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Abstract— When designing model-based fault-diagnosis
systems, the use of consistency relations (also called e.g. parity
relations) is a common choice. Different subsets are sensi-
tive to different subsets of faults, and thereby isolation can
be achieved. This paper presents an algorithm for finding
a small set of submodels that can be used to derive con-
sistency relations with highest possible diagnosis capability.
The algorithm handles differential algebraic models and is
based on graph theoretical reasoning about structure of the
model. An important step, towards finding these submodels
and therefore also towards finding consistency relations, is
to find all minimal structurally singular (MSS) sets of equations.
These sets characterize the fault diagnosability.
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I. Introduction

When designing model-based fault-diagnosis systems,
using the principle of consistency based diagnosis [1], [2],
[3], a crucial step is the conflict recognition. As shown
in [4], conflict recognition can be achieved by using pre-
computed consistency relations (also called e.g. analyti-
cal redundancy relations or parity relations). These meth-
ods are examples of precompilation techniques [5] With
properly chosen consistency relations, different subsets of
consistency relations are sensitive to different subsets of
faults. In this way isolation between different faults can be
achieved.

The systems considered in this paper are assumed to
be modeled by a set of nonlinear and linear differential-
algebraic equations. To find consistency relations by di-
rectly manipulating these equations is a computationally
complex task, especially for large and nonlinear systems.
To reduce the computational complexity of deriving con-
sistency relations, this paper proposes a two-step approach.
In the first step, the system is analyzed structurally to find
overdetermined submodels. Each of these submodels are
then in the second step transformed to consistency rela-
tions. The benefit with this two-step approach is that the
submodels obtained are typically much smaller than the
whole model, and therefore the computational complex-
ity of deriving consistency relations from each submodel is
substantially lower compared to directly manipulating the
whole model.

The main contribution and the focus of the paper is a
structural algorithm for finding these submodels. Instead
of directly manipulating the equations themselves, the pro-
posed algorithm only deals with the structural information
contained in the model, i.e. which variables that appear
in each equation. This structural information is collected
in a structural model. In addition to finding all submodels

that can be used to derive consistency relations, the algo-
rithm also selects a small set of submodels that corresponds
to consistency relations with the highest possible diagnosis
capability.

In industry, design of diagnosis systems can be very time
consuming if done manually. Therefore it is important that
methods for diagnosis-system design are as systematic and
automatic as possible. The algorithm presented here is
fully automatic and has been implemented in Matlab. The
input to the algorithm is a structural model of the system.
This structural model can in turn easily be derived from
for example simulation models.

Structural approaches have also been studied in other
works dealing with fault diagnosis. In [6] a structural
approach is investigated as an alternative to dependency-
recording engines in consistency based diagnosis. Further-
more a structural approach is used in the study of supervi-
sion ability in [7] and an extension to this work considering
sensor placement is found in [8].

In Sections II and III, structural models and their useful-
ness in fault diagnosis are discussed. Then in Section IV,
a complete description of the algorithm is given. The al-
gorithm is then in Section V applied to a large nonlinear
industrial process, a part of a paper mill. In spite of the
complexity of this process, a small set of consistency rela-
tions with high isolation capability is successfully derived.

II. Structural models

The behavior of a system is described with a model. Usu-
ally the model is a set of equations. A structural model [7]
contains the information of which variables that are con-
tained in each equation. Let Morig denote the structural
model obtained from the equations, describing the system
to be diagnosed. This structural model will contain three
different kinds of variables: known variables Y , e.g. sensor
signals and actuators; unknown variables Xu, for exam-
ple internal states of the system; and finally the faults F .
If faults are decoupled then they will also be included in
Xu. The differentiated and non-differentiated version of
the same variable are considered to be different variables.
The time shifted variables in the time discrete case are also
considered to be separate variables.

A structural model can be represented by an incidence
matrix [9], [10]. The rows correspond to equations and the
columns to variables. A cross in position (i, j) tells that
variable j is included in equation i.

Example 1: A simple example is a pump, pumping water
into the top of a tank. The system is shown in Figure 1.
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Fig. 1. The system to be diagnosed.

The water flows out of the tank through a pipe connected
to the bottom of the tank. The known variables are the
pump input u, the measured water level in the tank yh,
and the measured flow from the tank yf . The fault vari-
ables are an arbitrary deviation fu of the actuator signal,
an arbitrary deviation fyh of the water level sensor, a slow
varying clogging fault fc considered to be constant, and a
constant bias fault fyf of the water flow sensor. Note that
the clogging fault change the dynamics of the system. The
actual flows to and from the tank are denoted Fi, and the
actual water level in the tank is denoted h. The analyti-
cal and structural model Morig of the watertank system is
shown in Table I. Equation e1 describes the pump, e2 the
conservation of volume in the tank, e3 the water level mea-
surement, e4 the flow from the tank caused by the gravity,
e5 a fault model for the clogging fault fc, e6 the flow mea-
surement, and e7 a fault model for the flow measurement
fault fyf . �

TABLE I

The analytical and structural model for the water tank

system shown in Figure 1.

Analytical model: Structural model:

expression unknown fault known

F1F2 h ḣ fufyhfcḟcfyf ḟyf u yhyf

F1 − fu − u = 0 e1 X X X

F1 − F2 − ḣ = 0 e2 X X X
h + fyh − yh = 0 e3 X X X

(1 − fc) F 2
2 − h = 0 e4 X X X

ḟc = 0 e5 X
F2 + fyf − yf = 0 e6 X X X

ḟyf = 0 e7 X

III. Fault Diagnosis Using Structural Models

The task is to find submodels that can be used to form
consistency relations. To be able to draw a correct conclu-
sion about the isolability from the structural analysis, it is
crucial that for each of these submodels there is a consis-
tency relation that validates all equations included in the
submodel. The common definition of consistency relation
does not ensure this. Therefore a new definition of con-
sistency relation for an equation set E is introduced that

explicitly points out the submodel considered. Before con-
sistency relation for E is defined some notation is needed.

