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Abstract: We consider computer assisted troubleshooting of complex systems, where the objective is
to identify the cause of a failure and repair the system at as low expected cost as possible. Three main
challenges are: the need for disassembling the system during troubleshooting, the difficulty to verify that
the system is fault free, and the dependencies in between components and observations. We present a
method that can return a response anytime, which allows us toobtain the best result given the available
time. The work is based on a case study of an auxiliary brakingsystem of a modern truck. We highlight
practical issues related to model building and troubleshooting in a real environment.
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1. INTRODUCTION

Modern automotive mechatronic systems are often complex
products integrating electronics, mechanics and software. Due
to their intricate architecture and functionality they areoften
difficult to troubleshoot for a workshop mechanic. With com-
puter aided troubleshooting the cost for troubleshooting and
repair can be reduced and less experienced mechanics can be
supported during their work.

Inspired by an application study of an auxiliary heavy truck
breaking system, called theretarder, we develop a novel de-
cision theoretic approach to troubleshooting. The objective is
to find a sequence of repairs and observations that leads to
a fault free truck at lowest expected cost. Earlier application
studies typically consider electronic systems, such as printers
and electronic control units (Heckerman et al. [1995], Langseth
and Jensen [2002], Olive et al. [2003]). In comparison with
these earlier application studies, the automotive mechatronic
system considered here imply that the solution to the trou-
bleshooting problem needs to take a number of additional issues
into account.

First, in automotive mechatronic systems it is not as straight-
forward to determine whether a repair have solved the problem.
In the previous works, it is assumed that after each repair itis
verified whether the system is fault free or not. Such a veri-
fication is often expensive in automotive mechatronic systems,
and therefore it is not presumed in the present work. This means
that we need to compute probabilities after interventions,i.e. af-
ter changing the system with the repairs. Second, automotive
mechatronic applications typically contains dependencies in
between faults that arise during operation. These dependencies
change when intervening with the system, and complicates the
probability computations further, see e.g. Pearl [2000]. Third,
not all parts of the retarder can be reached without first disas-
sembling other parts of the system. This means that the level
of disassembly, and the extra time required for disassemblyand
assembly actions, needs to be considered in the solution.

During troubleshooting the aim is to guide the mechanic by
finding the next repair or observation such that the expected
repair cost is minimized. Here, the troubleshooting problem is
formulated as a decision-theoretic problem. The troubleshoot-
ing system consists of an action planner and a diagnoser. In
the diagnoser, probabilities for combinations of faults are com-
puted using a BN.
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In the planner the probabilities are used to solve a general
search problem in an AND/OR graph. An optimal solution is
guaranteed if sufficient computing time is allowed. Since total
repair time is crucial and longer waiting times for the mechanic
is generally not acceptable, the time to find the solution, i.e.
the next action for the mechanic, is crucial. Therefore we
emphasize on the anytime behavior of the proposed solution.
That is, the proposed solution quickly computes an action
leading to an acceptable repair cost and also that, for every
additional computation time allowed, the expected repair cost
is considerably reduced by optimizing the choice of the next
action.

We begin by presenting the retarder system and discussing
modeling issues in Sections 2 and 3. We then present the
troubleshooting system in Section 4 before summing up with
application results in Section 5.

2. THE RETARDER

The retarder is an auxiliary hydraulic braking system that al-
lows braking of the truck without applying the conventional
brakes. It consists of a mechanical system and a hydraulicalsys-
tem, and is controlled by an electronic control unit (ECU)The
retarder generates breaking torque by letting oil flow through a
rotor driven by the propeller axle causing friction. The kinetic
energy is thereby converted into thermal energy in the oil that is
cooled off by the truck’s cooling system. At full effect and high
rpm, the retarder can generate as much torque as the engine.

The retarder, which is a representative system of heavy duty
trucks, is difficult to troubleshoot due to its complexity and the
combination of both mechanical, hydraulical and electronical
components.

3. MODELING FOR TROUBLESHOOTING

The retarder is a set ofcomponentswhich may be faulty or
fault free, and which can be repaired. During troubleshooting
the retarder often must be assembled or disassembled. For
example to replace the oil pressure sensor, the retarder oilneeds
to be drained and the oil cooler needs to be removed. Each
such disassemblable part is called anassembly element. An
actionis variable defined by its requirements on the state of the
assembly elements, its cost, and itseffects. An effect is either an
observation, a repair, or a mode change of an assembly element,
and generates arequestto the mechanic.
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Fig. 1. A Bayesian network for the retarder

In the paper we use capital letters for variables and lower
case letters for their values, e.g.C = c. Vectors are written
in bold face. For probability distributions we writeP (c) to
denote the probability thatC = c. For variables in all kinds
of graphs,pa(X) denotes the parents ofX andch(X) denotes
the children ofX .

