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Abstract
The Chow-Willsky scheme is a design method for resid-
ual generation. Here an extension to the Chow-Willsky
scheme, called the ULPE scheme, is presented. The ULPE
scheme is shown to be able to generate all possible resid-
ual generators for both discrete and continuous linear sys-
tems. It is also shown that previous extensions to the
Chow-Willsky scheme do not have this capability. Two
new straightforward conditions on the process for fault
detectability and strong fault detectability are presented.
A general condition for strong fault detectability has not
been presented elsewhere. It is shown that fault de-
tectability and strong fault detectability can be seen as
system properties rather than properties of the residual
generator.

1 Introduction
An important problem in model based diagnosis is how
to design residual generators. Many methods are based
on parity functions, which are attractive because they
involve only simple mathematics. One method for gen-
erating parity functions is the Chow-Willsky scheme [1].
Based on this method, a number of extensions have been
proposed. This class of design methods will in this paper
be denoted Chow-Willsky-like schemes. One important
extension [2] includes also decoupling of disturbances and
non-monitored faults into the design. Another important
extension [3] shows that Chow-Willsky-like schemes are
valid also for continuous linear systems.

In Section 2, a new extension to the Chow-Willsky scheme
is presented. It is called the Universal Linear Parity Equa-
tion (ULPE) scheme. It is shown that previous Chow-
Willsky-like schemes are not able to generate all parity
equations for some linear system. This is the case when
there exists dynamics controllable only from the fault.
The ULPE scheme is able to handle this case, and as
shown, the ULPE scheme is able to generate all linear
parity equations for arbitrary linear system. In Section 3,
it is demonstrated how the ULPE scheme can be used
to obtain any residual generator. Therefore the ULPE
scheme is also a universal method for residual generator
design for linear systems.

In Section 4, two new straightforward conditions for fault
detectability and strong fault detectability are derived and
presented. These conditions are formulated in the con-
text of parity equations and answers the question whether
there exists a residual generator in which the fault be-

comes detectable or strongly detectable. It is shown that
both fault detectability and strong fault detectability can
be seen as properties of the system. A condition for strong
fault detectability, has to the authors knowledge, not been
presented elsewhere. Both conditions are derived using
the ULPE scheme.

2 Parity Equations
This section describes the ULPE (Universal Linear Par-
ity Equation) scheme, and the relation to previous Chow-
Willsky-like schemes. The purpose of parity equations is
for use in residual generators. It is assumed that the prin-
ciple of structured residuals is used. This means that the
goal is to construct a residual that is sensitive to some
faults, referred to as monitored fault, and not sensitive to
other faults, i.e. non-monitored faults, or disturbances.
We say that the non-monitored faults and disturbances
are to be decoupled.

First parity equation (also called parity relation) and par-
ity function are defined formally. These definitions are in
accordance with the definitions of generalized parity equa-
tion and generalized parity function in [1]. To shorten the
notation, the word “generalized” is here omitted. In both
definitions, A(σ) and B(σ) denotes row vectors of polyno-
mials in σ, u(t) and y(t) are the system input and output
vectors, and σ denotes the differentiate operator p or the
time-shift operator q.

Definition 1 [Parity Equation]. A parity equation is
an equation that can, if all terms are moved to the right-
hand side, be written as

0 = A(σ)y(t) + B(σ)u(t)

The equation is satisfied if no faults are present.

Definition 2 [Parity Function]. A parity function is
a function h(u(t),y(t)) that can be written as

h(u(t),y(t)) = A(σ)y(t) + B(σ)u(t)

The value of the function is zero if no faults are present.

The order of the parity equation (and function) is defined
[1] as the highest degree α of σ, that is present in the
parity equation.

2.1 The ULPE Scheme
Following is a description of an extension of the Chow-
Willsky scheme, called the ULPE scheme. In addition to



previous Chow-Willsky-like schemes, the ULPE scheme
has the important property that it is universal in the sense
that for an arbitrary linear system, continuous or discrete,
all parity equations can be obtained. Example 1 will show
that this is not the case for previous Chow-Willsky-like
schemes. The description is formulated in a general frame-
work valid for both the continuous and discrete case.

