with realistic vehicle dynamic models [3]. A long planning
horizon and a high re-planning frequency usually give a safer op-
eration of the vehicle. However, with the increase of the planning
horizon, the complexity of the motion-planning problem grows
rapidly [4]. To decrease complexity, we are interested to split
the full motion-planning problem into several segments, which
are easier to solve, but still with close to optimal overall behav-
ior. The research is in this paper illustrated with two example
scenarios—a double lane-change maneuver, which is inspired by
the double lane-change test (ISO 3888-2:2011), and a 90◦-turn
maneuver.

Using the optimization formulation for motion planning of the
double lane-change maneuver from [5], the optimal trajectories
were obtained for varying parameters of the problem: initial ve-
locity, distance to the obstacle, and length and width of the obsta-
cle. With a modification of the formulation in [5], trajectories for
the 90◦-turn maneuver were obtained by varying initial velocity
as well as entry and exit distances of the turn. By analyzing the
obtained trajectories, it was noticed that there are several points
that split the trajectories by different behavior. These segmenta-
tion points are used to perform optimizations for smaller parts of
the full problem, to later combine them into the trajectory of the
full considered maneuver.

2 MODELING AND OPTIMIZATION

The models and parameters for a passenger vehicle are adopted
from [6], where the model is referred to as ST WF. The model
includes a single-track (ST) model for the chassis, the Pace-
jka Magic Formula [7] with weighting functions (WF) to com-

pute the tire forces [7], and a first-order system for the wheel
dynamics. The vehicle and tire dynamics are formulated as
G(ẋ,x,u) = 0 and h(x,u) = 0 for the states x and inputs u. The
front wheel braking torque, Tf , the rear wheel driving/braking
torque, Tr, and the steering angle, δ, are considered as the inputs
with bounding constraints for the variable and the first derivative
for all input variables.

The models were implemented using the Modelica lan-
guage [8], and numerical optimizations were performed us-
ing the JModelica.org platform [9] and Ipopt software package
for nonlinear optimization [10] together with the MA57 linear
solver [11].

2.1 LDP for Double Lane-Change Maneuver

For the double lane-change maneuver (DLM), the track con-
straints for the full optimizations are formulated as in [5], with a
smooth approximation of the Heaviside step function, which is
also known as the logistic function. The optimization objective
is to minimize the lane deviation penalty (LDP) [5].

2.2 LDP for Turn Maneuver

For the turn maneuver (TM), the LDP formulation from [5] is
modified to fit a 90◦-turn maneuver. Using the same smooth ap-
proximation of the Heaviside step function as in [5]:
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where ao is the offset parameter and ar is the rising distance
parameter, we define the penalty function for the turn maneuver
as:
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The function is formulated with the help of parameters po, pr,
pa, pb, and pe, such that values of X(t) and Y (t) outside of
the superellipse (green lines in Figure 6) corresponding to the
own lane give a decrease in the penalty and values inside the
superellipse corresponding to the opposing lane give an increase
in the penalty.



Figure 1: Splitting points for DLM.

The objective function for turn maneuvers is to minimize the
following integral of the penalty function (1):∫ tf

0

P(X(t), Y (t))dt,

where tf is the total time of the maneuver, which is unknown a
priori.

Another modification compared to DLM is the way maneu-
vers are visualized. For the DLM, the selected state variables are
plotted against the longitudinal coordinateX , as in Figure 1. For
the turn maneuver, most of the selected state variables are plotted
against a phase variable Φ that is defined as:

Φ = arctan
(
Y

X

)
.

3 SPLITTING METHOD: DESCRIPTION

The method to identify splitting points is derived from analysis
of maneuvers for varying parameters defining the problem. This
section describes general observations in this regard and gives
two examples of splitting points for the double lane-change sce-
nario and for the 90◦-turn scenario.

3.1 Splitting Points

The splitting points are selected such that the original motion-
planning problem can be divided into several segments, which
are smaller and easier to find optimal solutions to. From the
analysis of multiple motion-planing optimizations for varying
parameters, it was noted that potential candidates for splitting
points are extrema points of the vehicle orientation and yaw rate.
Between these points, it is possible to compute a maneuver from
a smaller optimization problem that is close to the correspond-
ing part of the maneuver when the full optimization problem is
considered. Only final constraints on a small subset of the state
variables are needed to get a matching solution.