Let x and y denote the vectors of variables contained in
Xu and Y respectively. Then E(x,y) denote an equation
set that depends on variables contained in Xu and Y .

Definition 1 (Consistency Relation for E) A scalar equa-
tion c(y) = 0 is a consistency relation for the equations
E(x,y) iff

∃xE(x,y) ⇒ c(y) = 0 (1)

and there is no proper subset of E that has property (1).
Definition 1 differ from the common definition of con-

sistency relation in the way that there is no proper subset
of E that has property (1). Refer this as the minimal-
ity condition in Definition 1. The next example illustrates
Definition 1.

Example 2: Consider the model E = {y1 = x, y2 =
x, y3 = x}. The equation y1 − y2 = 0 is not a consis-
tency relation for E, because {y1 = x, y2 = x} also implies
y1 − y2 = 0. Hence y1 − y2 = 0 is consistency relation for
{y1 = x, y2 = x}.

However y1 +y2−2y3 = 0 and (y1−y2)2 +(y2−y3)2 = 0
are examples of consistency relations for E.

Finally, is there a consistency relation for {y1 = x}?
Since ∃x : y1 = x is always true any c(y) = 0 that
fulfills expression (1) must be an always true expression,
e.g. 0 = 0. However the empty set of equations will also
fulfill (1). Hence an always true expression is a consistency
relation for the empty set of equations and there does not
exist any consistency relation for {y1 = x} at all. �
The minimality condition in Definition 1 is important, be-
cause it guarantees that any invalid equation can infer an
inconsistency.

A. Basic Assumption

A basic assumption is needed to guarantee that the sub-
sets found only by analyzing structural properties are ex-
actly those subsets that can be used to form consistency re-
lations. Before the basic assumption is presented, some no-
tation is needed. Let E be any set of equations and X any
set of variables. Then define varX(E) = {x ∈ X|∃e ∈ E : e
contains x} and equE(X) = {e ∈ E|∃x ∈ X : e contains x}.
Also, let varX(e) and equE(x) be shorthand notations for
varX({e}) and equE({x}) respectively. Finally, the number
of elements in any set E is denoted |E|.

As mentioned earlier, the structural model contains less
information than the analytical model. The next assump-
tion makes it possible to draw conclusions about analytical
properties from the structural properties.

Assumption 1: There exists a consistency relation
c(y) = 0 for the equation set H iff

∀X ′ ⊆ varXu
(H),X ′ 6= ∅ : |X ′| < |equH(X ′)| (2)

According to Assumption 1 the unknown variables in
H can be eliminated if and only if it holds that for each
subset of variables in H, the number of variables is less
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then the number of equations in H which contain some of
the variables in the chosen subset.

Assumption 1 are often fulfilled. For example all subsets
of equations found in the industrial example in the end of
the paper satisfy Assumption 1. Even though the “only
if” direction of Assumption 1 is difficult to validate in an
application, the results of the paper can still be used to
produce a lower bound of the actual isolation capability.

If all subsets of the model fulfill Assumption 1, the struc-
tural analysis will find all subsets that can be used to find
consistency relations.

B. Finding Consistency Relations via MSS Sets

Now, the task of finding those submodels that can be
used to derive consistency relations will be transformed
to the task of finding the subsets of equations that have
the structural property (2). To do this, two important
structural properties are defined [11].

Definition 2 (Structurally Singular) A finite set of equa-
tions E is structurally singular with respect to the set of
variables X if |E| > |varX(E)|.

Definition 3 (Minimal Structurally Singular) A
structurally singular set is a minimal structurally singular
(MSS) set if none of its proper subsets are structurally
singular.

For simplicity, MSS will always mean MSS with respect
to Xu in the rest of the paper. The next theorem tells that
it is sufficient and necessary to find all MSS sets to get all
different sets that can be utilized to form consistency rela-
tions. The task of finding all submodels that can be used to
derive consistency relations has thereby been transformed
to the task of finding all MSS sets.

Theorem 1: Given a model M let Ei ⊆ H ⊆ M , where
Ei is an MSS set for each i. Further, let H and all Ei fulfill
Assumption 1. Then there exists a consistency relation
c(y) = 0 for H(x,y) where |H| < ∞ iff H =

⋃
i Ei.

For a proof, see [12].

IV. Algorithm for finding and selecting MSS

sets

The objective is to find a small set ω of MSS sets with,
of the user defined desired isolability Ides. If full isolability
is desired the returned set ω has the maximum possible
isolation capability.

The algorithm can be summarized in the following steps.
Algorithm 1:

Input: A original structural model and desired isolability
Ides.
1. Extracting the no-fault model: Neglect all fault vari-
ables and all equations containing only fault variables.
2. Differentiating the model: Find equations that are
meaningful to differentiate for finding MSS sets.
3. Simplifying the model: Given the extracted model and
the additional equations found in step 2, remove all equa-
tions that cannot be included in any MSS set. To simplify
the next step, merge sets of equations that have to be used
together in each MSS set.

4. Finding MSS sets: Search for MSS sets in the simplified
model.
5. Analyzing isolability: Examine the isolability of the
MSS sets found in step 4.
6. Decoupling faults: If the isolability has to be improved
to fulfill the desired isolability, some faults have to be de-
coupled. For decoupling faults, return to step 2 and con-
sider these faults as unknown variables in Xu.
7. Selecting a subset of MSS sets: Select a small set of MSS
sets that contains the highest possible or desired isolability.
Output: A small set of MSS sets and their isolability.
Note that to avoid searching for all MSS sets decoupling
all possible faults, Algorithm 1 has been organized so that
first, the fault free model is analyzed. Then if it is necessary
for achieving higher isolability, faults are decoupled. The
following sections discuss each of the steps in Algorithm 1.

