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Abstract— Fault diagnosis is important for automotive vehicles,
due to economic reasons, such as efficient repair and fault
prevention, and legislative reasons, mainly safety and pollution.

Embedded systems in vehicles includes a large number of
electronic control units, that is connected to each other via an
electronic network. Many of the current diagnostic systems use
pre-compiled diagnostic tests, and fault-logs that stores the results
from the tests. To improve the diagnostic system, fault localization
in addition to the existing fault detection is wanted.

Since there are limitations in processing power, memory, and
network capacity, an algorithm is searched for that uses stated
diagnoses in the control units to find the diagnoses for the
complete system. Such an algorithm is presented and exemplified
in the article.

The embedded system used in a Scania heavy duty vehicle, has
been used as a case study to find limitations in the embedded
system, and realistic requirements on the algorithm.

Copyright c© 2004 J. Biteus, M. Jensen, & M. Nyberg.

I. I NTRODUCTION

In most modern automotive vehicles, severalelectronic
control units(ECU) communicates over an electronic network.
EachECU is usually connected to one or severalcomponents,
e.g. sensors and actuators, and to make sure that the compo-
nents are operating correctly, they aremonitoredby theECUs.
Often, precompiled diagnostic tests, which can be simple or
complex, are used to perform the monitoring.

If an ECU, with the use of tests, finds that one or several
components are showing abnormal behaviors, one or several
diagnostic trouble codes(DTC) are created. TheseDTCs are
read out by technicians, and will assist them in locating the
faulty component or components. When reading theDTCs,
it might be difficult to localize the faulty component, or
components, among all the components that are included
in the DTCs. The reasons for this are that eachDTC can
involve multiple components, and that the sheer volume of
DTCs might be overwhelming for the technician. Due to this
difficulty, the reparation times might be prolonged, and non-
faulty components might unnecessary be replaced.

Therefore, it is preferable to present a list of the possibly
faulty components that might have caused theseDTCs, i.e. the
diagnosesthat explain theDTCs should be found.

The diagnoses that are calculated for a singleECU are here
denoted thelocal diagnoses. When local diagnoses have been

calculated for anECU, these describes the possible faulty com-
ponents that are somehow involved with thisECU’s operation.
In the set of local diagnoses, there are some diagnoses that are
more likely than the other diagnoses, e.g. a diagnosis that only
includes a sub-set of the components in another diagnosis. If
all the local diagnoses in all theECUs were merged together,
the result would be theglobal diagnoses, i.e. the diagnoses
for the complete system.

After such a simple merge of the local diagnoses, one could
find that some of the local diagnoses, that from a local point
of view seemed to be most likely,is in fact not at all most
likely considering the complete system. How to calculate the
more likely global diagnoses from the local diagnoses is the
topic of this paper.

Notice that an alternative when searching for the global
diagnoses, would be to start all over again from theDTCs,
however, since the local diagnoses already have been com-
puted, it might be preferable to use these.

An algorithm is presented that uses the individualECUs’
computation power to calculate the more likely global diag-
noses from local diagnoses.

A. A Typical Embedded System

Many vehicles, including Scania’s heavy-duty vehicles, have
a controller area network(CAN) which connects severalECUs
to each other. Each of theECUs, is further connected to sensors
and actuators, and both sensor values and control signals can
be shared with the otherECUs over the network. An example of
anECU, is the engine management system, which is connected
to sensors and actuators related to the engine. In Fig. 1, a
configuration of the current Scania embedded system is shown.
It includes three separateCAN buses, red, yellow, and green,
which are connected to the coordinatorECU. The coordinator
acts as a router, making sure that no messages are forwarded to
any other bus unless it is necessary. There are between 20 and
30 ECUs in the system, depending on truck’s type and outfit,
and between 4 and 110 components are connected to each
ECU. The ECUs’ CPUs have a clocking speed of 8 to 64 MHz,
and a memory capacity of 4 to 150 kB.
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Fig. 1. The embedded system in current Scania heavy-duty vehicles.

B. A Typical Diagnostic System

The current Scania diagnostic system consists of precom-
piled diagnostic tests. When a test indicates some fault, a
diagnostic trouble code (DTC) is generated. There are between
10 and 1000 tests in eachECU. No explicit fault isolation is
performed in the current system, neither in or between the
ECUs. Further, there are no explicit communication between
the ECUs, regarding the results of the tests.