Consider a linear system with an m-dimensional output
y(t) and three kinds of inputs: known or measurable in-
puts collected in the k-dimensional vector u(t), distur-
bances in the kd-dimensional vector v(t), and the moni-
tored fault f(t). For simplicity reasons, we assume that
only one fault affects the system, i.e. f is scalar. The
extension to more than one fault is straightforward. To
achieve isolation, it is desirable that non-monitored faults
do not affect the residual, i.e. decoupling. Such faults are
included in v.

This system can be described by the following realization:

[
σx
σz

]
=

[
Ax A12

0 Az

] [
x
z

]
+

[
B
0

]
u+

[
Ex

0

]
v +

[
Kx

Kz

]
f (1a)

y = [CxCz ]
[
x
z

]
+Du+ Jv + Lf (1b)

where [x z]T is the n = nx + nz -dimensional state. It
is assumed that the realization has the property that the
state x is controllable from [u v]T and the state z is con-
trollable from the fault f . It is assured from Kalman’s
decomposition theorem that such a realization always ex-
ists. Finally it is assumed that the state z is asymptot-
ically stable, which is the same as saying that the whole
system is stabilizable.

By substituting (1a) into (1b), we can obtain σy as

σy = Cxσx+ Czσz +Dσu+ Jσv + Lσf =
= CxAxx+ CxA12z + CzAzz + CxBu+Dσu +

CxEv + CxKxf + CzKzf

By continuing in this fashion for σ2y . . . σρy, the following
equation can be obtained:

Y (t) = Rxx(t) +Rzz(t) +QU(t) +HV (t) + PF (t) (2)

where

Y =




y
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...
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P =




L 0 0 . . .
CK L 0 . . .

...
. . .

CAρ−1K . . . CK L


 F =




f
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The size of Y is (ρ+ 1)m× 1, Rx is (ρ+ 1)m× nx, Rz is
(ρ+1)m×nz, Q is (ρ+1)m×(ρ+1)k, U is (ρ+1)k×1, H is
(ρ+1)m×(ρ+1)kd, F is (ρ+1)×1, P is (ρ+1)m×(ρ+1),
and V is (ρ + 1)kd × 1. The constant ρ determines the
maximum order of the parity equation. This can be seen
by studying the definitions of the vectors Y and U . The
choice of ρ is discussed in Section 4.

Now, with a column vector w of length (ρ+ 1)m, a parity
function can be formed as

h(y, u) = wT (Y −QU) (3)

From Equation (2) it follows that the value hv of the parity
function also can be written

hv = wT (Rxx+Rzz +HV + PF ) (4)

Since the parity function must be zero in the fault free case
and the disturbances must be decoupled, Equation (4)
implies that w must satisfy

wT [RxH ] = 0 (5)

For use in fault detection, it is also required that the parity
function is non-zero in the case of faults. This is assured
by letting

wT [Rz P ] 6= 0 (6)

In conclusion, the ULPE scheme is a method for designing
parity functions useful for fault detection. A parity func-
tion is constructed by first setting up all the matrices in
(2) and then finding a w such that (5) and (6) are fulfilled.

An algorithm in accordance with previous Chow-Willsky-
like schemes, is obtained by replacing Equation (5) and
(6) with wT [RH ] = 0 and wTP 6= 0 respectively, where
the matrix R is defined as R = [RxRz].

2.2 The ULPE Scheme is Universal
The presented scheme has the property that all parity
functions for a linear system can be designed by different
choices of ρ and w. This is addressed in the following
lemma:

Theorem 1. Any parity equation satisfying a model can
be obtained from the ULPE scheme.

