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From the basis of optimal control, a closed-loop controller for autonomous vehicle maneuvers at-the-limit of friction is developed. The
controller exploits that the optimal solution tends to be close to the friction limit of the tires. This observation allows for simplifications
that enable the use of a proportional feedback control in the control loop, which provides a smooth trajectory promising for realization
in an actual control system. The controller is in comparison with an open-loop numerical optimal control solution shown to exhibit
promising performance at low computational cost in a challenging turn scenario.

1 INTRODUCTION

Active-safety systems have for long been a standard part of road
vehicles. Classic examples include the anti-lock braking sys-
tem (ABS) and the electronic stability control (ESC) system [1].
With the ability for vehicles to detect obstacles ahead, by the use
of radar purposed for adaptive cruise control (ACC), collision-
avoidance systems are quickly becoming a more common fea-
ture. These systems typically work by first issuing a warning to
the driver in case of danger, followed by autonomous emergency
braking (AEB), if no action is taken by the driver. There is a
never-ending increase of autonomy with advanced driver assis-
tance systems (ADAS), which not only control the acceleration
and braking, but also control steering to automatically keep the
vehicle centered on the road, allowing the driver to temporarily
let go of the steering wheel. These functions also call for im-
provements in collision-avoidance systems and other safety sys-
tems that can handle unpredictable safety-critical situations that
require combined braking and steering action.

1.1 Background

The problem of collision avoidance by the use of lane-change
maneuvers was addressed in [2]. The paper formulated condi-
tions for when it is possible to stop before reaching the obsta-
cle, when it is possible to avoid the obstacle by the use of a
lane change, and when a collision is unavoidable. In [3], the
strategy obtained by minimum-time optimization of a friction-
limited particle model was used in the design of a lane-change
control strategy.

To recover from entering a curved road at an excessive veloc-
ity, a control law referred to as the parabolic path reference strat-
egy (PPR) was proposed in [4]. The PPR strategy is based on
optimal control of a friction-limited particle, where the objective
function is to minimize the deviation from the center of the lane.
The optimal motion of the particle was shown to be obtained by
an acceleration input at-the-limit of friction, in a globally fixed
direction. Using the PPR strategy, a complete control concept
was developed in [5], where tracking a desired moment is also
taken into account. There, a linear combination of the acceler-
ation vector from the PPR strategy and a moment contribution
retrieved from an adaptive approach was locally maximized at
each individual wheel.

In our previous research [6], which examined optimal braking
patterns in safety-critical maneuvers, it was found that optimal
solutions for collision avoidance and staying in lane at an exces-
sive velocity share fundamental behavior. It was also noted that
for an optimal lane-keeping strategy, the individual tire forces
tend to be close to the friction-ellipse limit of the tires, rather
than contributing to the turn-in moment of the vehicle by the use
of differential braking.

In [7], a low-level steering control for autonomous vehicles
was introduced, which tracks the tire-slip angle instead of the
more common steering angle. The controller is tested on an
autonomous car where improved performance is demonstrated,
particularly at the limits of tire friction.

1.2 Contribution

In this paper, a fast to execute closed-loop controller for au-
tonomous maneuvers close to the tire-friction limit is developed.
The control is similar in structure to [5], but in comparison to that
approach the problem is computationally simplified by exploit-
ing that the solution is close to the friction limit of the tires. This
observation results in a control law that enables the use of a low-
level feedback control in the control loop with the same structure
as introduced in [7]. The closed-loop controller is simulated on
a double-track vehicle model that includes roll and pitch dynam-
ics, and the results are compared to those achieved by open-loop
numerical optimal control and by an alternate control scheme
used in earlier research based on local minimization. The devel-
oped controller is shown to provide a smooth trajectory promis-
ing for realization in an actual control system, while retaining
high performance.