The potential splitting points for DLM and TM are illustrated
in Figures 1 and 2 by black lines fitted to the obtained splitting
points. The plots show optimal trajectories for the corresponding
LDP formulation.

Figure 1 shows the paths and selected vehicle variables of
DLM computed for different initial velocities v0 (km/h). The
splitting points are obtained as extrema of the vehicle orienta-
tion ψ. The splitting points correspond to zero value of the yaw

Figure 2: Splitting points for TM.

rate ψ̇. They divide velocity profiles into three segments with
different dominating behavior, which are also between extrema
of the body-slip angle β. The vehicle position along the Y-axis
is almost equal for all splitting points in the respective group.

The potential splitting points for TM are shown in Figure 2
based on optimal trajectories (shown in thick lines) found for
the modified LDP formulation with varying entrance distance
lenter (m). Each thin line shows a part of the outer road boundary
for the path of the corresponding color. For this maneuver, selec-
tion of splitting points at extrema of the vehicle orientation gives
the middle segment that is much bigger than the other segments.
A better splitting strategy corresponds to extrema of the vehicle
yaw rate, where the first extremum is skipped, and the second
splitting points are selected for the inflection point as illustrated
in Figure 2. The black lines are fitted to the splitting points of
the state variables. The shown state variables exhibit an appeal-
ing property of being equidistantly distributed along these lines.

The proposed segmentation points are used to divide the op-
timization of the full maneuver into several smaller parts, in a
way that it is possible to compute a maneuver for the complete
scenario by combining results from segmented optimizations.

3.2 Start and Final Constraints

The initial state of the optimization for each segment is fixed for
the set of variables

S1 = S1,e ∪ S1,s.

The set is formed by the union of the variables in S1,e, which are
initialized to exact values and the variables in S1,s, which are
constrained by predefined slack values. The first set

S1,e = {X,Y,ψ, ψ̇, vx, vy, ωf , ωr}

includes the vehicle position, orientation, and yaw rate, all vari-
ables are in the global frame, velocities in the local frame, and
angular velocities for the front and the rear wheel, respectively.
The second set is

S1,s = {δ,αf , αr, Tf , Tr},

where αf and αr are the tire-slip angles for the front and the rear
wheel, respectively.

For the first segment, the initial values are considered to be
known (e.g., the estimate of the current vehicle state). In this re-



Figure 3: Reconstruction for DLM LDP.

search, they are chosen as in the optimization of the full maneu-
ver. For the following segments, the initial values are set from
the final values of the previous segmented optimization.

In addition to the final constraints on the vehicle position and
orientation, as in the optimization of the full maneuver, there are
additional constraints on the final vehicle velocity and yaw rate.
These variables give the set of constrained variables for the final
state (imposed with some slack value)

S2 = {X,Y,ψ, ψ̇, vx, vy}. (2)

3.3 What are Good Splitting Points?

Good splitting points allow dividing a full motion-planning
problem into several smaller problems. Only a small number of
the final constraints for each segment are needed to make the
combined maneuver from segmented optimizations to be very
similar to the maneuver obtained from the full optimization. In-
troduction of certain additional constraints for the segmented op-
timizations compared to the full optimization allows to remove
some inequality constraints, e.g., the road constraints. The objec-
tive function could thereby be left unchanged for each segment.

4 RESULTS

The proposed method is evaluated for DLM and TM. The
method is first applied for maneuvers, where the splitting points
are assumed to be know from a database. Then, the method is
applied to compute a maneuver for splitting points not present in
the database using an interpolation technique.

4.1 Trajectory Reconstruction

In this part, trajectories are reconstructed from splitting points,
which are known from a database for the same maneuvers. The
target values for the final variables are obtained from the values
at the proposed splitting points in the trajectories of the optimiza-
tion of the of the full maneuver with the same initial velocity, to
see the best possible performance of the method.