A. Extracting the No-Fault Model

To reduce the computational complexity of finding all
MSS sets for all choices of decoupling faults the first step
extracts the no-fault model Mext, i.e. when no fault vari-
ables are decoupled. This model is the simplest because
it includes the least number of unknown variables. When
the isolability of the no-fault model has been calculated
other decoupling alternatives are used only if the desired
isolability is not fulfilled. The no-fault model is the subset
of equations of Morig that includes either some unknown
variables or some known variables.

Example 3: Continuation of Example 1. Since no fault
is decoupled in the first iteration equations e5 and e7 in
Table I are removed. The resulting model is Mext =
{e1, e2, e3, e4, e6}. �

B. Differentiating the Model

In this section an algorithm for handling derivatives is
defined. This algorithm is referred to as Algorithm 2. First
an example will show why differentiation has to be consid-
ered.

Example 4: Consider the model Mext in Example 3.
This model is a part of the model in Table I. An algo-
rithm that is not capable of differentiating equations can
obviously not eliminate ḣ in e2, because there is no other
equation including ḣ. In general, all derivatives of a model
M have to be considered. If M (i) denote the set of the i:th
time derivative of each element, the equation set generally
considered is ∪∞

i=0M
(i). �

To summarize the example, Algorithm 2 must be capable
of differentiating equations. The next question to answer is
if it is possible to predict the structural model of a differen-
tiated analytical model by using only the structural model
of the original analytical model? An example is used to
answer this question.

Example 5: Consider again the model in Example 3.
The differentiated equation ė4 is 2 (1 − fc) F2 Ḟ2−F 2

2 ḟc =
ḣ. The variable h is linearly dependent in e4 and therefore
ḣ is linearly contained in equation ė4. Furthermore, both
F2 and Ḟ2 are nonlinearly contained in ė4 as a consequence
of the fact that F2 is nonlinearly contained in e4. �
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This example shows that variables are handled in different
ways depending on if they are linearly or nonlinearly de-
pendent. To be able to take this different treatment into
account, information about which variables that are lin-
early contained is added to the structural model. With
this additional knowledge a structural differentiation can
be defined that produce a correct structural representation
of differentiated equations. Structural differentiation for an
arbitrary variable x and an arbitrary equation e is defined
in the following way:
1. If x is linearly contained in e then ẋ is linearly contained
in ė.
2. If x is nonlinearly contained in e then both x and ẋ are
nonlinearly contained in ė.

Now structural differentiation can be applied to the
structural model. Since all number of differentiations of
each equation implies a new equation, there are infinitely
many equations in the differentiated model. Let m(y) be
a limit for variable y ∈ Y of the order of derivative that
can be considered as possible to estimate. If these limits
are introduced and if the structural assumption to be pre-
sented next is fulfilled, it is possible to find all MSS sets in
a finite subset of the differentiated model.

Before the assumption is presented some notation is
needed. If g is any equation, function or variable, let
g(i) denote the i:th time derivative of g. Then define
varX(E) = {undifferentiated |∃i(x(i) ∈ varX(E))}, e.g.
varXu∪Y ({y = ẋ}) = {y, x}.

Assumption 2: The model Mext has the property

∀E ⊆ Mext : |E| ≤ |varXu∪Y (E)|. (3)

The meaning of condition (3) is that each subset of equa-
tions include more or equally many different variables, con-
sidering derivatives as the same variable. If Assumption 2
is not fulfilled and there are no redundant equations, the
model would normally be inconsistent.

To present a method to verify that a model fulfills As-
sumption 2 some notation is needed. Let E be a set of
equations, X a set of variables, and Γ a set of edges. Define
Γ such that there is an edge in Γ between x ∈ X and e ∈ E
if and only if x ∈ varX(e). Then the bipartite graph “see
Appendix” (E,X,Γ) is denoted G(E,X). The easiest way
to verify Assumption 2 is to verify the equivalent statement
that there is a complete matching “see Appendix” of Mext

into varXu∪Y (Mext) in the corresponding bipartite graph
G(Mext, varXu∪Y (Mext)).

A sufficient condition that there is a finite submodel that
contains all MSS sets is that the model Mext satisfy As-
sumption 2 and all known variables have finite limitations.

Algorithm 2 is a greatly influenced by Pantelides’ algo-
rithm [11]. Before the algorithm is presented, a few def-
initions are introduced. Let Mα =

⋃n
i=1

⋃αi

j=1{e(j)
i } be a

differentiated model of Morig =
⋃n
i=1{ei}. Then the high-

est number of differentiations in M of equation i is αi.
Let Mmax = {e(αi)

i |1 ≤ i ≤ n} be the set of most dif-
ferentiated equations in M and M∞ = {e(j)

i |ei ∈ M, j ∈

N}. The highest derivative of a non-differentiated vari-
able x in a model M is denoted β(M,x), i.e. β(M,x) =
max({i|x(i) ∈ varXu

(M)}). Finally let v̂ar(M) be the vari-
ables varXu∪Y (M) that fulfill the following two require-
ments:
• It is the highest derivative of each variable that are con-
sidered.
• It is the variables, whose derivative is unknown.
For example, if ẏ ∈ varXu∪Y (M), ∀i ∈ Z+\{1} : y(i) /∈
varXu∪Y (M), and m(y) = 1, then ẏ ∈ v̂ar(M) because ẏ is
the highest derivative of y in M and ÿ is unknown.