In Fig. 2, a typical layout ofECUs and components are
shown. The tests involves the componentsci that is connected
with solid lines. Some calculated value used in a test in agent
A1 which involves componentc2 and c4 is transmitted over
the network from agentA1 to A2.

C. Related Work

Diagnosis for embedded systems can be centralized, decen-
tralized or distributed. Most research has been aimed at the
centralized problem, where a single process collects relevant
data from the system and states global diagnoses [1]. In
contrast to the centralized system, in a fully distributed system,
there is no central process at all. The distributed processes
communicates instead directly with each other to form the
global diagnoses [2], [4].

In a decentralized system, there is some central diagnostic
process that directs the diagnostic work, while local processes
are doing some part of the diagnostic work [3].

II. SYSTEM DESCRIPTION ANDDIAGNOSIS

REPRESENTATION

The diagnostic system involves a set of agents,A, and a
set of components,C, which are the set of objects that can be
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Fig. 2. A typical ECU, component and test layout.

diagnosed, by one or several agents, for abnormal behavior.
The agents are connected to each other via a network, where
an output signal in an agent is linked to input signals in one
or several other agents.

Example 1: In Fig. 2, a typical layout of agents and
components is shown. The tests involves the components
ci connected with solid lines. Componentsc2 and c4 are
physically connected to agentA2, and some calculated value
involving componentsc2 and c4 is transmitted over the
network from agentA2 to A1, indicated by the dotted lines
in the figure. �

In a vehicle, the agents are the software programs that are
implemented in theECUs. The components are the sensors,
actuators, pipes, etc., which are monitored by the diagnostic
systems. Output signals are mostly values from sensors, actu-
ator signals, or calculated values, that are made available to
the other agents over theCAN.

Each component,c ∈ C, has a general fault mode and
a no-fault mode. Since the general fault mode does not
have a model, the notation used in for exampleGDE is here
employed [6].

A diagnosis for a set of componentsC ′ ⊆ C is

D ⊆ C ′

It states that the componentsc ∈ D are in the faulty mode,
while the remaining componentsC ′\D might or might not be
in the faulty mode.

A local diagnosisis a diagnosis stated by an agent, it states
the modes of some sub-set of components,C ′, which are
somehow involved in the operation of the agent. The set of
local diagnoses for agentAi is Di.

A global diagnosisis a diagnosis that can state the mode of
all components in the system, i.e.C ′ = C. The set of global
diagnoses is denotedD.

Due to the combinatorial explosion when searching for
global diagnoses, it is preferable to only consider some sub-
set of global diagnoses with properties that are specifically
interesting. One such set is theminimal-cardinality (mc)
diagnoses

Dmc = {Dj

∣∣ |Dj| = min
Di∈D

|Di|,Dj ∈ D}

for a set of diagnosesD. The set of local minimal cardinality
diagnoses for agentAi is denotedDmc,i, and the set of global
minimal cardinality diagnoses is denotedDmc.



If all components have the same probability to fail, the most
likely global diagnoses will simply be the global minimal
cardinality diagnoses. This is one such set of more likely
global diagnoses, that according to Section I is wanted.

In Section I, the possibility to merge different sets of local
diagnoses was discussed. Themerging of two sets of diag-
noses,Di and Dj, is defined asDi ×∪ Dj , {Di ∪ Dj | Di ∈
Di,Dj ∈ Dj}. By merging all local diagnoses, the global
diagnoses can be formed

D = ×∪i Di

Example 2: [Merge of local diagnoses]Consider the local
diagnosesD1 = {{A,B}, {C}} and D2 = {{B}}. The global
diagnosesD = D1 ×∪ D2 = {{A,B}, {C,B}}. �

It is however not the case that a merge of the local minimal
cardinality diagnoses results in the global minimal cardinality
diagnoses, i.e.

×∪
i

D
mc
i 6= Dmc

for some sets of local minimal cardinality diagnoses.
Example 3: [Merge ofDmc

i ] Consider the example above,
where D

mc
1 = {{C}} and D

mc
2 = {{B}}. The merge gives,

D
mc
1 ×∪ D

mc
2 = {{C,B}}, while Dmc = {{A,B}, {C,B}}, i.e.