Figures 3–4 and 6–7 show the comparison of the paths and
selected vehicle variables from the segmented maneuver opti-
mizations (shown in solid lines) and the optimization of the cor-
responding full maneuver (shown in dashed lines). The latter re-
sults were used to obtain information about the splitting points.
The colored circles of the respective color show the variable val-
ues at the splitting points. The non-filled circles are used for vari-

Figure 4: Reconstruction for DLM MT. The additional road
boundary of the MT formulation is shown as the red dotted line.

Figure 5: Simulation results for the reconstructed paths for
DLM MT.

ables which have no final constraints in the segmented optimiza-
tions and the filled circles are used for the variables that have the
final constraints, i.e., they are part of the set S2, see (2).

Figures 3–4 show the method applied to DLM, where infor-
mation about splitting points is obtained from optimization of
the full DLM for different initial velocities v0 (km/h).

In general, the merged trajectories are very similar to the full
trajectories in terms of the vehicle path, orientation, yaw rate,
and steering angle. For the LDP formulation of DLM, the veloc-
ity deviates for the segmented optimization during the first seg-
ment and the last segment, the deviation is smaller for the high
velocity (70 km/h) and larger for the low velocity (50 km/h).
This is also visible for the rear wheel torque (Tr) in these seg-
ments.

In the first two rows of Table 1, the LDP objective func-
tion is computed for trajectories obtained by the optimization
of the full maneuver and for the merged trajectories obtained by
the segmented optimizations. The results are similar, as desired.
However, the latter values are sometimes even smaller than the
former since the optimization solver takes advantage of the al-
lowed state discontinuities for a subset of the variables between
the segments. The last row of Table 1 shows calculated values
of the objective function for trajectories, which were obtained
by simulating the vehicle model with merged optimal model in-
puts of the segmented optimizations (δ,Tf , Tr). Some values dif-
fer noticeably and these differences are related to the simulated
trajectories. Figure 5 shows a comparison of selected simulated
paths (solid lines) and optimized paths (dashed lines). The sim-
ulated path for initial velocity v0 = 50 km/h deviates from the

Table 1: Computed LDP objective function values [m · s] for dif-
ferent initial velocities and problem formulations.

Name \v0 [km/h] 50 60 70 80
Opt., full maneuver 1.71 1.66 1.62 1.60

Opt., merged maneuver 1.63 1.61 1.58 1.62
Sim., merged maneuver 2.69 1.96 1.72 2.51



Figure 6: Reconstruction for TM LDP.

optimized path after the obstacle, resulting in the increase of
the computed objective function in Table 1. This deviation is
caused by the use of the simple open-loop simulation strategy
with application of the input variables obtained from optimiza-
tions without feedback. For the high initial velocity (red lines in
Figure 5), the deviation between simulated and optimized path is
smaller, which is also reflected in the computed objective func-
tion.

The same approach to find segmentation points is evaluated
in a minimum-time (MT) optimization objective for DLM (Fig-
ure 4). The obtained segmented path and velocity profile (solid
lines) are very similar to the optimizations of the full maneuver
(dashed lines). Other state variables deviate more for the consid-
ered objective function. Splitting points are not uniquely defined
at lower velocities, when the vehicle orientation state variable is
flat around local extrema.

For the splitting points of the TM, the same reconstruction
method is applied. Figures 6 and 7 show path (thick lines) and
selected vehicle variables for different entry distances lenter (m).
The thin lines show road constraints for the path of the corre-
sponding color. In Figure 6, results are shown for the LDP for-
mulation of the TM. The green lines correspond to the middle
of the road (used in the LDP formulation). A small penalty on
velocity was added in the objective function for the segmented
optimizations to decrease the deviation of the velocity profile for
the middle segment. The merged maneuvers are close to the ma-
neuvers obtained from optimizations of the full maneuver.

The method also works for reconstructing trajectories for TM
MT, as it is shown in Figure 7. The resulting segmented trajecto-
ries are similar to the optimized trajectories. The steering behav-
ior for the middle segment of the segmented maneuver is oscil-
lating more for both objectives, but it does not result in the large
deviation of the XY-path.