Proof. Any parity equation that satisfies a model can be
written

M

[
Y
U

]
= 0 (7)



where M is a row vector of length (ρ + 1)(m+ k), m the
number of outputs, and k the number of inputs. Let M
be partitioned as [M1M2] and assume that there are no
faults, which implies that z is zero. Then by using (2), (7)
can be rewritten as

[M1M2]
[
Y
U

]
= [M1M2]

[
Rxx+QU +HV

U

]
=

= M1(Rxx+QU +HV ) +M2U =
= M1Rxx+M1HV + (M1Q+M2)U = 0

Here all matrices Y , Q, U , H , V , and Rx are defined using
ρ = α. For a parity equation that satisfies the model, this
equation must hold for all x, all U , and all V , which im-
plies M1Rx = 0, M1H = 0, and M1Q+M2 = 0. Remem-
ber that x is controllable from inputs and disturbances. A
parity equation obtained from the ULPE scheme has the
form

wT (Y −QU) = wT [I −Q]
[
Y
U

]
= 0 (8)

where w is constrained by wT [Rx H ] = 0.

We are to show that for any choice of M in (7), there
exists a w such that Equation (8) becomes identical with
Equation (7). It is obvious that this is the case if and only
if

wT [I −Q] = M (9)

Now choose w as wT = M1, which is clearly a possible
choice since we know that M1 [Rx H ] = 0. This together
with the fact M2 = −M1Q = −wTQ, implies that (9) is
fulfilled. All M -vectors, and therefore all parity equations
satisfying (7) can therefore be obtained from the ULPE
scheme. 2

2.3 Previous Chow-Willsky-like Schemes are not
Universal
Following is an example showing that if the system has
dynamics controllable only from the fault, none of the pre-
vious Chow-Willsky-like schemes can generate all possible
parity equations.

Example 1. Consider a system described by the transfer
functions

y1 =
1

s− 1
u+

1
s+ 1

f y2 =
1

s− 1
u+

s+ 3
s+ 1

f

and the realization

φ̇ =
[

1 0
0 −1

]
φ+

[
1
0

]
u+

[
0
1

]
f

y =
[

1 1
1 2

]
φ+

[
0
1

]
f

Also consider the function

h = (1− s+ s2)y1 − s2y2 + u (10)

If y1 and y2 in (10) are substituted with their transfer
functions we get

h = 1
s−1

(
(1 − s+ s2)− s2 + (s− 1)

)
u+

+ 1
s+1

(
(1 − s+ s2)− s2(s+ 3)

)
f = −s3−2s2−s+1

s+1 f

We see that h is zero in the fault free case and becomes
non-zero when the fault occurs. Therefore the function
(10) is, according to Definition 2, a parity function. With
the matrices used in Equation (2), the parity function (10)
can be written as

h = [1 0 − 1 0 1 − 1] (Y −QU) = wT (Y −QU)

in which w is uniquely defined. With the realization
above, the matrix R is

R = [Rx Rz] =
[

1 1 1 1 1 1
1 2 −1 −2 1 2

]T

The first column of R, i.e. Rx, is orthogonal to w but not
the second. This means that the parity function (10) can
not be obtained from any of the previous Chow-Willsky-
like schemes. Therefore they are not universal. However
in the ULPE scheme, the parity function (10) can be ob-
tained because the requirement that w must be orthogonal
to the second column of R, is relaxed. 2

3 Forming the Residual Generator
In this section, the relation between a parity function and
a general linear residual generator is discussed. First a
residual generator is defined:

Definition 3 [Residual Generator]. A residual gen-
erator is a system that takes process inputs and outputs
as inputs and generates a signal called residual, which is
equal to zero when no monitored faults occur and becomes
non zero when a monitored fault occurs.