In the remainder of this section we describe the different
models used: a Bayesian network for probability computations,
an assembly model describing the relations between assembly
elements, and finally the modeling of actions.

3.1 Bayesian Network for Troubleshooting

We use a Bayesian network (BN) to model dependencies in
the retarder. A BN is a directed acyclic graph where variables
are represented by nodes and dependencies are represented by
directed edges. See for example Jensen [2001] for a reference
on BN.

A BN for troubleshooting consists of two types of variables
(nodes):componentsand observations. Components are de-
notedCi, and have the two states No Fault (NF ) and Faulty (F ).
Observations are represented by variablesOj , and represent
observations that can be made, e.g.Air leakage at Proportional
valve and Engine warning lamp. Observations are typically
driver’s observations, observations made in the workshop,Di-
agnostic Trouble Codes (DTC:s) generated in the ECU during
driving, or direct observations of components. A direct obser-
vation is obtained by direct inspection of a component whether
it is faulty or not.

In Figure 1 a BN for the retarderduring operationof the system
is shown. The BN is based on engineers expert knowledge, and
consists of 22 component nodes, denotedC1 - C22, and 23
observation nodes, denotedO1 - O23. Direct observations of
components are not shown in Figure 1.

3.2 Practical Issues when Building BN for Troubleshooting

In most cases, components are parents to observations. How-
ever, there are deviations from this structure which complicates
the troubleshooting task.

Components There are several ways to choose the compo-
nents in the BN. The maximum size of components are sets
of parts of the retarder that always are repaired together, also
called minimal repairable unit. Choosing larger components
may lead to that more parts than necessary are replaced during
troubleshooting. Choosing smaller sets of parts of the retarder
as components in the BN is possible, but gives worse perfor-
mance in the troubleshooting algorithm and may give more
parameters that need to be determined in CPT:s.

Here we choose components to be minimal repairable units.
Furthermore, we allow several components to be faulty at the
same time.

Driver or Mechanic Observations concerning the perfor-
mance of the vehicle, for example the braking torque, can be
obtained by asking the driver or by letting the mechanic per-
form a test drive. In general, the answer from the mechanic
is less uncertain but is often obtained at a higher cost since
it is more expensive to let the mechanic perform a test drive
than interviewing the driver. The driver’s answers can onlybe
obtained at the beginning of troubleshooting. It may be the case
that the driver’s answers bias the mechanic. For example, if
the driver complains about uncontrollable braking torque it is
reasonable that the mechanic will be influenced and observe the
same symptom with higher probability. This case is modeled as
a dependency between the observation nodes, seeO4 andO3 in
Figure 1 for an example.

Several Observations of Same ComponentSome components
can be observed at several places, for example the cable be-
tween the retarder and the ECU can be observed both at the
ECU,O19 and at the retarderO20. They are two different obser-
vations since they need two different assembly states. However,
there is a dependency between the two observations, since ifthe
cable is found broken at the ECU it is less likely to be damaged
at the retarderalso.

Perception In some observations there may be uncertainties.
For example the observationLeakage air tube(O14) can be
mistaken forLeakage air valves(O15). We model this by
adding dependencies from both components (tube and valve
package) that can be mistaken for. We give these observations
three possible values: “Sure”, “Ambiguous”, and “No leakage”.

3.3 Modeling Observations

An observation is an indicator of faults in a subset of the
components, which are modeled as parents to the observation
node. There may be false indicators as well as missed faults.
When an observation is performed, evidence is added to the
corresponding node. The value of an observed observation
is assumed to be the same until at least one of its parent
components is repaired. For example if Oil on cooler (O8)
is observed, the result will be the same until the Gasket on
gearbox side (C4) is replaced. Except that this way of modeling
is natural for most of our observations, it also prohibit the
troubleshooting algorithm from being trapped in cycles where
the same observations is made over and over again.