4.2 Trajectory Computation by Interpolation

In this part, the trajectories are computed for splitting points not
present in the database of splitting points, which contains split-
ting points for a number of maneuvers precomputed offline. In-
terpolation techniques are used to obtain constraint values of the
final states of each segment from the available splitting points in
the database. The computed trajectories are compared with opti-
mization results of the full maneuver for the corresponding con-
figuration. It was noticed that the values for the splitting points
could be interpolated (see, e.g., the velocity v along the black

Figure 7: Reconstruction for TM MT.

line representing the first splitting point in Figure 1, where the
velocity values are almost equidistant from each other).

Figures 8–10 show several examples of trajectory computa-
tions, where the solid lines show computed trajectories (Comp.),
which are obtained by linear interpolation of splitting points
(shown in circles) from precomputed trajectories (Used) for ma-
neuvers where some, but not all, parameters of the desired ma-
neuver are matched. The reference trajectory is given by the
dash-dotted line (Ref.). The splitting points are obtained by lin-
ear interpolation of the splitting points from the used trajecto-
ries. Figure 8 illustrates the approach to compute a trajectory for
the initial velocity v0 = 60 km/h, using the splitting point values
from optimizations of the full maneuver for v0 = 50 km/h and
v0 = 70 km/h. The computed maneuver is very similar to the
reference maneuver, which is obtained by optimization for the
same initial velocity.

The approach was also applied to compute a maneuver for the
obstacle width w = 4 m using the splitting point values from op-
timizations of the full maneuver for w = 3.5 m and w = 4.5 m

Figure 8: Trajectory computation by interpolation for DLM
LDP: initial velocity.



Figure 9: Trajectory computation by interpolation for DLM
LDP: obstacle width.

(Figure 9). The computed path is very similar to the reference
path, but the velocity profile is slightly different, because a sim-
ple algorithm for computing splitting points for the desired ma-
neuver is used. Since the reference velocity profile is very close
to one of the used velocity profiles, the assumption about the
equidistant distribution of the velocity profiles is not completely
valid, causing the obtained velocity profile to be different.

Similar results are obtained for the case of computing a ma-
neuver for an intermediate obstacle length, where splitting points
for maneuvers with a shorter and longer obstacle are available
in the database. The computed path is very close to the refer-
enced path, but the obtained velocity profile is located in be-
tween the used ones, deviating slightly from the reference veloc-
ity profile. A remedy for the observed behavior could be a more
advanced algorithm for prediction of the values at the splitting
points, which affect the computed trajectories.

Figure 10 shows the computed trajectory for LDP in the TM.
As it was noted for Figure 2, the state variables for varying en-
try distances have an appealing distribution resulting in a good
match between the computed trajectory for interpolated splitting
points and the reference trajectory.

4.3 Constraint Relaxation

For the segmented optimizations, the original constraints to-
gether with additional constraints on the final state were used.
However, since additional information from the database with
splitting points from previous optimizations was used, it was no-
ticed that certain inequality constraints can be relaxed to speed-
up the optimizations even further.

Figure 11 shows reconstruction results (solid lines) for the
same splitting points as in Figure 3, but with obstacle and ve-
locity (v ≤ v0) constraints removed from the optimizations. The
dashed lines show results obtained when the constraints are
present (same results as in Figure 3, which were shown in solid
lines before). The removal of the constraints results in slight vari-
ations of the state variables, as well as small violations of the
XY-path; for the high velocity the vehicle violates the rightmost
corner of the obstacle for about 0.07 m along the Y direction.

Some constraints can also be removed for the TM LDP
segmented optimizations. The resulting path stays within road
boundaries and the state variables have similar behavior com-
pared to the results of the optimization of the full maneuver,
with a slight increase in the velocity for the first segment for
the longer entry distance.

Figure 10: Trajectory computation by interpolation for TM LDP:
entry distance.

5 DISCUSSION

The developed splitting–merging technique is based on analysis
of optimal trajectories for the full maneuver. A useful method to
analyze similarities between trajectories is to illustrate variables
for the studied trajectories with an independent variable having
the same range for all of them, e.g., the longitudinal variable (X
in Figure 1) for the double lane-change maneuver (DLM) or an
angle-position variable (Φ in Figure 2) for the 90◦-turn maneuver
(TM). By taking the length of segments into consideration, such
that the length of one segment does not dominate other segments,
the final splitting points are selected.