2 CHASSIS CONTROL

The closed-loop control strategy is based on maximizing the ac-
celeration in a globally fixed direction in the spirit of [8, 5].
Different strategies to incorporate yaw-moment control is intro-
duced in [8, 3]. In [9], it was found that close to optimal behavior
can be found for some maneuvers by at each time instant mo-
mentarily maximizing the force in a globally fixed direction. As
a simplification, the closed-loop control strategy does therefore
not take yaw-moment control into consideration. With the forces



High-Level
Control

Estimate F ∗
x,i

Estimate α∗
i

Proportional
Feedback Vehicle

θ

α∗i δ̇u

F∗x,i

vehicle states

Figure 1: Block diagram of the closed-loop controller.
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Figure 2: Left-hand turn scenario. θ is the orientation of the glob-
ally fixed force vector. α is the orientation of the velocity vector
of the vehicle. R is the distance between the vehicle and a glob-
ally fixed point marking the center of the turn.

Fp,x and Fp,y acting on the vehicle in a globally fixed coordi-
nate system, and the fixed orientation −π ≤ θ ≤ π in which the
acceleration should be maximized, the problem can mathemati-
cally be stated as finding the optimal input u∗ in a set of available
inputs u ∈ U as

u∗ = argmax
u∈U

(Fx,p(u) cos(θ) + Fy,p(u) sin(θ)︸ ︷︷ ︸
H

). (1)

Since (1) is linear in the tire forces, the optimal input can be
found individually for each wheel, assuming that the inputs of
the wheels are independent from each other. Generating forces
from braking is assumed to be faster than the steering response.
With that motivation, the problem is split into steering control
and braking control parts. A block diagram of the control-system
layout is shown in Figure 1.

2.1 High-Level Control

The task of the high-level control is to find in which globally
fixed direction to maximize the force according to (1). The left-
hand turn scenario illustrated in Figure 2, is used as an exam-
ple to be solved in the high-level control layer. This is the same
scenario as the one examined in [5] and the optimal θ is here
estimated using the method presented in that paper. The opti-
mization criterion is to minimize the maximum distance from a
globally fixed point that mark the center of the turn, which is
equivalent to maximizing the minimum distance from the outer
lane border. With the fixed center of the turn defined as the ori-
gin, the optimization criterion is

minimizeX2
p(tf ) + Y 2

p (tf ), (2)

where tf is the time when maximum distance from the center of
the turn is reached, i.e., when the following terminal constraint
is fullfilled

Xp(tf )Ẋp(tf ) + Yp(tf )Ẏp(tf ) = 0. (3)

The vehicle has the velocity v, where the velocity vector points
in an orientation α according to Figure 2. The orientation θ in
(1) is estimated by solving the optimization criterion (2) subject
to the terminal constraint (3) for a friction-limited particle model
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Figure 3: Single-track vehicle model used in the steering control.
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Figure 4: Comparison between different tire models.

with the maximum acceleration µg. Equivalent to the derivation
in [5] for the same problem, an algebraic nonlinear equation is
obtained, which is solved numerically for θ in the high-level con-
trol layer:

2µgR

v2
sin(θ) = sin(2θ− 2α). (4)

2.2 Steering Control

For the steering control, the vehicle is modeled with the single-
track model illustrated in Figure 3. The lateral tire force in the
steering control loop is modeled using a simplified version of
Pacejka’s Magic Formula [10]:

Fy0,i = µy,iFz,i sin(Ci arctan(Biαi)), (5)

where i ∈ {f, r} denotes the front or rear wheel, αi is the slip
angle, and Bi and Ci are tire parameters. Only the range of αi
for which there is a one-to-one correspondence between each
αi and Fy0,i is considered. Figure 4 shows a comparison of the
simplified Magic Formula used here with the one used in the
simulation in Section 4. The slip angles for the front and rear
wheel, respectively, are given by [10]

αf = δ− arctan

(
vy + rlf
vx

)
, (6)

αr = −arctan

(
vy − rlr
vx

)
, (7)

where vx is the longitudinal velocity, vy is the lateral velocity, r
is the yaw rate, lf is the distance from the vehicle center of mass
to the front axle, and lr is the distance from the vehicle center of
mass to the rear axle. The longitudinal force Fx,i is an input in
the model. The effect of combined longitudinal and lateral tire
forces is challenging to estimate online. It is thus assumed that
the ratio between the lateral force with and without longitudinal
slip, Gy,i = Fy,i/Fy0,i, is constant between sample instants of
the controller. It is assumed that for the single-track model, Fy,i
can be estimated. Since the ratio Fy,i/Fy0,i is especially chal-
lenging to estimate for small slip angles and small lateral forces,
the weight Gy,i is saturated in the controller with