There may be direct dependencies between observations. We
assume that all observations that are directly dependent have the
same parents. This is the case for the two types of dependencies
between observations described in Section 3.2.
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Fig. 2. Dependencies are different during operation, when ar-
riving at the workshop, and after a repair.

3.4 Modeling Repairs

Repairs are assumed to be always successful, meaning that a
component is known to become fault free after repair, and that
no other faults are introduced during repair1 . However, it is not
known whether the repair action made the truck fault free, since
we could have repaired an already fault free component, or,
since we handle multiple faults, there may be other components
that are still faulty.

The criterion for ending troubleshooting is that the posterior
probability that no fault is present is large enough. Either
this happens automatically during troubleshooting, or it can
be verified by performing a verifying observation (typically
resembling the system and perform a test run). Verification is
often expensive, and it can not be assumed that verification is
made after each repair.

Faults can only appear during operation of the system. During
troubleshooting, the system is paused and no new faults can
appear. This also means that causal dependencies between
faults are different during operation and at the workshop. This,
in combination with the fact that we not presume verification
after repair force us to handle interventions in the BN. Thisis
further illustrated in the following example.

Consider the causal graph in Figure 2, which describes a sub-
part of the retarder. In Figure 2 nodes represent observations,
components, and repairs, and edges denote causal dependen-
cies. In the retarder, a faultyOil (C19) may cause theRadial
Gasket at gearbox(C20) to brake during operation. When the
truck arrives at the workshop, the observationErroneous Oil
(O21) will change our opinion about in the Radial Gasket at
gearbox. However, after replacing Oil (repair ofC19) there is no
longer any dependency between the Oil and the Radial Gasket
until the retarder has been run again. In Figure 2 the three
different sections represent different situations. The leftmost
section (denotedtrun ) shows dependencies during operation,
the middle section (tworkshop) shows dependencies when the
truck has just arrived to the workshop, and the rightmost section
(trepairOil+ ) shows dependencies after repair ofC19. In the
figure, dependencies between components at different times
illustrates that components do not change unless repaired.The
arcs between observations mean that we can only perform an
observation once, as described in Section 3.3.

After repairing a component, its related observations can be
performed again. Sometimes the observations need a test drive
in practice. We assume that time time scale for faults to affect
observations is short in relation to the time for a component
to affect other components to be faulty. Therefore, we can
still use our assumption that no new faults appear during
troubleshooting.

In Breese and Heckerman [1996] probability updates with in-
terventions are handled using so called persistence networks,
where mapping nodes are used to track dependency changes.
In Langseth and Jensen [2002] computing probabilities with
interventions are avoided, since it is assumed possible to al-
ways verify the consequence of the repair. Another attractive

1 This assumption can be relaxed in the framework, but may leadto non-
optimal troubleshooting

Action
Planner Diagnoser

e1:t,bt,

bt+1

request

event
mechanic

Troubleshooting system

Fig. 3. The troubleshooting system.

approach in diagnosis is to utilize Dynamic Bayesian Network
(DBN), see e.g. Weber et al. [2006]. However, in our settings,
interventions, the change of causality, and the fact that anobser-
vation is the same until one of its parents is repaired complicates
the application of DBN.

In the current work we take a another approach, we begin with
the BN describing the system during operation (or equally: just
before troubleshooting begins) and update the BN as repairs
are performed. With the “almost two-layer-structure” shown
in Figure 1 the probability computations become simple with
this approach. The details of the computations and updates are
presented in Section 4.1.

3.5 Assembly Model

As mentioned in the beginning of Section 3, anassembly ele-
mentis a disassemblable part of the vehicle such as the noise
shield under the retarder or the oil cooler. Each assembly ele-
ment can be in one of two modes,assembled or disassembled .
We model the relations between assembly elements as a di-
rected acyclic graph called theassembly graphwhere each node
represents an assembly element. To be in the modeassembled
all childrenof the node need to be in the modeassembled and to
be in the modedisassembled all parentsof the node needs to be
in the modedisassembled . Theassembly stateis an assignment
of modes to all assembly elements. In contrast to the state ofthe
components, the assembly state is fully observable.

3.6 Modeling Actions

When troubleshooting the retarder, the mechanic can choose
between 70 actions to perform. Each actionAi has abase
cost, a set ofpreconditionsP , and an ordered set ofeffects
E . The preconditions are all of the typeδ = x wherex ∈
{assembled , disassembled} andδ is an assembly element. The
effects can be to repair a componentC, repair (C), to ob-
serve the value of an observationO in the Bayesian network,
observe(O), or to assemble or dissassemble an assembly ele-
mentδ, assemble(δ) or disassemble(δ).