The technique was applied to DLM trajectories obtained by
using lane-deviation penalty (LDP) as presented in previous re-
search and to minimum-time (MT) maneuvers. Also, additional
variants for TM were obtained for MT and the modified LDP and
evaluated using the proposed technique. For the trajectory re-
construction scenario, the segmented trajectories for DLM were
similar to the optimized trajectories. The LDP maneuvers have

Figure 11: Reconstruction for DLM LDP without the obstacle
and velocity constraints. Same splitting points as in Figure 3.



very similar behavior for the vehicle position, orientation, ve-
locity, and body-slip variables, as well as good match for the
steering and the front wheel torque input. The MT maneuvers
have similar behavior for the vehicle position and velocity. Other
variables have a lower match; this is also caused by different be-
havior of the orientation and yaw rate variables. Splitting points
are not uniquely defined when the orientation variable has a flat
behavior around the local extrema (Figure 4). The segmentation
technique gives best results for maneuvers where the orientation
and yaw rate variables have several dominating behaviors in the
maneuver.

Segmented trajectories for the TM have a good match to the
optimized trajectories for both used objective functions. For this
maneuver, the optimization results for MT are similar to the LDP
results with a behavior predictable with linear interpolation of
the state variables, resulting in good performance of the tech-
nique.

For the trajectory computation by interpolation, several cases
were considered where available splitting points were differing
in one configuration parameter for the problem. The computed
trajectories were later compared with the optimization results
obtained for the desired configuration parameters. All evaluated
parameter variations have a good match for the resulting path.
Performance for state variables is naturally dependent on the dis-
tribution of the available splitting points. For DLM LDP trajec-
tories with a different initial speed (Figure 8) and TM LDP with
a different entry distance (Figure 10) computed by interpolation,
the available splitting points were located symmetrically around
the desired points, resulting in good prediction of the desired
final constraints by linear interpolation, and in a good match of
the computed trajectories with the full optimized trajectories. For
other computed trajectories (DLM LDP for a different obstacle
width and length) the match for the state variables was gener-
ally less accurate, e.g., giving lower computed velocity profile
for the case with obstacle width (Figure 9). These computed tra-
jectories are still feasible for the considered setup, but exhibit
slightly larger values of the objective function.

For the MT formulation, the road constraints were considered
for removal and for the LDP formulation, the road constraints to-
gether with the velocity constraint were excluded. The resulting
segmented trajectories with relaxed constraints are similar to the
segmented trajectories with the original constraints (Figure 11).
For the DLM LDP path, a small violation of the obstacle was
observed. For the TM LDP, the resulting path stayed within road
boundaries.

Direct use of the optimized inputs in an open-loop system
maybe unfavorable, since simulations showed a mismatch be-
tween segmented optimized and simulated trajectories (Table 1,
last row, and Figure 5). Combination with a path-following con-
trol strategy would be beneficial to use the results from the pro-
posed segmented motion-planning technique. Future research is
also to incorporate re-planning capabilities.

6 CONCLUSIONS

To decrease the complexity of computing an optimal vehicle ma-
neuverer, a technique to split a motion-planning optimization
problem is developed, which is based on analysis of optimal tra-
jectories for the full maneuver and segmentation based on ex-
trema for the vehicle orientation and the yaw rate. The potential
segmentation points are selected by noting similarities between
different trajectories, where the values are close to each other or
have a favorable distribution for varying parameters of the prob-
lem.

Two scenarios were considered: the trajectory reconstruction
scenario, when splitting points were available from a database
for the same motion-planning configuration, and trajectory com-
putation in an interpolation scenario, where splitting points for
similar configurations are available. In each scenario, there was
only a small subset of additional final constraints using infor-
mation from the splitting points imposed, and for most of the

cases, the remaining parts of the problem formulation were left
unchanged.

It was successfully investigated to relax certain inequality
constraints for the segmented optimizations to decrease the com-
plexity of the problem even further. The resulting segmented tra-
jectories with relaxed constraints are similar to the segmented
trajectories with the original constraints.

The proposed technique has shown promising results. It gives
close to optimal paths and generally good match for the state
variables. The computed segments are feasible and fulfill im-
posed kinematic and dynamic constraints, with close to the opti-
mal behavior.
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