Gy,i = max

(
Fy,i
Fy0,i

,0.9

)
. (8)



2.2.1 Slip-Angle Reference
With inspiration from the results in [6], the optimal solution is
assumed to be on the friction-ellipse limit. For small changes in
αi, assuming that the friction ellipse is not rotated as a result
of changes in the steering angle, the desired lateral tire force
F ∗y,i is found on the friction-ellipse limit and then (5) is solved
backwards to find the desired slip angle α∗i . The procedure for
finding the desired lateral tire force F ∗y,i on the friction-ellipse
limit is illustrated in Figure 5. The friction-ellipse boundary can
mathematically be described by the angle −π ≤ ϕi ≤ π in the
expressions

Fx,i = µx,iFz,i cos(ϕi), (9)

Fy,i = µy,iFz,i sin(ϕi). (10)

The longitudinal and lateral forces are fully determined by the
angle ϕi. The problem (1) can thus be solved by finding the op-
timal angle

ϕ∗i = argmax
ϕi

(µx,i cos(ϕi) cos(θi) + µy,i sin(ϕi) sin(θi)︸ ︷︷ ︸
Hϕi

),

(11)
where the angle θi is the orientation in which to maximize the
tire forces relative to the orientation of each wheel i. This ori-
entation is expressed by the orientation of the vehicle ψ (where
ψ̇ = r) and the steering angle of the wheel δi, i.e.,

θi = θ−ψ− δi. (12)

Differentiating Hϕi
from (11) once with respect to ϕi to find

extrema gives

dHϕi

dϕi
= −µx,i sin(ϕi) cos(θi) + µy,i cos(ϕi) sin(θi), (13)

which is zero when

tanϕi =
µy,i
µx,i

tan(θi). (14)

There are clearly two extrema, one on either side of the ellipse.
If the extremum is a maximum, the second-order derivate ofHϕi

with respect to ϕi should be negative

d2Hϕi

dϕ2
i

= −µx,i cos(ϕi) cos(θi)− µy,i sin(ϕi) sin(θi) < 0.

(15)
Only braking is allowed, meaning that |ϕi| ≥ π/2. Further, the
inverse of (5) has to be well defined. To summarize, the follow-
ing procedure is used to find the desired slip angle α∗i :

ϕ′i = arctan

(
µy,i
µx,i

tan(θi)

)
, (16)

ϕ′′i =

ϕ′i if d2Hϕi
(ϕ′i)

dϕ2
i
≤ 0,

ϕ′i − π sign(ϕ′i) if d2Hϕi
(ϕ′i)

dϕ2
i

> 0,
(17)

ϕ∗i =

{
ϕ′′i if |ϕ′′i | ≥ π

2 ,
π
2 sign(ϕ

′′
i ) if |ϕ′′i | < π

2 ,
(18)

F̂ ∗y0,i =


−1 if sin(ϕ∗i )

Gy,i
< −1,

sin(ϕ∗i )
Gy,i

if − 1 ≤ sin(ϕ∗i )
Gy,i

≤ 1,

1 if sin(ϕ∗i )
Gy,i

> 1,

(19)

α∗i =
1

Bi
tan

(
1

Ci
arcsin(F̂ ∗y0,i)

)
. (20)
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Figure 5: Friction ellipse for a tire. The angle θi indicates the
direction to maximize the tire forces in. The filled circle indicates
the corresponding maximum.

2.2.2 Slip-Angle Feedback
A single-track model is used for the steering control; there is
thus the front and the rear slip angles to control. Since only the
steering angle of the front wheels can be controlled and the opti-
mization criterion (1) is to find the momentarily maximum accel-
eration, only the front slip angle αf is controlled. The feedback
law for the front slip angle is synthesized as in [7] by the relation

α̇f − α̇∗f = −K(αf − α∗f ). (21)

The slip angle (6) is simplified by assuming small slip angles for
the purpose of being used for feedback. This simplification gives
the resulting slip angle and its derivative according to

αf = δ− vy + lfr

vx
, (22)

α̇f = δ̇− v̇y + lf ṙ

vx
+
v̇x(vy + lfr)

v2x
. (23)