Many design methods for linear residual generators exists.
All result in a filter for which the computational form, i.e.
the residual expressed in yi:s and ui:s, can be expressed
as

r =
A1y1 + . . .+Amym +B1u1 + . . .+Bkuk

C
(11)

where Ai, Bi, and C are polynomials in σ. This includes
for example the case when the residual generator is based
on observers formulated in state space. According to Def-
inition 3, the objective of residual generation is to create
a signal that is affected by monitored faults but not by
any other signals. This is equivalent to finding a filter
which fulfills the following two requirements: the transfer
functions from the monitored faults to the residual must
be non-zero, and the transfer functions from all other sig-
nals to the residual must be zero, i.e. decoupling. These
two requirements introduces a constraint on the numer-
ator polynomial of (11) only. The constraint equals the
definition of parity function and therefore the numerator
polynomial must be a parity function. There are no con-
straints on the denominator polynomial C which therefore
can be chosen freely.

So for all linear residual generators, the numerator poly-
nomial is a parity function. This is the explanation to
the equivalence between parity equation and diagnostic
observers, mentioned in for example [4].

We will now illustrate how a residual generator can be
formed from the parity function (3). For the discrete



case, the resulting parity function designed with a Chow-
Willsky-like scheme is

h = A1(q)y1 + . . .+Am(q)ym +B1(q)u1 + . . .+Bk(q)yk

This expression can not be implemented as it is because
it is a non-causal transfer function. A common method to
obtain a casual transfer function is to introduce ρ−1 units
delay. Then the transfer function from system outputs and
inputs becomes

Gr(q) =
[A′1(q)
qρ−1

. . .
A′m(q)
qρ−1

B′
1(q)
qρ−1

. . .
B′

k(q)
qρ−1

]

This is a FIR-filter (or dead-beat observer) with its poles
in the origin. However, there is no reason to constrain
the poles to the origin only because a Chow-Willsky-like
scheme is used when designing the residual generator. In-
stead, the poles can be placed arbitrarily within the unit
circle to obtain stability. Often there is a need for LP-
filtering so these poles can be made to function like such
a filter. If C(q) is the resulting denominator polynomial,
the transfer function becomes

Gr(q) =
[A′1(q)
C(q)

. . .
A′m(q)
C(q)

B′
1(q)
C(q)

. . .
B′

k(q)
C(q)

]

To get a causal filter, the degree of C(q) must be greater
or equal to the maximum degree of the polynomials Ai(q)
and Bi(q).

For the continuous case, the resulting parity function de-
signed with a Chow-Willsky-like scheme is

h = A1(s)y1 + . . .+Am(s)ym +B1(s)u1 + . . .+Bk(s)yk

In general this expression can not be used as a residual
generator because the difficulty to measure the derivative
of signals. Therefore, poles must be added, but as for
the discrete case, these poles can naturally work as for
example an LP-filter. The resulting transfer function of
the residual generator is

Gr(s) =
[A1(s)
C(s)

. . .
Am(s)
C(s)

B1(s)
C(s)

. . .
Bk(s)
C(s)

]

As seen, there is no need for an explicit state variable filter,
which is used in [3] to construct a residual generator from
the continuous parity function.

Note the relation to diagnostic observer design, e.g. eigen-
structure or the unknown input observer, in which poles
also are placed arbitrarily.

Now we know from Theorem 1 that all parity functions
can be obtained with the ULPE. Also we know that for
any linear residual generator, the numerator polynomial is
a parity function and the denominator polynomial can be
chosen freely. Therefore the following result is obtained:

Corollary 1. When discrete or continuous linear systems
are considered, the ULPE is a universal residual generator
design method for achieving perfect decoupling.

4 Detectability Analysis
In this section it is investigated whether it is possible to
construct a residual generator with given decoupling prop-
erties, for the system (1). If this is the case, we say that the
fault that is to be monitored, is detectable. The analysis
of detectability is here approached in the context of par-
ity equations and the ULPE scheme. Criterions for fault
detectability has been studied also in other contexts, e.g.
[5] (unknown input observer) and [6] (frequency domain).
However fault detectability has, to the author’s knowl-
edge, not been studied in the context of parity equations.