{A,B} was not included in the merge of the local minimal
cardinality diagnoses. �

A. Global Diagnosis Representation

The global diagnoses can be represented in several different
ways. When considering systems, such as a vehicle, the
diagnoses should be used by a technician for repair. In this
case, it might be preferable to present the global diagnoses
as a conjunction of smaller disjoint parts of diagnoses. The
global diagnoses will then simply be a merge of all the disjoint
parts, which is more compactly, and easily, represented by the
parts themselves. From the technicians point of view, the parts
will be smaller, and therefore more easily understood, than the
complete set of global diagnoses.

If the local diagnoses were disjoint, one such conjunction
would be available directly from the local diagnoses. This
might however not be the case, because the different local
diagnoses might include complex relations between diag-
noses, i.e. they are not disjoint. Another way is to merge
the local diagnoses from a sub-set of agents, so that each
such set of merged diagnoses is disjoint from the others.
These sets of diagnoses are here denotedmodule diagnoses,
Dmod , ×∪Ai∈Ā Di for some set of agents̄A ⊆ A. For two
different module diagnoses,̄Ai ∩ Āj = ∅ and Di ∩ Dj = ∅,
whereDi ∈ Dmod,i andDj ∈ Dmod,j.

Example 4: [Module diagnoses]If D1 = {{A,B}}, D2 =
{{B,C}}, andD3 = {{E}}, then for the sub-sets of agents̄A1 =
{A1, A2} andĀ2 = {A3}, it follows thatDmod,1 = {{A,B,C}}

andDmod,2 = {{E}}. �
The m:th set of module minimal cardinality diagnoses

(MGMCD) is denotedDmod,mc,m. In contrast to the case with
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Fig. 3. Agents, local diagnoses, and MGMCDs.

merged local cardinality diagnoses, when consideringMGMCDs

×∪
i
Dmod,mc,i = Dmc

since the differentMGMCDs are disjoint.
Example 5: [MGMCDs] Consider Fig. 3 where five agents

states local diagnoses in a truck. The local diagnoses are rep-
resented by the circles and states the modes of the components
inside the circles. Three sets ofMGMCDs could be found. �

III. M INIMAL -CARDINALITY DIAGNOSES

The principle for the algorithm, is that each agent has
createdminimal local diagnosesusing for example the algo-
rithms presented in [1]. These local diagnoses are then merged
together to form theMGMCDs.

A. Minimal-Cardinality Diagnoses – Algorithm 1

The algorithm, which is described in Algorithm 1, consists
of two main parts. Firstly, is the sets of agents whose local
diagnoses are guaranteed to be merged intoMGMCDs found.
Thereafter, the local diagnoses are iteratively merged with
Algorithm 2 into sets ofMGMCDs.

The main idea is to start with a lowL, then if no partial
diagnosis with cardinality less than or equalL is found, i.e.
N = ∅, then L is raised and a new search begins. If local
diagnoses from all agents have been merged and a partial
diagnosis have been found, i.e.NRn 6= ∅, this will be the set of
MGMCDs. A first approximation of the lower bound,L, is that
the MGMCDs must be at least as large as thelargest minimal
cardinality local diagnosis, considering all agents inR.

The algorithm isdecentralizedwhere Algorithm 1 is cal-
culated in some central agent, while the computation and
memory intensive Algorithm 2 is performed in the local
agents. In the algorithms, anordered set is represented by
(·) and anunorderedby {·}.

Example 6: [Algorithm 1] Consider Fig. 4 where the
MGMCDs for the three agents should be found. Some central
unit decides that the local diagnoses should be merged in order
A3, A4 thenA2. It sends the UpdateAgent command to agent
A3, who calculatesNA3 . Thereafter are the UpdateAgent
command sent toA4 who collectsNA3 and calculatesNA4 .
The end result isDmod,mc = NA2 . �
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Algorithm 1 module global minimal-cardinality diagnoses
Require: All local diagnoses,D, for all agentsA.
Ensure: All MGMCDs, Dmod,mc.