Algorithm 2:
Input: The original model Mext, a description of which
variables that are linearly contained in each equation, and
for each y ∈ varY (Morig), m(y) < ∞.
1. Let the current model Mc be Morig and let i = 1.
2. If i ≤ |Morig| then let Mmax

c be only the most differ-
entiated equations of Mc. Let Mmax

c (i) denote the i first
equations in Mmax

c and let equation i in Mmax
c be denoted

ei. A complete matching of Mmax
c (i−1) into v̂ar(Mmax

c ) in
the bipartite graph G(Mmax

c , v̂ar(Mmax
c )) is found in pre-

vious steps. Search for an augmented path “see Appendix”
in G(Mmax

c , v̂ar(Mmax
c )) from ei to an unassigned variable

in v̂ar(Mmax
c ).

a) If an augmented path is found then switch matching
and nonmatching edges in the path. The new matching
edges together with the previous matching now forms a
complete matching of Mmax

c (i) into v̂ar(Mmax
c ). Set i =

i + 1 and goto step 2.
b) No augmented path is found. Then an MSS set with

respect to v̂ar(Mmax
c ) is found as follows. Let all non-

matching edges be directed edges from the equation nodes
to the variable nodes. Then the MSS set with respect
to v̂ar(Mmax

c ) is defined as all equation nodes reachable
from ei. Denote this MSS set E. Note the difference be-
tween this set which is MSS with respect to v̂ar(Mmax

c )
instead of MSS with respect to Xu. Differentiate E until
|v̂ar(E(i))| ≥ |E| using the description of which variables
that are linearly contained. Let the obtained differentiated
model be Mc. Goto step 2.
3. Rename the current model Mc to Mdiff .
Output: Mdiff .

Let MSS(M) denote the set of MSS sets found in equa-
tions M and

MSSall(M) = MSS(∪∞
i=0M

(i)).

Then it is possible to state the following theorem.
Theorem 2: If Assumption 2 is satisfied and for each

y ∈ varY (Mext), m(y) < ∞, then

MSSall(Mext) = MSS(Mdiff )
The consequence of this theorem is that all MSS sets that
are possible to find if the model Mext is differentiated an
infinite number of times, can always be found in Mdiff .

Next the continuation of Example 3 is presented to de-
scribe how Algorithm 2 works.

Example 6: Recall that the structural model Mext is the
equations e1, e2, e3, e4, e6 in Table I. This model satisfy
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Fig. 2. The bipartite graph G(Mext, varXu∪Y (Mext)).

Assumption 2 since it is possible to find a complete match-
ing of Mext into varXu∪Y (Mext), e.g. {e1, u}, {e2, F1},
{e3, yh}, {e4, F2}, and {e6, yf}. Let m(u) = m(yf ) = 1
and m(yh) = 0. According to Theorem 2 it is possible to
use Algorithm 2 to produce the model Mdiff . The corre-
sponding bipartite graph G(Mext, varXu∪Y (Mext)) is shown
in Figure 2.

Step 2 in Algorithm 2 is fed with the structural model
Mc shown in Figure 2 and the m-values. Figure 3 shows
the graph G(Mmax

c , v̂ar(Mmax
c )) built in step 2. Note that

the node corresponding to h is not considered, because h
is not the highest derivative of h in the model. The known
variables u and yf have known derivatives and are therefore
not included in v̂ar(Mmax

c ). However, the derivative of yh
is an unknown variable and yh is therefore included.

Step 2 in Algorithm 2 searches for an augmented path
from e1 to v̂ar(Mmax

c ) in the graph showed in Figure 3.
The path e1−F1 is found and this single edge becomes the
first assignment. The assignments in the matching are then
found in the following order e2 − ḣ, e3 − yh, and e4 − F2.
When e6 is going to be assigned, there is no variable node
left. Since no augmenting path is found, step 2b) finds an
MSS set with respect to v̂ar(Mmax

c ). When edges not con-
tained in the matching are directed from equation nodes
to variable nodes, the reachable equation nodes from e6

are e4 and e6. Hence this is the equation set to be dif-
ferentiated. The structural differentiation uses additional
information about which variables that are nonlinearly in-
cluded in each equation. Nonlinearly included variables
are denoted with O in Table II. Differentiating once im-
plies that ẏf appears in v̂ar({ė4, ė6}). The new model
consists of {e1, e2, e3, e4, ė4, e6, ė6} and the new bipartite
graph showed in Figure 4 is extracted in step 2. Equation
e4 and e6 are not anymore the most differentiated equa-
tions in the new model. Further, ẏf is included, because
ÿf is considered as an unknown variable. Note that an
edge in the matching in Figure 3 is either unchanged or
replaced with an edge between the replaced nodes corre-
sponding to the differentiated equation and the differen-
tiated variable in Figure 4. For example {e1, F1} is un-
changed and the edge {e4, F2} in Figure 3 is replaced with

e1

e2

e3

e4

e6

F1

F2

ḣ

yh

Fig. 3. The bipartite graph G(Mmax
c , v̂ar(Mmax

c )) built in step 2.
The bold edges are the matching found. The bold equation nodes are
the MSS set found in step 2b).

e1

e2

e3

ė4

ė6

F1

Ḟ2

ḣ

yh

ẏf

Fig. 4. The bipartite graph G(Mmax
c , v̂ar(Mmax

c )) built in step 2
after one differentiation. The bold edges are the complete matching
found in step 2.

{ė4, Ḟ2} in Figure 4. Step 2 finds an assignment for ė6.
The structural model Mdiff obtained from Algorithm 2 is
shown in Table II. The two differentiated equations are
ė4 : 2 (1 − fc) F2 Ḟ2 − F 2

2 ḟc = ḣ and ė6 : ẏf = ḟyf + Ḟ2.
Note the exact correspondence between the analytical dif-
ferentiation and the structural differentiation in Table II.
�

C. Simplifying the Model

It is a complex task to find all MSS sets in a structural
model. Therefore it can be of great help if it is possible to
simplify the model. Here two kinds of simplifications are
used.