For each componentCi there is at least one action with the
effect repair (Ci) and for each observationOi, in the BN,
there is at least one action with the effectobserve(Oi). For
each assembly elementδi there is exactly one action with
the effectassemble(δi) and exactly one action with the effect
disassemble(δi).

For example the action Replace Oil Pressure Sensor (A7)
has base costcost(A7) = 175, preconditionsP(A7) =
〈δ4 = disassembled , δ8 = disassembled 〉, and effectE(A7) =
{repair(C7)}. Actions can have more than one effect, e.g.
when the mechanic removes the noise shield the observation
Oil on noise shield(O25) will be made even if this was not
the reason for removing the noise shield. Therefore the ac-
tion Remove noise shield(A62) is modeled with the effects
E(A62) = {disassemble(δ2), observe(O25)}.

4. TROUBLESHOOTING SYSTEM

The troubleshooting system consists of two subsystems: thedi-
agnoserand theaction planner, see Figure 3. The actionplanner
determines the next action so that the expected cost of repairing
the vehicle becomes as low as possible, and the suggests the



request caused by that action to the mechanic. As described in
Section 3 requests are operations to be applied to the truck,such
asrepair (C), observe(O), andassemble(δ)/disassemble(δ).
The mechanic returns the outcome of the request, The outcome
of a request is called an event, and is either thatC is repaired,
the valuesO = o of the observation, or that they system is
assembled/disassembled.

To be able to determine the next action the planner creates a
conditional plan of actions called atroubleshooting strategy
and uses the diagnoser to predict the outcome of future actions.
The diagnoser uses the BN to compute the probability distribu-
tion over possible combinations of component states given all
events. The probability distribution over the component states
is called thebelief state. If an assignment of component states
to all components has probability larger than zero is calleda
diagnosis.

4.1 Diagnoser

The planner sends the previous belief state, i.e. the probability
distributionbt−1 = P (ct−1|e1:t−1) and the ordered sete1:t =
(e1, . . . , et) of events up to and including the last event to the
diagnoser. The diagnoser determines the current belief state
bt+1. As described in Section 3.6 an action can lead to a
sequence of requests, and thus a sequence of events. In the
diagnoser, events are handled recursively, and it is sufficient
to study the probability updates for one event at the time.
We use the convention that a time step is taken after each
new evidence. In accordance with e.g. Jensen [2001] we call
an assignment of a variable in the BN an evidence. Events
concerning observations and repairs are evidence.

General Idea The main idea is to use a Bayesian network
(BN) to answer queries in the probability computations. How-
ever, as discussed in Section 3.1 repairs change dependencies
in the BN and therefore the BNBt must be updated as repairs
are performed during troubleshooting.

Let Bt denote the BN at timet. When troubleshooting begins,
at timet = 1, we initialize the BN to one describing the system
during operation. For the retarder this BN is shown in Figure1,
and for the small example in Figure 2 it is represented by the
leftmost section. As repairs are performed, we update the BN
fromBt toBt−1.

Let c
t = (ct

1, . . . , c
t
N ) be the component states at timet. We

have that
P (ct|e1:t−1) = P (ct−1|e1:t−1), (1)

meaning that observations and repairs made at times1, . . . , t−1
do not change the states of the components from timet − 1
to time t. To simplify notation we omit subscriptt on the
components when referring to the components inBt

Below, we explain how the belief state and then BN are updated
as observation and repair events are obtained. We do not con-
sider assemble/disassemble events since they do not affectthe
belief state.

Observation event First, let the event at timet be an observa-
tion et = oj . We can then, by using (1), update the belief state
bt recursively as

bt(c) = P (c|e1:t−1, oj) =
P (oj |c, e1:t−1)bt−1(c)

ρe1:t

, (2)

whereρe1:t
is a normalization constant independent ofc

t, and
bt−1 is the belief state at the previous time step. To determine
the third term in (2),

P (oj |c, e1:t−1), (3)
we use the BNBt. Due to the “almost two-layer”-structure of
the BN this probability is often easily computed. In particular,
in whereOj has no direct dependencies to other components, it
is simply the conditional probability for the observationOj that
can be directly found inBt.
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Fig. 4. Schematic picture of the change of the BN when repair-
ing componentC1.