In [7], fault detectability and strong fault detectability for
a given residual generator, are defined as follows:

Definition 4 [Fault Detectability]. A fault f is de-
tectable in residual r if the transfer function from the fault
to the residual Grf (σ) is nonzero:

Grf (σ) 6= 0

Definition 5 [Strong Fault Detectability]. A fault
f is strongly detectable in residual r if

Grf (0) 6= 0 (continuous case)

Grf (1) 6= 0 (discrete case)

4.1 Detectability as a System Property
As will be shown in Theorem 2 and 3, detectability is a
system property in the sense that it is the system that
limits the possibilities of constructing a residual that is
fault detectable and strongly fault detectable respectively.
This leads to redefinitions of fault detectability and strong
fault detectability:

Definition 6 [Fault Detectability]. A fault is de-
tectable in a system if and only if there exists a residual
in which the fault is detectable according to Definition 4.

Definition 7 [Strong Fault Detectability]. A fault is
strongly detectable in a system if and only if there exists a
residual in which the fault is strongly detectable according
to Definition 5.

Next are two theorems to be used for the analysis of fault
detectability and strong fault detectability. In the fol-
lowing, the notation (. . . )ρ=n is used to denote that the
condition within the parenthesis considers matrices and
vectors Y , Rx, Rz, Q, U , H , V , P , and F with ρ = n ac-
cording to Equation 2. The notation NX is used to denote
a matrix whose columns are a basis for the left null-space
of the matrix X .

Theorem 2. A fault is detectable if and only if
(
NT

RxHP 6= 0
)
ρ=n

(12)

where NRxH is a basis for the left null-space of [Rx H ].

The proof of Theorem 2 is given in [8] but is similar to
the proof of Theorem 3 and based on Lemma 1 in the
appendix.



The next theorem deals with strong detectability. To
the author’s knowledge, a general criterion for strong de-
tectability has not been presented elsewhere. The crite-
rion presented here answers the question if there exists a
residual generator in which the fault becomes strongly de-
tectable. In [7], this is reported to be an unsolved research
problem.

Strong detectability deals with the stationary residual re-
sponse when a constant fault is present. A constant fault
can be written f(t) ≡ c where c is the constant level of
the fault. By studying the definitions of F (t), in Equa-
tion (2), for the discrete and continuous case respectively,
it is seen that F (t) ≡ vc where v = [1 . . . 1]T in the case
of a discrete system and v = [1 0 . . .0]T in the case of a
continuous system.

Theorem 3. A fault is strongly detectable if and only if

(
NT

RxH(Pv −RzA
−1
z Kz) 6= 0

)
ρ=n

(continuous case)

(
NT

RxH(Pv +Rz(I −Az)−1Kz) 6= 0
)
ρ=n

(discrete case)

where NRxH is a basis for the left null space of [RxH ] and

v = [1 0 . . . 0]T in the continuous case and v = [1 . . . 1]T in
the discrete case.

The proof is presented only for the continuous case. The
proof for the discrete case is similar and is given in [8].

Proof. Consider the case when a constant fault is present.
We know that the state z will reach steady state because,
according to the preconditions described in Section 2.1,
the state z is asymptotically stable. This also guarantees
that the inverse of Az exists. If the constant fault is of
size c, the stationary value of the parity function becomes

wT (Rzzstat + Pvc) = wT (−RzA
−1
z Kz + Pv)c (13)

For a residual, also the poles affects the stationary value.
However if the residual is derived according to the de-
scription in Section 3, the stationary value differs only by
a non-zero factor compared to (13).

Now since we know from Corollary 1 that the
ULPE scheme is universal, a necessary and sufficient
condition for fault detectability is ∃ρ, w such that
wT (Pv −RzA

−1
z Kz) 6= 0. This is equivalent to

∃ρ {
NT

RxH(Pv −RzA
−1
z Kz) 6= 0

}
(14)

This condition holds if and only if

∃ρ ≥ n
{
NT

RxH(Pv −RzA
−1
z Kz) 6= 0

}
(15)

because if the ρ in (14) is ≥ n, then (15) follows directly
and if the ρ in (14) is < n, then it is always possible to
find a larger ρ because the extra terms that appear in (3)
and (4) can be canceled by zeros in w.