In a first step, all equations in Mdiff that include any
variable that is impossible to eliminate, are removed. This
can be done with Canonical Decomposition [7]. The de-
composition divides the model in three parts: one struc-
turally overdetermined, one structurally just-determined
and one structurally underdetermined part. This is ac-
complished by first finding a maximal matching “see Ap-
pendix” in the bipartite graph G(E, varXu

(E)). Denote the
assigned equations and variables in the maximal matching
with Em and Xm respectively. Now, all nodes such that
there is an alternating path “see Appendix” from E\Em is
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TABLE II

The structural model Mdiff obtained from Algorithm 2

when applied to the structural model Mext. Nonlinearly

included variables are denoted with an O.

equation unknown fault known

F1F2Ḟ2 h ḣ fufyhfcḟcfyf ḟyf u yhyf ẏf

e1 X X X
e2 X X X
e3 X X X
e4 O X O
ė4 O O X O O
e6 X X X
ė6 X X X

the structurally overdetermined part of the model. Denote
this part of the model Msimp1. The structurally underde-
termined part of the model are the nodes such that there
is an alternating path from varX(E)\Xm. The remaining
part of the model is the structurally just-determined part.
Assumption 1 implies that structural overdetermination is
needed for analytical overdetermination and therefore it is
only the model Msimp1 that is considered in the continua-
tion.

Example 7: Continuation of Example 6. It can
be seen in Table II that one maximal matching in
G(Mdiff , varXu

(Mdiff )) is {e1, F1}, {e2, ḣ}, {e3, h},
{e4, F2}, and {ė4, Ḟ2}. It is easy to verify that there is an
alternating path from e6 or ė6 to each equation in Mdiff .
Hence Msimp1 = Mdiff . �
In a second step, variables that can be eliminated with-
out losing any structural information are found. The rest
of this section will be devoted to a discussion about this
second step.

If there is a set X ⊆ Xu with the property 1 + |X| =
|equMsimp1

(X)|, then all equations in equMsimp1
(X) have

to be used to eliminate all variables in X. Since all un-
known variables must be eliminated in an MSS set this
means particularly that all MSS sets including any equa-
tion of equMsimp1

(X) have to include all equations in
equMsimp1

(X). The idea is to find these sets. Then it
is possible to eliminate internal variables, here denoted X,
in these sets. Every set is replaced with one new equation
denoted E(equMsimp1

(X),X). For simplicity, the second
argument will be omitted in the rest of this paper.

This second simplification step finds subsets of variables
that are included in exactly one more equation than the
number of variables. To reduce the computational com-
plexity, a complete search for such sets is in fact not per-
formed here. Instead only a search for single variables in-
cluded in two equations is done. When a variable is in-
cluded in just two equations, these equations are used to
eliminate the variable. If all variables are examined and
some simplification was possible, then all remaining vari-
ables have to be examined once more. When no more sim-
plifications can be made, the simplification step is finished
and the resulting structural model is denoted Msimp. Note
that with this strategy larger sets than two equations will

also be found, since the algorithm can merge sets found in
previous steps.

The next theorem ensures that no MSS set is lost in the
simplification step.

Theorem 3: MSS(Mdiff ) = MSS(Msimp)
For a proof, see [12].

Example 8: Consider Example 7 with the structural
model shown in Table II. The second simplification step
searches for variables which belong only to two equations.
In the first search, the algorithm finds F1 in {e1, e2}, Ḟ2

in {ė4, ė6}, and ḣ in the equations produced by {e1, e2}
and {ė4, ė6}. This makes one group of {e1, e2, ė4, ė6}. This
search made simplifications and therefore the search is per-
formed once more. The second time no simplifications are
done and the simplification step is therefore complete. The
structural model is shown in Table III and a corresponding
analytical model is shown in Table IV.

TABLE III

The structural model Msimp for the water tank system

shown in Figure 1

equation unknown fault known

F2 fufyhfcḟcfyf ḟyf u yhyf ẏf

e6 X X X
E({e3, e4}) X X X X
E({e1, e2, ė4, ė6}) X X XX X X X

�

D. Finding MSS Sets

After the simplification step is completed, step 3 in Al-
gorithm 1 finds all MSS sets in the simplified model Msimp.
This section explains how the MSS sets are found.

The task is to find all MSS sets in the model Msimp with
equations {e1, · · · , en}. Let Mk = {ek, · · · , en} be the last
n− k + 1 equations. Let E be the current set of equations
that is examined. The set of MSS sets found is denoted
ωalg3. Then the following algorithm finds all MSS sets in
Msimp.

Algorithm 3:
Input: The model Msimp.
1. Set k = 1 and ωalg3 = ∅.
2. Choose equation ek. Let E = {ek} and X = ∅.
3. Find all MSS sets that are subsets of Mk and include
equation ek.

TABLE IV

An example of an analytical model after the simplification

step.

equation expression
e6 yf = F2 + fyf

E({e3, e4}) yh = F 2
2 (1 − fc) + fyh

E({e1, e2, ė4, ė6}) u = F2(1 − F2 ḟc + 2 (1 − fc)(ẏf − ḟyf )) − fu
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a) Let X̃ = varXu
(E)\X be the unmatched variables.

b) If X̃ = ∅, then E is an MSS set. Insert E into ωalg3.
c) Else take a remaining variable x̃ ∈ X̃ and let X =

X ∪{x̃}. Let Ẽ = equMk\E(x̃) be the remaining equations.
For all equations e in Ẽ let E = E ∪ {e} and goto step a).
4. If k < n set k = k + 1 and goto step number 2.
Output: The set of MSS sets found, i.e. ωalg3.
Algorithm 3 finds all MSS sets in Msimp according to the
next theorem proven in [12].

Theorem 4: ωalg3 = MSS(Msimp)
In [5] there is a similar algorithm for computing minimal
evaluation chain (MEC) which is almost the same as the
MSS sets. The difference is that a MEC has to include
known variables. The next example not related to any
previous example illustrates Algorithm 3.