1: E := {(Ai, c) | Ai ∈ VA, c ∈ Dj,Dj ∈ D̄i}

2: G := (A, C, E) [Bipartite graph.]
3: Find subgraphsG ∈ G.
4: for all Gi ∈ G, whereGi = (VA

i , VC
i , Ei), andVC

i 6= ∅.
The setR = VA

i , whereR = (R1, . . . , Rn) do
5: L := maxAi∈R minDj∈Di

|Dj|

6: i := 1

7: while NRn = ∅ do
8: Lnew := UpdateAgent(Ri, Ri−1,L)
9: NRi includes the new diagnoses and is stored inRi.

10: i := i + 1

11: if Lnew > L then
12: i := 1, L := Lnew

13: end if
14: end while
15: Dmod,mc,k = NRn , whereR is the k:thR ∈ R.
16: end for

B. Update Agent – Algorithm 2

When executing algorithm Algorithm 2 with command
UpdateAgent(Ri, Ri−1,L), a set of new diagnoses are formed
and stored inRi. These new diagnoses are the diagnoses that
are formed by merging the local diagnoses in the part ofR

up to agentRi, that have a cardinality less than or equal the
given lower limitL. Further, only the diagnoses that have not
been considered in previous evaluations are stored inRi.

In the algorithm,l is the number of times that the current
agent have been called with command UpdateAgent(·), e.g. the
first time that an agent is called with UpdateAgent, thenl = 1.
The main parts of the algorithm are the merge of theold and
new global diagnosesfor {R1, . . . , Ri−1} with the new local
diagnoses(W1), and the merge of thenew global diagnoses
for {R1, . . . , Ri−1} with the old local diagnoses(W2).

Example 7: [Algorithm 2 and relevant part of Algorithm 1]
Consider the system in Fig. 4. In includes three agent whose
local diagnoses are

D2 = {{B,C}, {D}} D3 = {{B}, {C,D, E, F,G}}

D4 = {{C}, {D}}.

The sort orderR = (A3, A4, A2). With L = 1, the first agent,
A3 finds new diagnoses with cardinality≤ L, which give
NA3 = {{B}}. and is then finished. AgentA4 collectsNA3

Algorithm 2 UpdateAgent
Require: D1 for A1, whereA1 = Ri andD2 for A2, where

A2 = Ri−1. The number of evaluations, including this, of
UpdateAgent for agentA1 is l.

Ensure: Dmod for agents{R1, . . . , Ri} with cardinality less
then or equalL. A new L.

1: E := {Dj

∣∣ |Dj| ≤ L,Dj ∈ DRi
}

2: D := {Dj

∣∣ |Dj| > L,Dj ∈ DRi
}

3: if i = 1 then [The firstR]
4: N := E

5: else if i > 1 then
6: Tl := NRi−1 , whereNRi−1 is N in agentRi−1.
7: W1 :=

⋃l
j=1 Tj ×∪ E

8: W2 := Tl ×∪ F

9: W := W1 ∪ W2 ∪ M

10: F := F ∪ E

11: N := {Wj

∣∣ |Wj| ≤ L}

12: M := W\N

13: if N = ∅ ∧ l = 1 then
14: L := minj |Wj| [New lower bound.]
15: end if
16: end if
17: Saved for later use are{T1, . . . , Tl}, D, F, and M. New

global diagnosesN is saved for use by agentRi+1.

over the network and updates its information,

WA4 := {{B,C}, {B,D}} NA4 := ∅.
SinceNA4 = ∅ and this is the first time thatA4 have been
called, i.e.l = 1, L is increased to2. Since a newL was
returned the first agent is called again. AgentA3 updates its
information which giveNA3 := {{}}. A4 collects the new
information and find that,NA4 := {{B,C}, {B,D}}. A2 takes
over and calculates

WA2 := {{B,C}, {B,C,D}, {B,D,C}, {B,D}}

NA2 := {{B,C}, {B,D}}.

Since NRn = NA2 6= ∅, the iterations ends and the set of
MGMCDs, Dmod = NA2 . �
C. Simulations

The algorithms presented in this paper have not yet been
implemented in any vehicle. The reason for this is that the
embedded system is very complex, and that the differentECUs
are constructed by different companies and can therefore not
be easily modified.