Repair Now, let the new event be the repair of componenti.
Repairing a component means that weforce the component to
be fault free by intervention, rather thanobservingit as being
fault free. Therefore, it is not sufficient to only add the evidence
Ci = NF to the BN. The difference between interventions and
observations is carefully discussed in Pearl [2000]. Usingthe
nomenclature from Pearl [2000] we writedo(Ci = NF ) to
denote repair of componenti.

After a repair we update the belief state as
bt(c) = P (c|e1:t−1, do(Ci = NF )) =

=

{

0 if ci = F
bt−1(c) + bt−1(ĉ) if ci = NF

(4)

whereĉ = (ĉ1, . . . , ĉN ), ĉj = cj , j 6= i, andĉi = F .

This means thatc andĉ are the same assignments of component
states except for componentj, which is faulty inĉ and fault free
in c (by the condition in (4)).

Updating the BN When the event is an observation, depen-
dencies between nodes in the BN are not affected and we keep
the current BN,Bt+1 = Bt.

To investigate how a repair affects the BN, study the exam-
ple with two components and three observations in Figure 4.
Figure 4(a) describes the system at timet and the gray node
denotes thatO1 is observed. In Figure 4(b), component1 is
repaired. To represent the repair we add a new variableC+

1
(dashed) that denotes the state of component1 after the repair.
Furthermore, new variablesO+

1 and O+
3 (dashed) are added

to represent the observations related to component1 after the
repair. The new componentC+

1 is known to work correctly,
so evidence is added to this node and mark it with gray. The
new observations on the other hand, have unknown values. Fur-
thermore, since the system is paused during troubleshooting,
the componentC+

1 after repair can not cause any new faults
in other component, nor be affected by any other component.
Thus, even if there is a direct dependency betweenC1 andC2,
there is no dependency betweenC+

1 andC2.

Now note that in (3), the probabilities that are computed using
the BN are always the probability of an observationoj condi-
tioned on the states of the components after the last repair.For
the system in Figure 4, for example, we may compute the prob-
ability of any of the observationsO+

1 , O+
3 , or O2, conditioned

on {C+
1 = NF , C2 = c2}. After the repair of component1,

observe(O3) is a request that the planner never will ask, and
thus the the probability forO3 = o3 is not of interest any
more. Furthermore, probabilities of the type (3) are conditioned
on the complete vector of component states. Therefore, no old
observations will be of interest, unless they are direct causes of
the new observations. By the assumptions on the observations
in Section 3.3, only observations that have the same parents
are allowed to have direct dependency relations. Thus, there
is always a new copy of the observations that are children or
parents of an observation of a component after repair. This
leads to that there are nodes in BN 4(b) that will never be
used. In Figure 4(c) nodes and dependencies that will be usedin



computations after the repair of component1 are marked with
bold lines.

Since we always consider queries of the kind (3), we can safely
remove the nodes that are not used in future computations. Re-
moving these unused nodes from Figure 4(c) gives Figure 4(d).

Now, if in Figure 4(d) we rename the nodesC+
1 , O+

1 , andO+
3 ,

to C1, O1, andO3 we obtain the BNBt+1 to be used for next
evidence.

Instead of introducing new nodes for variables, deleting old
nodes and updating node names as in Figure 4 we can sum-
marize the BN updating in the following four steps taken when
a repair of componenti is performed.

(i) Update the belief state with the repair action(Ci = NF )
according to (4).

(ii) Add evidenceCi = NF .
(iii) Remove edges betweenCi and all other components, both

incoming and outgoing.
(iv) Remove evidence from all observationsOj ∈ ch(ci).

The update procedure presented above do not give a BN that
describes the current system correctly, meaning that we can
not pose arbitrary queries. However, it guarantees the correct
answers to the particular queries of the type (3) that we need
for our computations. Furthermore, it tracks and illustrates how
dependency relations change in between components during
troubleshooting.

4.2 Action Planner

The task of the action planner is to suggest the next action.
To decide which action this is, the action planner searches for
a troubleshooting strategythat, if executed to end, yields a
minimal expected cost of repair given the current system state.
The time spent calculating a complete troubleshooting strategy
would affect the total cost of repair if the mechanic is actively
waiting for a response. Therefore, if required, the action planner
will terminate early and return the currently most promising
partial troubleshooting strategy.