Example 9: Consider the following structural model.

x1 x2 x3

1 X X
2 X X
3 X X X
4 X
5 X

This model gives the following time evolution of current
equations, i.e. E in Algorithm 3 is

2 3 2
2 5 5 2 2 3 3 5

3 3 3 3 4 4 4 4 4 4
1 1 1 1 1 1 1 1 1 1 1

4
4 3 3 5

3 3 5 5 5 4 4
2 2 2 2 2 2 3 3 3 4 5

The bold columns represent the MSS sets found. This
example also shows that if there are several matchings in-
cluding the same equations, the algorithm finds the same
subset of equations several times. �

Example 10: Continuation of Example 8. The 3 MSS
sets that can be found in Table III are shown in the left
column in Table V. The matrix in this table is the incidence
matrix of the MSS sets. �

E. Analyzing Isolability

When the MSS sets are found, the next step is to analyze
their isolability. If any equation in the MSS set i include
fault j, the element (i, j) of the incidence matrix is equal
to X. Note that an X in position (i, j) is no guarantee
for fault j to appear in the MSS set i. Moreover it is no
guarantee that a fault j that appears in the MSS set i has
to make MSS set i inconsistent, i.e. exoneration is not
assumed.

Example 11: To give an example of the interpretation
of an incidence matrix, consider the second MSS set in
Table V. This MSS set could contain fu and fyf , but it
is impossible that it could contain fyh, since fyh is only
included in equation e3. �

If the number of different faults is large it is not easy
to see which faults that can be isolated from each other.
The incidence matrix of the MSS sets show which faults
that could be responsible for an inconsistency of each MSS

TABLE V

The structural model of the MSS sets.

MSS fault known

fufyhfcḟcfyf ḟyf u yhyf ẏf

{e1, e2, e3, e4, ė4, ė6} X X XX X X X X X
{e1, e2, ė4, e6, ė6} X XX X X X X X
{e3, e4, e6} X X X X X

TABLE VI

The isolability matrix of the structural model in Table V.

present interpreted fault
fault no fault Fu Fyh Fc Fyf

no fault X X X X X
Fu X X X
Fyh X X X
Fc X X
Fyf X X

set, but it is more interesting to see which fault that can
be explained by other faults. An isolability matrix shows
the maximum isolation and detection capability of the di-
agnosis system. The maximum isolation capability with a
diagnosis system designed with this structural method is
obtained if it is assumed that each fault makes all MSS
sets including this fault inconsistent. If fault j is sensitive
to at least all MSS sets that fault i is sensitive to, then
element (i, j) of the isolability matrix is equal to X. The
interpretation of an X in position (i, j) is that fault fi can
not be isolated from fault fj .

Example 12: The isolability matrix corresponding to the
incidence matrix in Figure V is shown in Table VI. Con-
sider the first row of the isolability matrix. Suppose that
fault fu is present. Then, the first three MSS sets are not
satisfied in an ideal case. This means that fu certainly can
explain fault fu, but also fyf can explain fault fu. Fault
fyh cannot explain fault fu, since if fyh is present, the third
MSS set is satisfied. Note that the isolability matrix is not
symmetric. For example fault fyf can explain fault fu but
the opposite is not true. �

The isolability matrix can more easily be analyzed af-
ter Dulmage-Mendelsohn permutations [13]. This algo-
rithm returns a maximal matching which is in block upper-
triangular form. The faults in each diagonal block can
never be distinguished with that diagnosis system.

Example 13: In Table VI, the same matrix is returned
after Dulmage-Mendelsohn permutations, which usually is
not the case. The diagonal blocks are the 1 × 1 diagonal
elements {no fault}, {Fu}, {Fyh} and the 2 × 2 diagonal
element {Fc, Fyf}. �

F. Decoupling Faults

Let I be a set of isolability properties. An isolability
property is that a fault becomes detectable or some fault
f1 can be isolated from some other fault f2. The set I can
be specified by the demands of the isolability capability of
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TABLE VII

The structural model of the additional MSS sets.

MSS fault known

fufyhfcḟcfyf ḟyf u yhyf ẏf

{e1, e2, e3, e4, ė4, e5, e6, ė6} X X X X X X X X
{e1, e2, e3, e4, ė4, ė6, e7} X X XX X X X

the diagnosis system or just set to full isolation capability.
An isolability matrix can define the desired isolability.

Example 14: Continuation of Example 12. The desired
isolability Ides can be chosen as full isolability. This cor-
responding matrix is shown in Table VIII. Note that each
empty entry in the matrix define one isolability property
in Ides. This means for example that |Ides| = 16, i.e. there
are 16 desired isolability properties. �
Suppose that the element (i, j) of the isolability matrix is
equal to X but the desired isolability matrix is not equal to
X for some i 6= j. This means that the desired isolability
is not fulfilled. However, it could still be possible to isolate
fault i from fault j by trying to decouple fault j. Include
fault j among the unknown variables Xu and search for
new MSS sets by applying Algorithm 1 from step 2 to the
new model obtained. An MSS set that is able to isolate
fault i from fault j has to include at least one equation
that includes fault i. If any such MSS set is found, it has
to include an elimination of fault j. If not, this MSS would
have been discovered earlier.

Example 15: Continuation of Example 14. The isolabil-
ity of the MSS sets found is shown in Table VI and the
desired isolability is shown in Table VIII. The lack of de-
sired isolability fulfillment is seen in the isolability matrix
as the additional X:s. The third column in the isolability
matrix shows that fu, fyh, and fyf can not be isolated from
fc. The problem is that there is no MSS set that decouple
fault fc. But there could be one if fc is eliminated. The
fault fc is moved from the faults F to the unknown vari-
ables Xu. The procedure starts all over from the step 2
in Algorithm 1. The result is a new MSS set in which fc
is decoupled. Furthermore fyf has also to be decoupled.
Decoupling fyf gives also one extra MSS set. These two
additional MSS sets, shown in Table VII, together with the
previous MSS sets give a possibility to detect and isolate
all faults and the desired isolability is fulfilled. �

G. Selecting a Subset of MSS Sets

It is not unusual that the number of MSS sets found is
very large. Many of the MSS sets probably use almost as
many equations as unknown variables in the entire system.
These MSS sets usually rely on too many uncertainties to
be usable for fault isolation. Small MSS sets are more
robust and are usually sensitive to fewer faults. Therefore
the goal must be to find a set of MSS sets with the highest
possible robustness and with the same isolation capability
as the set of all MSS sets.