Now Lemma 3 (in the appendix) shows that it is sufficient
to consider the case ρ = n, that is

(
NT

RxH(Pv −RzA
−1
z Kz) 6= 0

)
ρ=n

2

Remarks. As seen in Theorem 2 and Theorem 3 it is
sufficient to chose ρ as ρ = n, if fault detectability or
strong fault detectability is considered. This means that
a residual generator that is able to (strongly) detect a
fault, never needs to be designed using a parity function of
order larger than n. There may however be other reasons
to chose a ρ larger than n.

4.2 Examples
In an inverted pendulum example in [7], an observer based
residual generator was used. It was shown that no residual
generator with this specific structure could strongly detect
a fault in sensor 1. It was posed as an open question if
any residual generator, in which this fault is strongly de-
tectable, exists and in that case how to find it. In the fol-
lowing example, this problem is re-investigated by means
of Theorem 3. Also included is a demonstration of Theo-
rem 2.

Example 2. The system description represents a contin-
uous model of an inverted pendulum. It has one input
and three outputs:

A =




0 0 1 0
0 0 0 1
0 −1.93 −1.99 0.009
0 36.9 6.26 −0.174


 D = 03×1

B = [0 0 − 0.3205 − 1.009]T C =


 1 0 0 0

0 1 0 0
0 0 1 0




The faults considered are sensor faults. There are no dis-
turbances and also, there are no states controllable only
from faults. This means that there is no Rz matrix or H
matrix. For the detectability analysis, we calculate theNR

matrix and form NT
RP1 6= 0, NT

RP2 6= 0, and NT
RP3 6= 0

for the three faults respectively. Then from Theorem 2
it can be concluded that all sensor faults are detectable,
i.e. for each sensor fault, it is possible to construct resid-
ual generators for which the fault is detectable. To check
strong detectability we form the vectors

NT
RP1v = [0 0 0 0 0 0 0 0 0 0 0]T

NT
RP2v = [−1 0 0 0 0 0 0 0 0 0 0]T

NT
RP3v = [∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]T

where ∗ represents nonzero elements. By using Theorem 3
it can be concluded that the second and third sensor faults
are strongly detectable, i.e. for each of these faults a resid-
ual generator can be found for which the fault is strongly
detectable. Also concluded is that the first sensor fault is
only detectable, i.e. it is not possible to construct a resid-
ual generator in which the fault in sensor 1 is strongly
detectable. 2

As is seen in Equation (4), the fault affects the parity
function through both Rz and P . One may note that
in the condition of Theorem 2 it is sufficient to consider
the matrix P while in Theorem 3 both Rz and P must
be considered. The following example shows that this is
really the case.



Example 3. The system is continuous and has one struc-
tured disturbances and two outputs:

A =

[ −2 −3
0 −1

]
B =

[
1
0

]
E =

[ −2
0

]
K =

[ −6
−6

]

C =

[
1 4
2 4

]
D =

[
0
0

]
J =

[
6
5

]
L =

[ −2
0

]

For this system, NT
RxH(Pv−RzA

−1
z Kz) = 0. This means

that the fault is not strongly detectable. However it also
holds that NT

RxHPv 6= 0 which shows that the influence
of the fault via Rz must be considered in the condition of
strong fault detectability. 2

5 Conclusions
The Universal Linear Parity Equation (ULPE) scheme has
been presented. This is an extension to the well known
Chow-Willsky scheme. It is shown that none of the pre-
vious extensions to the Chow-Willsky scheme are able
to generate all parity equations in the case where there
are dynamics controllable only from faults. The ULPE
scheme is able to handle also this case since it is univer-
sal in the sense that for any linear, continuous or discrete
system, all parity equations can be generated.