Troubleshooting Strategies A troubleshooting strategyπ is a
rooted tree in which each noden is associated with an actionan
and a system statesn. The system state consists of the assembly
state in noden, the events performed at the path ton, and
the belief state inn: sn = 〈dn, e1:n, bn〉 Associated to each
outgoing edge fromn to a child nodem in the troubleshooting
strategy is a possible outcome ofan, un,m, and the likelihood
ln,m of having the outcomeun,m whenan is performed insn.
The system state of the root node corresponds to the current
system state. The system state of a nodem with parent noden
is the resulting system state of performingan in sn and having
the outcomeun,m. In a complete troubleshooting strategythe
system state of each leaf node is agoal state. A goal state is
a system state where the probability that the vehicle is fault
free is one. The action in such a leaf node is the action that
restores the vehicle to a fully assembled state. If any leaf node
of a troubleshooting strategy is not a goal state, it is said to be
a partial troubleshooting strategy.

Expected Cost of Repair The expected cost of repairof a
troubleshooting strategyπn rooted in a noden with system
statesn is denotedECR(πn, sn). This is the expected cost
of reaching any leaf node inπn. In a noden, the probability
of reaching the subtreeπm rooted in the child nodem is the
likelihood ln,m. Let cost(an, sn) be the cost of performing
an in sn, then the expected cost of repair can be expressed
recursively as

ECR(πn, sn) = cost(an, sn) +
∑

m∈ch(n)

ln,mECR(πm, sm).

Let Π(s) be the set of all possible complete troubleshooting
strategies with the system states in the root, then the complete

troubleshooting strategyπ∗ is an optimal troubleshooting strat-
egy ins if

π∗ = argmin
π∈Π(s)

ECR(π, s). (5)

The expected cost of repair ofπ∗ is theminimal expected cost
of repair, ECR∗(s). This strategy can be found by, at each
encountered non-goal state, choose an actiona such that the
expected cost of repair becomes minimal.
Proposition 1. (Minimal Expected Cost of Repair) Letn be the
root node of a troubleshooting strategy with the actionan and
the system statesn. Then theminimal expected cost of repair
in sn is

ECR∗(sn) = min
an

(cost(an, sn) +
∑

m∈ch(n)

ln,mECR∗(sm)).

Applicable Actions Not all actions need to be considered
when deciding candidates to be included in the optimal trou-
bleshooting strategy. We only need to consider actions thatcan
affect the belief state part of the system state. These actions are
applicable actions. Applicable actions in a system state must be
actions that repair faults with a marginalized probabilitygreater
than zero or makes observations that are causally dependenton
such a fault.

Composite Actions The preconditions are not considered
when finding applicable actions. This is not needed since as
stated in Section 3.6 there exists exactly one action that assem-
bles or disassembles each assembly element. This means that
there is a unique way to fulfill all preconditions. Acomposite
action is created by combining actions that fulfill the non-
fulfilled preconditions of the original applicable action.The
cost, preconditions, and effects of these actions are addedto
the cost, preconditions and effects of the original action.This
allows us to ignore all preconditions and focus on the desired
effects without losing optimality.

Search Graph All possible choices of actions can be rep-
resented as an AND/OR graph with alternating layers of OR
nodes and AND nodes . The OR nodes are labeled with system
states and correspond to decision points where different actions
can be chosen. The AND nodes correspond to chance nodes
where the outcomes of the last action will decide the next OR
node. Each different choice successing AND node to the OR
nodes is asolutionto the AND/OR graph. If the leaf nodes in
a solution are all goal states the solution iscomplete, otherwise
it is partial. There is a one-to-one correspondence between a
solution and a troubleshooting strategy (Vomlelová and Vomlel
[2000]), so a complete solution correspond to a complete trou-
bleshooting strategy and partial solution correspond to a partial
troubleshooting strategies.

The size of the AND/OR graph is highly exponential, but
by using heuristic search algorithms such asAO∗ (Nilsson
[1980]), not the entire graph needs to be explored to find an
optimal solution.

Since observations are modeled such that they cannot be re-
peated and repairs always are successful, the search graph is
acyclic when only applicable actions are considered. If we wish
to relax any of these assumptions the search graph may become
cyclic. However, there are variants of theAO∗ algorithm such
as theCFC rev algorithm that can treat cyclic graphs (Jiménez
and Torras [2000]).