From (21) and (23), the desired steering rate δ̇u is found as

δ̇u = −K(αf − α∗f ) + α̇∗f +
v̇y + lf ṙ

vx
− v̇x(vy + lfr)

v2x
. (24)

To get an expression to use for the term α̇∗f , a simplified version
of the tire model (5) is used in its design:

Fy,f = µy,fFz,f arctan(BfCfαf ). (25)

Compared to (5), this tire model does not have zero slope or
close to it in the slip range where (5) is valid (see Figure 4). This
means that α̇∗f will be underestimated at larger values of αf , but
should avoid possible undesirable behavior where the estimated
value of α̇∗f gets very large owing to a flat slip–force curve. With
the same motivation, effects from combined longitudinal and lat-
eral tire forces are not used either. The derivative of (25) is now
calculated to get a linearized tire model of the form

Fy,f = kfαf + constant, (26)

around α∗f . Assuming that the normal force Fz,f changes slowly
(Ḟz,f ≈ 0) gives

Ḟy,f = µy,fFz,f
BfCf

(BfCfα∗f )
2 + 1

α̇f ,

⇒ kf = µy,fFz,f
BfCf

(BfCfα∗f )
2 + 1

. (27)

With the simplification µx,f = µy,f or ϕf = θf , (10) gives for
the linear tire model (26) that

α∗f =
µy,fFz,f
kf

sin(θf ) + constant. (28)
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Figure 6: Double-track vehicle model used for the braking con-
trol, simulation, and open-loop numerical optimal control.

An approximate expression for the derivative of the desired slip
angle can now be found according to

α̇∗f =
µy,fFz,f
kf

cos(θf )θ̇f

= −
(BfCfα

∗
f )

2 + 1

BfCf
cos(θf )(r+ δ̇). (29)

The complete expression for the slip-angle feedback is now
found by inserting (29) into (24). Because only braking is con-
sidered, α̇∗f in (24) is set to zero when |θf | ≤ π/2.

2.3 Braking Control

In the braking control, a double-track model (see Figure 6) of
the vehicle is considered. The braking control acts individually
on each of the four wheels i ∈ {1,2,3,4}. The braking torque
applied to each wheel is used as the input by approximating that

Tu,i ≈ Fx,iRw, (30)

where Rw is the radius of the wheel. To model combined longi-
tudinal and lateral tire forces, the friction-ellipse based relation
is used [11]

Fy,i = Fy0,i

√
1−

(
Fx,i

µx,iFz,i

)2

. (31)

This is solved using the same approach as in Section 2.2.1, but
where µy,i is replaced by Fy0,i/Fz,i. Since braking is the only
input, the corresponding ϕ∗i is limited to one quarter of the full
friction ellipse. For the found ϕ∗i , the desired braking force is
computed according to (9).

3 SIMULATION & OPTIMIZATION METHOD

A double-track vehicle model with 19 dynamic states, referred to
as DT WF in [12], was used for simulation and optimization. To
model combined longitudinal and lateral tire forces, weighting
functions as suggested in [10] are used. The inputs to the model
are the directly applied braking torque Tu,i at each wheel i ∈
{1,2,3,4}, and the commanded steering rate of the front wheels
δ̇u. The inputs in both simulation and optimization are limited
by |δ̇u| ≤ δ̇max = 1.5 rad/s and −µx,iRwFz,i ≤ Tu,i ≤ 0. The
gain K in (24) is set to K = 19, which is the same value found
to work well in [7] during experiments on a real vehicle.

Enabling a direct comparison, the open-loop numerical opti-
mal control solution of the optimization criterion (2) subject to
the terminal constraint (3) is presented alongside the simulation
of the closed-loop system using the same vehicle model. To pre-
vent unnecessary actuation in the open-loop numerical optimal
control solutions, weights of the form ηi

∫ tf
0
u2i dt for the steer-

ing rate and braking torque inputs ui are added to the optimiza-
tion criterion (2) when solving the numerical optimal control

Table 1: Maximum deviation emax given the initial velocity v0
and the initial distance R0 to the center of the turn.

v0 [km/h] R0 [m] emax [m]
CL FE CL LM OL NOC

70 20 4.49 4.42 4.24
70 30 1.74 1.71 1.62
70 40 0.52 0.52 0.46
70 50 0.21 0.21 0.03
90 40 5.02 4.91 4.70
90 50 2.55 2.49 2.42
90 60 1.07 1.07 1.01
90 70 0.51 0.51 0.41

110 70 4.62 4.51 4.38
110 80 2.68 2.60 2.55
110 90 1.36 1.36 1.31
110 100 0.70 0.71 0.63

problem, where ηi for each input is small enough to not influ-
ence the maximum deviation as listed in Table 1. The open-loop
numerical optimal control problem is solved using the JModel-
ica.org [13] platform.