It is demonstrated how any perfectly decoupling linear
residual generator can be constructed by the help of the
ULPE scheme. Therefore the ULPE scheme is also a uni-
versal design method for linear residual generation.

Two new conditions for fault detectability and strong
fault detectability, formulated in the context of the ULPE
scheme, are provided. A general condition for strong fault
detectability has not been presented elsewhere.

It is shown that if fault detectability or strong fault de-
tectability are considered, it is sufficient to have ρ = n
when designing the parity functions. This means that a
parity function, to be used in the design of a residual gen-
erator, do not need to have an order larger than n.
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7 Appendix
The appendix contains Lemma 3 that was used in the
proof of Theorem 3. Also included are Lemma 1 and 2
which are needed in the proof of Lemma 3. If the system
(1) do not contain any disturbances, then Lemma 2 follows
easily from Cayley-Hamilton’s Theorem and Lemma 1 is
not needed.

Lemma 1. If there exists two vectors ψ and

t = [t1 . . . tn+1]
T

such that

CAj−1ψ + CAj−1Et1 + . . .+ CEtj + Jtj+1 = CAj−1K

for j = 1 . . . n, then for all ρ ≥ n, there exists a

t′ =
[
t1 t

′
2 . . . t

′
ρ+1

]T
such that this equation is satisfied

for j = 1 . . . ρ.

Proof. Given are the equations

Cψ + CEt1 + Jt2 = CK

... (16)

CAn−1ψ +CAn−1Et1 + . . . + CEtn + Jtn+1 = CAn−1K

and the goal is to show that there exists t′i:s, i ≥ 2, such
that

CAj−1ψ + CAj−1Et1 + CAj−2Et′2 + . . .

· · ·+ CEt′j + Jt′j+1 = CAj−1K (17)

for all j = 1 . . . ρ. The equations (16) and (17) specify
a condition on the variables t′i, which are to be found.
To be able to carry out the proof we first need to derive
a new, more tractable, set of equations which specify an
equivalent condition on these variables.

Define the matrices J1 and JΛ such that

J = [C Λ]
[
J1

JΛ

]

where Λ has all its columns orthogonal to C. From the
equations (16), it is clear that

Jti = CJ1ti + ΛJΛti =
= C(Ai−2K −Ai−2ψ −Ai−2Et1 − . . . − Eti−1)

for i = 2 . . . n+ 1. Because of the second equality, it must
hold that ΛJΛti = 0 and therefore Jti = CJ1ti. In the



equations (16), Jti can now be replaced by CJ1ti, which
results in

Cψ +CEt1 + CJ1t2 = CK
...

CAn−1ψ + CAn−1Et1 + · · · + CEtn + CJ1tn+1 = CAn−1K

An alternative way of saying this is that there exists gi:s
such that

Ng2 + ψ + Et1 + J1t2 = K
...

Ngn+1 +An−1ψ + An−1Et1 + . . . + Etn + J1tn+1 = An−1K

where the columns of N are a basis for the right null-space
of C. Multiplying the i:th equation from the top with A
from the left and then subtracting the i + 1:th equation
results in

ANgi +AJ1ti = Ngi+1 + Eti + J1ti+1 (18)

for i = 2 . . . n. Recall that the goal of the proof is to, for
all ρ ≥ n, find a new set of variables t′2 . . . t

′
ρ+1 that fulfills

Equation (17). We will do this by finding t′i:s such that
Equation (18) is satisfied for all i ≥ 2, and then showing
that these t′i:s also satisfies (17).

If [N J1] has rank n it is always possible to find t′i+1

and g′i+1 such that Equation (18) is satisfied also for
i > n. Otherwise, introduce matrices J2 and y such that
[N J1] = [N J2] y, where [N J2] has full column rank
≤ n− 1. Now study

[
y

(
g2
t2

)
. . . y

(
gn+1

tn+1

)]
(19)

If the first column in this matrix is 0, then

[N J2] y
(
g2
t2

)
= Ng2 + J1t2 = 0

Now select a new g′2 = 0 and a new t′2 = 0, and Equation
(18) for i = 2 becomes

0 = Ng3 + J1t3

By continuing selecting new g′l = 0 and t′l = 0 for all l ≥ 2,
then Equation (18) will be satisfied for all i ≥ 2.