Instead, a hypothetical model of an embedded system has
been constructed, inspired by the existing system described
in Section I-A. The model includes three different buses and
20 ECUs. The components have been divided into three parts,
where 65 % are local, 11 % shared within each bus, and 3 %
shared within the whole system. EachECU has about 50 to
200 tests, that together monitor theECU’s components. Both
the connections to the shared components, and the tests, are
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picked by random. Further, between 1 and 5 random faults
have been inserted into the model. This results inDTCs from
which local diagnoses have been computed.

After this have the algorithm presented in this paper been
used to find theMGMCDs. Mean values of the computation
times for the algorithm can be seen in Fig. 5, where different
number of components have been included in the system.

D. Correctness of the Algorithms

The result of Algorithm 1 is given by the following theorem.
Theorem 1. If all local diagnosesDi for all agentsAi ∈ A

are available, then the result of Algorithm 1 is

Dmod,mc,k (1)

for all k. �
The proof needs two lemmas that shows the correctness of

Algorithm 2 and parts of Algorithm 1. The first lemma states
that diagnoses of a certain cardinality are found, and that if
no diagnoses was found,Lnew will have a specific value.

Lemma 2. GivenR = {R1, . . . , Rk}, and a lower
limit Ll. For Rk ∈ R, after computing Lnew =
UpdateAgent(Rk, Rk−1,L), then

NRk = {Dj

∣∣Ll−1 < |Dj| ≤ Ll,Dj ∈ D}, (2)

whereLl−1 is L from the preceding call toUpdateAgent, or
if l−1 = 0 then it isLinitiation. Further isD = ×∪Ri∈R Di.
If NRk = ∅ and l = 1 for agentRk, then

Lnew = min
j

{|Dj|
∣∣L < |Dj|,Dj ∈ D}, (3)

otherwise isLnew = Ll. �
Proof: Consider first the case where∆L = 1. If k = 1,

i.e. R = R1, thenR1 will have

NR1 := E = {Dj

∣∣ |Dj| = L,Dj ∈ D}

whereD = DR1
. It follows by direct use of the algorithm.

TABLE I

SETS OF DIAGNOSES

|Di |,Di ∈ ×∪Ri∈R Di

<L L >L
<L M W2 ?
L W1 W1 ?

|D
i
|,

D
i
∈

D
R

k

>L ? ? ?

For k > 1 let R̄ = {R1, . . . , Rk−1} and consider agentRk.
Assume thatN for agentRk−1 is the correct diagnoses with
cardinality L consistent with all diagnoses from agents̄R.
Further thatT1, . . . , Tk−1 are correct.

The following information is stored from previous runs

Tk := {Dj | Dj ∈ ×∪
Ri∈R̄

Di, |Dj| = L − l + j,

DRi
∈ Di, |DRi

| ≤ L − l + j}

for k ∈ {1, . . . , l − 1},

M := {Dj | Dj ∈ ×∪
Ri∈R

Di, |Dj| ≥ L,DRi
∈ DRi

, |DRi
| < L}

(4)

F := {Dj

∣∣ |Dj| < L,Dj ∈ DRk
} (5)

The algorithm give

E := {Dj

∣∣ |Dj| = L,Dj ∈ DRk
} (6)

Tl := {Dj | Dj ∈ ×∪
Ri∈R̄

Di, |Dj| = L,DRi
∈ Di, |DRi

| ≤ L}

(7)

The diagnoses

D ∈ ×∪
Ri∈R

Di

are divided into different sets with respect to the cardinality
of the diagnoses fromR and R̄ respectively. In Table I is it
shown what parts of the diagnoses that is found inM, W1,
and W2. M is found from (4).W2 from (5) and (7).W1 is
calculated from (6) and the union of theTj:s, where

l⋃

j=1

Tj := {Dj | Dj ∈ ×∪
Ri∈R̄

Di, |Dj| ≤ L,DRi
∈ Di, |DRi

| ≤ L}.

(8)

From this follows that the new diagnoses

NRk := {Wj

∣∣ |Wj| ≤ L,Wj ∈ W}

whereW = W1 ∪W2 ∪M. It must be shown that there is no
diagnoses in (2) that has not yet been included inNRk . The
above showed that there is no diagnosis that comes from this
or previous calculations that is not included.