Assume that it is possible to calculate a real number for

TABLE VIII

Desired isolability matrix of the water tank example.

present interpreted fault
fault no fault Fu Fyh Fc Fyf

no fault X X X X X
Fu X
Fyh X
Fc X
Fyf X

each MSS set that is inversely proportional to the robust-
ness of the MSS set. Let this number for MSS set m be
denoted nm. This number can for example be as in this
paper, the number of equations in each MSS set.

Now, let Ψ(Ω, i) be a function that has a set Ω of MSS
sets and an isolability property i as arguments and returns
the MSS sets of Ω with property i.

The set of MSS sets ω has maximum isolation capability
and maximum robustness if ω fulfills

∀i ∈ I
(
Ψ(MSSall(Morig), i) 6= ∅ →

→ minψ∈Ψ(MSSall(Morig),i) nψ = minψ∈Ψ(ω,i) nψ
) (4)

Note that ω is not unique, but the minimum number for
each i ∈ I is unique.

Step 7 in Algorithm 1 start to sort the MSS sets in an
increasing order of robustness. The MSS sets are exam-
ined in the rearranged order. If an MSS set increase the
isolability, then select the MSS set. This means that for
each detection of a fault and for each isolation between
two faults, the smallest MSS sets with this isolation capa-
bility will be one of the chosen MSS sets. In this way the
final output from Algorithm 1 will be a small set ω of MSS
sets with highest possible isolation capability and highest
possible robustness, i.e. ω fulfills expression (4). An upper
bound to |ω| is |Ides|.

Example 16: Continuation of Example 15. Step 7 in Al-
gorithm 1 rearranges the MSS sets in increasing size as
shown in Table IX. It is possible to define an upper limit
of the isolability requirement fulfillment as |I|/|Ides| where
I is the calculated isolability given a set of MSS sets. This
number is shown in the right column of Table IX when
the MSS sets are added one at a time. The third MSS set
in Table IX does not increase the isolability requirement
fulfillment and is therefore rejected. Hence the MSS sets
1, 2, 4, and 5 are selected. Using the function Eliminate
in Mathematica and setting all fault variables to zero pro-
duces the consistecy relations

y2
f − yh = 0

yf + 2 yf ẏf − u = 0
yh + 4 yh ẏf + 4 yh ẏ2

f − u2 = 0
y2
f + 2 yh ẏf − u yf = 0

for each MSS set respectively.
�
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TABLE IX

The structural model of the MSS sets.

MSS fault accumulated

fufyhfcḟcfyf ḟyf isolability
{e3, e4, e6} X X X 38%
{e1, e2, ė4, e6, ė6} X XX X X 63%
{e1, e2, e3, e4, ė4, ė6} X X XX X X 63%
{e1, e2, e3, e4, ė4, ė6, e7} X X XX 81%
{e1, e2, e3, e4, ė4, e5, e6, ė6} X X X X 100%
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Fig. 5. A stock preparation and broke treatment system of a paper
mill.

V. Industrial Example: A Part of a Paper Mill

This example is a stock preparation and broke treatment
system of a paper mill located in Australia. The system is
used for mixing and purifying recycled paper for produc-
tion of new paper. An overview of the system is shown in
Figure 5.

A. System Description

Most parts of the system are nonlinear and it is only the
tank and the pulper that are considered to be dynamic.
Because of space considerations, the details of the model
are omitted, but can be found in [12], [14]. The system has
4 states: the volume and concentration in the pulper and
in the tank. There are 6 sensors in the system. Sensor y1

and y3 measure the water levels of the pulper and the tank
respectively, y2 and y4 measure concentration, y5 and y6

measure pressure. The flows and concentrations into this
system are known and the flows out from the system are
also known. There are 6 valves and two pumps that are
actuators with known inputs.

There are 21 faults that are considered. All sensors can
have a constant offset fault f1, . . . , f6. All valves can have a
constant offset in the actuator signal f7, . . . , f12. Clogging
can occur in the pipes near the valves f13, . . . , f18 and also
directly after the tank f19. Finally, the pumps can have a
constant offset in the actuator signal f20, f21.

The system is described by 29 equations and additionally
21 equations describing fault models. Equations e1, . . ., e4

describe the dynamics; e5, . . . , e14 are pressure loops; e15

relates the concentration in the junction after the tank with
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Fig. 6. Structural model of the stock preparation and broke treat-
ment system.

the flows F4 and F6; e16 and e17 describe the two pumps;
e18, . . . , e23 are valve equations; e24, . . . , e26 are flow equa-
tions; and finally e27, . . . , e29 are sensor equations for sensor
1, 2, and 3. Finally there are the 21 equations describing
each fault.

B. Extracting the No-Fault Model

The extracted model contains all equations except for
the 21 equations describing fault models. The extracted
structural model can be viewed in the first 29 rows in the
matrices in Figure 6.

C. Differentiating the Model

The highest order of derivatives that is known for all
known variables are assumed to be one. If a variable is
contained linearly in an equation the variable disappears in
the differentiated expression. This knowledge is used since
the equations are known. Algorithm 2 is applied to the
first 29 equations in Figure 6. The result is that all equa-
tions except equation 1, 2, 3, and 4 are differentiated. This
results in additionally 25 differentiated equations shown in
the lower part of Figure 6.

D. Simplifying the Model

In the first step of simplification applied to the left ma-
trix in Figure 6, the equations {27, 28, 29} include vari-
ables belonging only to one equation, i.e. they cannot be
included in any MSS sets.