Additionally, a comparison of the steering control is made
with the control law for the steering angle used in [3]. There,
a local maximization of H in (1) (i.e., minimization of −H) is
performed by using the control law

δ̇u =

{
δ̇max sign

(
∂H
∂δ

)
if
∣∣∂H
∂δ

∣∣ > ε,

0 otherwise,
(32)

where ε is the tolerance. The derivative ∂H
∂δ is numerically ap-

proximated with the symmetric difference quotient by using
small perturbations in the steering angle δ and for the corre-
spondingly perturbed slip angles maximizing H by finding the
optimal braking force. The same tire model with weighting func-
tions as used in the simulation is used in this control law. Only
the steering control is replaced, the high-level control and the
braking control remain the same as described in Section 2. The
closed-loop controllers run at 100 Hz in simulation time.

4 RESULTS & DISCUSSION

Three different controllers are compared with each other. They
are described in Sections 2–3 and abbreviated as follows:

• CL FE, closed-loop controller using the friction-ellipse
based control law in Section 2.2.

• CL LM, closed-loop controller using the local minimization
control law (32) from [3].

• OL NOC, open-loop numerical optimal control.

4.1 Performance

In Table 1, results for different initial velocities v0 and different
initial distances R0 to the center of the turn are listed. The maxi-
mum deviation emax is measured as the maximum distance to the
center of the turn subtracted by the initial distance to the center
of the turn. It is observed that both closed-loop controllers CL FE
and CL LM have almost the same performance, with CL LM
performing slightly better. The differences disappear at the re-
spective initial velocity v0 as the turning radius R0 gets larger.

The closed-loop controllers take less than one millisecond to
execute at each sample on a standard desktop computer, com-
pared to the full numerical optimal control solution that takes
up to a minute to solve. Despite this, the closed-loop solutions
(CL FE and CL LM) in Table 1 are seen to have comparable per-
formance to the open-loop numerical optimal control solution
(OL NOC). Percentagewise, the closed-loop solutions perform



worse at each velocity v0 as the turning radius R0 gets larger.
The extreme example is for the initial velocity 70 km/h at the
initial turning radius 50 m, which is a relatively large turning ra-
dius for that initial velocity. In this scenario, the vehicle is, given
the available tire–road friction, not traveling at a velocity too ex-
cessive to follow a path with curvature according to the initial
turning radius R0. This is thus a scenario more suited for path-
tracking controllers, as the desired path can be followed given
the available tire–road friction.

4.2 Qualitative Behavior

Figure 7 illustrates the path and the trajectories for the different
controllers for the initial velocity v0 = 90 km/h and the initial
distance to the center of the turn R0 = 40 m. In the top plot,
the paths taken by the controllers are shown and the differences
between them are small.

4.2.1 Steering
The steering angle δ is in Figure 7 seen to qualitatively share
certain behavior between the three controllers. Initially they all
increase the steering angle rapidly to a level of approximately 5
degrees and later increase it rapidly again. The developed CL FE
controller does not initially increase its steering angle as fast
as the other controllers, because of the proportional feedback.
While this is detrimental to the performance in this simulated
environment, it could potentially be beneficial when implement-
ing it in an actual steering system. The CL LM controller can
meanwhile be observed to result in an oscillative steering input,
which potentially can be challenging to achieve with the steering
actuators when working with an actual steering system.