The upcoming iterations will give

Dl+1 := {Dj

∣∣ |Dj| > L,Dj ∈ DRk
}

Tl+1 := NRk−1

= {Dj | Dj ∈ ×∪
Ri∈R̄

Di, |Dj| > L,DRi
∈ Di, |DRi

| ≤ L + 1}

E := {Dj

∣∣ |Dj| > L,Dj ∈ DRk
}



and thereby follows that for iterationl + 1,

Wl+1 ⊆ {Dj

∣∣ |Dj| > L,Dj ∈ D,D = ×∪
i

Di}

then there is noDj with |Dj| ≤ L whereDj ∈ ×∪Ri∈R Di, and
for all remaining iterations this will also hold. All diagnoses
was therefore included in the set N, i.e.

NRk = {Dj |Dj ∈ ×∪
Ri∈R

Di, |Dj| ≤ L}

SinceW1 ≥ L, W2 ≥ L andM > Ll−1

NRk = {Dj | Dj ∈ ×∪
Ri∈R

Di,Ll−1 < |Dj| ≤ L}.

NRk was shown given that the assumption aboutN for agent
Rk−1, and T1, . . . , Tk−1 are correct. Now,NR1 was above
shown to be correct, and therefore the assumption holds by
induction.

If NRk = ∅
M = W\NRk = W

= {Dj |Dj ∈ ×∪
Ri∈R

Di, |Dj| > L,DRi
∈ DRi

, |DRi
| ≤ L}

Thereby, the algorithm give that

Lnew := min
Dj∈D

|Dj|,

whereL < |Dj|, D = ×∪Ri∈R Di.
When∆L 6= 1 for somel, the proof follows the same idea

as above with the difference that there will be several different
sizes of diagnoses included in for exampleTl.

The next lemma states the result after the final call from
Algorithm 1 to Algorithm 2 for a set of agentsR.

Lemma 3. After computation ofUpdateAgent(Rn, Rn−1,L),
whereR = {R1, . . . , Rn}, then if NRn 6= ∅ in agentRn ∈ R

then

NRn = Dmod,mc. (9)

�
Proof: The initiation of

Linitiation := max
Ai∈R

min
Dj∈Di

|Dj|

gives that|Dmod
j | ≥ Linitiation, from this follows that the

initiation of L does not result in the removal of any possible
Dmod

i when using Algorithm 2.
If NRn = ∅ after call to UpdateAgent, then at the next

computation of UpdateAgent(Rn, . . .), NRn 6= ∅ and L =
minj{|Dj|

∣∣ Dj ∈ Dmod} whereDmod = ×∪Ri∈R Di. From
Lemma 2 is given that

NRn = {Dj

∣∣Ll−1 < |Dj| ≤ Ll,Dj ∈ Dmod} (10)

therefore

NRn = {Dj

∣∣ |Dj| = L,Dj ∈ D} = Dmod,mc. (11)

If NRn 6= ∅ then, if there has been no precedingRk with
NRk 6= ∅, thenL = Linitiation and (11) is true. Otherwise
there is some latest precedingRk whereNRk = ∅ in the first
traversal and

L = min
j

{|Dj|
∣∣ Dj ∈ Dmod} ≤ |NRn

i |

which show (11) is true.
Finally the proof of Theorem 1.

Proof: From the algorithm follows directly that all
Dpart,mc,k are disjoint. Lemma 3 gives thatDpart,mc,k are
MGMCDs.

IV. CONCLUSIONS

There is an increasing number of systems that uses multiple
agents to achieve some stated tasks. One such example is
found in the vehicle industry where new vehicles might include
several dozens ofECUs, which are used to control different
parts of the vehicle. With the increasing complexity comes
a higher demand for diagnosis, i.e. the system must be able
to detect and localize faults in the whole system. Due to the
increasing number of connections between the agents, this task
puts new demands on the diagnostic system. One such demand
is that the agents should be able to communicate with each-
other to state diagnoses that are consistent with the knowledge
stored in each agent.

It has been shown how an algorithm that uses the agents
local diagnoses to state global diagnoses could be designed.
To reduce the complexity, only the global diagnoses with
minimal cardinality was considered. The algorithm uses the
agents own processing power which reduced the need for a
central diagnostic agent.
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