Algorithm The main parts of theAO∗ algorithm are shown
in Table 1. It starts out with a search graph and a partial
solution consisting only of the root OR node. Until the root
node is marked solved, an unsolved leaf node in the partial
solution is chosen byfindUnsolvedLeaf and expanded by
expandNode. When expanding this node, a succeeding AND
node is created for every applicable action each with succeeding
OR nodes for each possible outcome of these actions. Starting
from the expanded node and backtracking toward the root,
the currently best solution is revised inreviseSolution.



while root is unsolved do
nextNode := findUnsolvedLeaf;
expandNode(nextNode);
reviseSolution(nextNode);

end while
Table 1. TheAO∗ algorithm

A node is marked solved if all succeeding nodes are solved.
The nodes in the solution are assigned costs in accordance
with Proposition 1 where unsolved leafs receive an estimated
cost given by a heuristic functionh. As soon as the root node
becomes solved we have a complete solution. This solution
is optimal if the heuristic function isadmissible, i.e. for a
noden labeled with the system statesn, h(n) ≤ ECR∗(sn)
(Nilsson [1980]). In the current work the heuristics presented
in Warnquist and Nyberg [2008] are used to find optimal and
suboptimal solutions are used.

Anytime Properties Finding optimal troubleshooting for a
problem as large as the model of the retarder can be very time
consuming. Whenever desired by the user, the search can be
aborted and the currently best partial solution is returned. When
this happens, the algorithm stops expanding nodes and sets the
costs in the unsolved leafs to a upper bound and revises the
solution.

5. APPLICATION

The troubleshooting system described above is implemented
and applied to the problem of repairing a heavy truck with a
faulty retarder.

In the implementation, the diagnoser is set to disregard diag-
noses where four or more components are faulty. This is done
to keep the size of the belief state manageable and is reason-
able since the probability for several simultaneous faultsin the
retarder is typically very small. In the action planner the size of
the belief state is further reduced by only keeping thek most
probable diagnoses. This method of keeping down the size of
the belief state works for our model of the retarder, but it is
not feasible for larger systems. In those cases methods as the
one presented in Lerner et al. [2000] can be used, where the
diagnoser collapses similar diagnoses into one.

To test the troubleshooting system we inject faults in the model
of the retarder and simulate the troubleshooting process. The
time required to find an optimal solution varies greatly depend-
ing on the initial observations generated by the fault. To avoid
long waiting times the user can abort the search and perform
a suboptimal action instead. For a randomly generated test the
optimal the optimal expected cost of repair and the ECR when
aborted at different times are measured. Figure 5 shows the
average of these costs. Finding a solution that is guaranteed to
be optimal solution requires 620 seconds using a Java imple-
mentation on a PC, but when aborted convergence is reached
after 60 seconds.
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Fig. 5. The anytime solution at different abort times compared
to the optimal solution.

6. CONCLUSION

Inspired by the application study of the retarder, a heavy truck
breaking system, we have developed a decision theoretic ap-
proach to troubleshooting. Focus has been on issues important

in real world applications: the need for disassembling the sys-
tem during troubleshooting, the problem of verifying that the
system is fault free, and the fact that there are dependencies in
between observations and in between components. To meet the
crucial requirement on short waiting times for the mechanicwe
have proposed a solution with anytime behavior. The solution
utilizes the time available to return a best possible troubleshoot-
ing strategy, and converges toward the optimal solution as more
time is available. We have applied the proposed troubleshooting
approach to the retarder, and discussed carefully how to model
the system and how the troubleshooting is performed.

There are still several challenging and interesting open ques-
tions. The dependencies in between components and in between
faults result in complicated BN structures. The BN used hereis
still fairly simple, and in our future work we will investigate
how interventions can be modeled in even more general BNs.
The results from simulations with noisy parameters show that
parameters may deviate a little from their nominal values, but
in our future work we will also ask us whether deviations in
certain parameters have larger impact on the result than others.
Other interesting open questions are how to determine parame-
ters in the BN. Furthermore, one challenge is the dimension of
the belief state, which increases exponential with the number of
components. We are currently working on methods for focus-
ing on the most probable diagnoses in the diagnoser, without
risking to loose diagnoses with small probabilities in the first
time steps.

The results presented are promising, and show that computer
aided troubleshooting can be applied to complex mechatronic
systems such as the retarder. We look forward to extend our
algorithm to troubleshoot even larger systems.
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