If y
[
gT
2 tT2

]T 6= 0, then from the fact that the matrix
(19) has n columns and less than n rows, we know that
there exists an l > 2 and a vector x such that

y

(
gl

tl

)
=

[
y

(
g2
t2

)
. . . y

(
gl−1

tl−1

)]
x

Select a new g′l = [g2 . . . gl−1]x and a new t′l =
[t2 . . . tl−1]x. This choice ensures that Equation (18) for
i = 1 . . . l, will be satisfied because the condition

y

(
g′l
t′l

)
= y

(
gl

tl

)

is fulfilled.

Next, select a new g′l+1 = [g3 . . . gl−1 g
′
l]x and t′l+1 =

[t3 . . . tl−1 t
′
l]x. This implies that Equation (18) for i =

l + 1 is satisfied because

ANg′l +AJ1t
′
l = AN [g2 . . . gl−1]x+AJ1 [t2 . . . tl−1]x =

= N [g3 . . . gl−1 g
′
l]x+ E [t2 . . . tl−1]x+

+J1 [t3 . . . tl−1 t
′
l]x = Ng′l+1 + Et′l + J1t

′
l+1

The second equality is a consequence of Equation (18).
By continuing selecting new g′l+2 and t′l+2 in the same
way and so on, it can be shown that Equation (18) will
be satisfied for all i ≥ 2.

Going back to the original problem, we have now shown
that for each ρ there exists a t′ =

[
t1 t

′
2 . . . t

′
ρ+1

]T such
that the equation

CAj−1ψ + CAj−1Et1 + CAj−2Et′2 + . . .

. . .+ CEtj + CJ1t
′
j+1 = CAj−1K (20)

is satisfied for j = 1 . . . ρ. This equation equals Equation
(17) except for the last term of the left side. For all j ≥ 2,
there exists a φ such that t′j = [t2 . . . tn+1]φ. Therefore
it must hold that CJ1t

′
j = Jt′j for all j ≥ 2. This implies

that Equation (20) is equivalent to Equation (17) which
ends the proof. 2

Lemma 2. If
(
NT

RHPv = 0
)
ρ=n

, then

∀ρ ≥ n {NT
RHPv = 0}, where v = [1 0 . . .0]T .

Proof. If
(
NT

RHPv = 0
)
ρ=n

then Pv can be written as
a linear combination of the columns in R and H . This
means that there exists two vectors s and t = [t1 . . . tn+1]
such that Pv = Rs+Ht, which can be written as

Cs+ Jt1 = L
CAs+ CEt1 + Jt2 = CK

...
CAns+ CAn−1Et1 + . . . + CEtn + Jtn+1 = CAn−1K

By defining ψ = As and then applying Lemma 1 to all
equations except the first one, it can be concluded that
∀ρ ≥ n {NT

RHPv = 0}. 2

Lemma 3. If
(
NT

RH(Pv −RzA
−1
z Kz) = 0

)
ρ=n

, then

∀ρ ≥ n {NT
RH(Pv − RzA

−1
z Kz) = 0}, where v =

[1 0 . . .0]T .

Proof. The proof is based on using Lemma 2. To be able
to do so, we define L′ as L′ = L − CzA

−1
z Kz and define

K ′ as

K ′ = K −A

[
0nx×nz

Inz

]
A−1

z Kz

Then Pv −RzA
−1
z Kz can be written as

Pv −RzA
−1
z Kz =




L′

CK ′
...

CAn−1K ′


 (21)

It is seen that the right part of (21) has the same structure
as Pv in Lemma 2. Therefore we can use Lemma 2 and
conclude that ∀ρ ≥ n {NT

RH(Pv −RzA
−1
z Kz) = 0}. 2