4.2.2 Forces and Moment
Apart from the CL LM controller initially having a larger mo-
mentMz owing to the faster change of steering angle, the closed-
loop controllers are observed in Figure 7 to behave very similar
in the longitudinal force Fx, the lateral force Fy , and the moment
Mz . The oscillations in the steering angle δ in the CL LM con-
troller is seen to largely be averaged out by the dynamics of the
vehicle model in the resulting vehicle forces and moment. The
OL NOC controller has not only initially larger momentMz , but
also larger Fy in magnitude over the complete maneuver com-
pared to the closed-loop solutions, at the cost of lower Fx in
magnitude over the maneuver. This means that the higher initial
moment allows the OL NOC controller to use larger lateral tire
forces and less braking throughout the rest of the maneuver.

4.2.3 Braking
Considering the applied braking torques Tu,i in Figure 7, all the
controllers behave very similarly, with rear tires being braked
almost up until the end of the maneuver where the vehicle
reaches its maximum deviation emax. The similarity in the brak-
ing torques between the controllers is interesting considering the
simple friction-ellipse based model of the combined slip in the
closed-loop braking control.

4.2.4 Slip-Angle Tracking
In Figure 8, the desired slip angle αf as computed according
to Section 2.2.1 is plotted together with the front slip angle (6).
The slip-angle tracking controller is seen to exhibit good per-
formance, though it does not reach zero tracking error during
the time that the derivative of the desired slip angle αf is non-
zero. The desired slip angle is seen to change faster and faster
before reaching a maximum, corresponding to maximum lateral
tire force. Comparing the trajectories for different initial radii
R0, it is seen that a larger R0 results in the curve being com-
pressed to the left, with a more rapid change in desired slip angle
α∗f .
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Figure 7: Comparison of open-loop numerical optimal control
and the closed-loop controllers for v0 = 90 km/h andR0 = 40 m.

0 0.5 1 1.5 2

0

5

10

15

t [s]

α
f

[d
eg

]

(a) R0 = 40 m

0 0.5 1 1.5 2

0

5

10

15

t [s]

α
f

[d
eg

]

αf
α∗f

(b) R0 = 50 m

Figure 8: Tracking of the desired slip angle α∗f by the CL FE
controller for v0 = 90 km/h at different initial radii R0.



−101

−1

0

1

Fy,1/Fz,1

F
x
,1
/
F
z
,1

−101

−1

0

1

Fy,2/Fz,2

F
x
,2
/
F
z
,2

−101

−1

0

1

Fy,3/Fz,3

F
x
,3
/
F
z
,3

−101

−1

0

1

Fy,4/Fz,4

F
x
,4
/
F
z
,4

Figure 9: Resulting utilization of the tire forces for each wheel
for v0 = 90 km/h and R0 = 40 m. The black line marks the
friction-ellipse limits. The colors represent the same controllers
as in the legend in Figure 7.

4.2.5 Tire-Force Utilization
Figure 9 shows the tire utilization of each tire for the different
controllers. The tire utilization of the front tires is very similar,
while the utilization of the rear tires differ between the open-loop
solution and the closed-loop solutions. The open-loop solution
OL NOC is close to the friction-ellipse limit for all four tires, for
most of the time. The closed-loop solutions OL FE and OL LM
do not travel along the friction limit for the rear tires. The rear
slip angles are not controlled in the closed-loop solutions, while
they seem to be controlled by the open-loop solution OL NOC
to maximum lateral force. This observation explains the higher
lateral force of OL NOC observed in Figure 7. Higher lateral
force does in this case correspond to higher rear slip angles and
thus higher body slip, which may not be desirable.

5 CONCLUSIONS

With the basis in results from optimal control, a fast to execute
controller for autonomous maneuvers at the friction limit has
been developed, which shows promising performance. Given a
globally fixed orientation in which to maximize the force acting
on the vehicle (in the spirit of [5, 8, 9]), the steps to calculate the
control output are fully explicit, which means that the developed
controller can be implemented on very simple hardware.

Closed-loop simulations with the developed controller show
how it differs with respect to an open-loop numerical optimal
control solution for the same vehicle model and with an alter-
native control law for the steering proposed and used in ear-
lier research. The performance when comparing the closed-loop
controllers is in simulation very similar, but with the developed
steering controller offering smoother steering trajectories thanks
to the availability of a slip-angle reference signal to track. The
smoother steering trajectory could offer benefits in a real-world
scenario, where the full steering system has to be considered.
When compared with the results from numerical optimal control,
the developed closed-loop controller is not far off, but obtained
at a significantly lower computational cost.
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