The second part of the simplification finds that the vari-
ables {9, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31} can be
eliminated. The equations that form groups are {1, 52},
{2, 53}, {3, 54}, {4, 15, 40}, {32, 41, 44}, {39, 48, 51},
{31, 43}, {35, 45}, {37, 46} and {36, 47}. The simplified
structural model is shown in Figure 7 (a). Note the simpli-
fication of the model by comparing Figure 6 and Figure 7
(a).
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Fig. 7. The simplified structural model is shown in (a). The incidence
matrix of the MSS sets is shown in (b)

E. Finding MSS Sets

Algorithm 3 is then applied to the simplified model. The
algorithm returns 35 770 MSS sets that are contained in
the simplified model. The largest MSS set consists of 24
equations.

F. Analyzing Isolability

The isolability matrices before and after the Dulmage-
Mendelsohn permutations are seen in Figure 8. The
Dulmage-Mendelsohn permutations gives that the faults
{7, 13}, {8, 14}, {9, 15}, {10, 16},{11, 17} and {12, 18} are
never distinguishable. These pairs of faults all belong pair-
wise to the same valve. This isolation performance for
faults concerning valves is in this case acceptable. Hence
the desired isolability Ides does not include isolation be-
tween pairs of faults belonging pairwise to the same valve.

The result of the isolability analysis is now that it is not
possible to isolate faults 4, 8, and 14. This follows from
the difference between the isolability shown in Figure 8 (a)
and the desired isolability Ides.

G. Decoupling Faults

Considering Figure 8, it is still important to discover if
any MSS set can decouple fault 2 or 3 and be sensitive to
fault 4. It is also necessary to decouple fault 20. Apply
Algorithm 1 to the original model, but where fault 2 now
is considered to be an unknown variable. Then apply the
Algorithm 1 to the model where faults 3 is decoupled and
finally also when fault 20 is decoupled. The algorithm finds
thereby additional MSS sets that isolate fault 4, 8, and 14.
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Fig. 8. These matrices are the isolability matrices before (a) and
after (b) the Dulmage-Mendelsohn permutation.

H. Selecting a Subset of MSS Sets

The 24 chosen MSS sets are
MSS

1 13
2 2 53
3 6 18
4 11 22
5 1 16 52
6 22 36 47
7 7 16 19
8 8 9 17 24
9 9 10 17 20
10 12 17 21 25
11 16 19 32 41 44
12 8 10 17 20 24
13 12 14 21 23 26
14 14 17 23 25 26
15 17 24 33 34 42 49
26 7 16 19 32 41 44
17 17 21 25 37 42 46 50
18 8 10 12 20 21 24 25
19 17 23 25 26 39 42 48 50 51
20 3 4 15 16 17 24 40 42 49 54
21 1 3 4 15 17 24 40 42 49 52 54
22 3 4 8 10 15 16 20 33 35 40 45 54
23 2 3 4 15 16 17 24 40 42 49 53 54
24 3 4 8 9 15 16 17 24 40 42 49 54

(5)

From these sets and the structural model in Figure 6 the
incidence matrix in Figure 7 (b) is obtained.

I. Generating Consistency Relations

Consistency relations corresponding to the 24 MSS sets
are calculated by using the function Eliminate in Mathe-
matica. Most of the equations in the model are polynomial
equations. For polynomial equation-systems, the function
Eliminate uses Gröbner Basis techniques for elimination.
Each MSS set with 7 or less equations was easily eliminated
to a consistency relation. The consistency relations from
the MSS set 17 and 18 were obtained from the Eliminate
function, but were to complex to be numerically reliable.
Elimination of the unknown variables in MSS sets with 8
or more equations was computational intractable with the
Eliminate function. Therefore, by using only consistency
relations obtained from the 15 first MSS sets, the isolation
capability was reduced slightly. Some further results of the
investigation can be found in [12].

VI. Conclusion

This paper has presented a systematic and automatic
method for finding a small set of submodels that can be
used to derive consistency relations with highest possible
isolation capability. The method is based on graph theo-
retical reasoning about the structure of the model. It is
assumed that a condition on algebraic independency is ful-
filled.
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An important idea, towards finding these submodels, is
to use the mathematical concept minimal structurally sin-
gular sets. These sets have in Theorem 1 been shown to
characterize these submodels, i.e. the consistency relations,
which give the fault detection and the fault isolation capa-
bility.

The method is capable of handling general differential-
algebraic non-causal equations. Further, the method is not
limited to any special type of fault model. Algorithm 1
finds all submodels that can be used to derive consistency
relations and this is proven in Theorem 2, 3, and 4. The
key step in Algorithm 1 is step 3 that finds all MSS sets in
the model it is applied to.

Finally the method has been applied to a large nonlinear
industrial example, a part of a paper mill. The algorithm
successfully manage to derive a small set of submodels. In
spite of the complexity of this process, a sufficient number
of submodels could be transformed to consistency relations
so that high isolation capability was obtained.
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sitet, SE-581 83 Linköping, Sweden, 2001.

Appendix

Bipartite Graph. A graph with edges Γ is bipartite if
its nodes can be partitioned into two sets E and X such
that no two nodes in the same set have an edge in common.
This graph may be written as (E,X,Γ).

Matching. Given a graph with edges Γ a matching is a
set of edges Γ0 ⊆ Γ such that no two edges have a node in
common. A matching Γ0 is maximal if |Γ1| > |Γ0| implies
that Γ1 is not a matching.

Complete Matching. Given a bipartite graph
(E,X,Γ), a complete matching of E into X is a match-
ing such that all nodes in E is an endpoint of an edge.

Alternating Path. Consider a matching Γ0 in a graph
with edges Γ. An alternating path is defined as a path
whose edges are alternately in Γ0 and in Γ\Γ0.

Augmented path. An alternating path in a matching
Γ0 is an augmented path in Γ0 if it begins and ends at two
distinct unmatched nodes.


