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Abstract

A framework for fault diagnosis, calledstructured hy-
pothesis tests, is presented. It has earlier been devel-
oped within the area of automatic control, but is in fact
very much inspired by the ideas developed in the AI
area. The motivation was originally to handle dynamic
systems with noise. However, it is here shown that
also the noise-free case can be perfectly handled. The
system to be diagnosed, and also the different faults,
are described by differential equations, algebraic equa-
tions, and probability distribution functions. By using
the framework, it is in the isolation possible to utilize
all such modeled knowledge about the faults. The di-
agnosis system is constructed by combining a set of
different hypothesis tests. In this way, the task of di-
agnosis is transferred to the task of validating a set of
different models with respect to the measured data.

1 Introduction
An ongoing effort in the fault diagnosis community is to
investigate relations between the model-based diagnosis
methods used by researchers from the AI and automatic-
control areas respectively, e.g. see (Cordieret al. 2000). In
this context it can be interesting to study the framework of
structured hypothesis tests(SHT) (Nyberg 1999b; 1999c;
1999a). This framework was developed from the perspec-
tive of automatic control but also uses inspiration from the
AI area. It is primarily based on statistical hypothesis test-
ing (Lehmann 1986) and decision theory (Berger 1985).
The basic idea is to combine a set of different (binary) hy-
pothesis tests, and in this way solve complicated diagnosis
problems. Hypothesis testing, but from a slightly different
perspective, have also been used in AI-based approaches to
model based diagnosis, e.g. see (McIlraith & Reiter 1992;
Struss 1994).

Originally, the SHT framework was developed for diag-
nosis of noisy systems. However, in this paper it is shown
how it also can be used for diagnosis of noise-free sys-
tems. It is proved that with the SHT framework, we can
in a noise-free environment design a diagnosis system that
always produce acompleteand logically sounddiagnosis
statement, i.e. the diagnosis system will always tell exactly
which faults that can explain the observed behavior.
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The motivation to develop the SHT framework comes
from work with real applications, namely diagnosis of au-
tomotive engines (Nyberg 1999b; Nyberg & Stutte 2001).
An example of requirements in such an application is that
we have 1 sensor, 5 different faults modeled in different
ways, a system that is dynamic, non-linear and contains
noise and model uncertainties. Since the goal in these ap-
plications is to make decisions in a noisy environment it
is natural to utilize the framework and theory of statistical
hypothesis testing, which was developed exactly for this
purpose.

In statistical hypothesis testing, and therefore also in the
SHT framework, the reasoning is aboutmodels, which can
be dynamic or static, and deterministic or stochastic. This
reasoning about models has the advantage that all type of
faults can be handled. Further on, by using models, we
can into the diagnosis system, include detailed knowledge
about how the faults affect the system. This can be a signif-
icant advantage since the more knowledge about the faults
that can be considered, the larger are the possibilities to
isolate between different faults.

The following section will introduce the basic concepts
in the SHT framework. Then Section 3 will discuss fault
modeling. Section 4 goes into some details about hypoth-
esis testing. Section 5 presents theincidence structure,
which is closely related tostructured residuals, a common
automatic-control approach to fault diagnosis. In Section 6,
it will be shown that the incidence structure ideally is a rep-
resentation of a set of relations between the faults. Based
on these results, a sufficient condition for obtaining a com-
plete and logically sound diagnosis statement is proven in
Section 7. While the first part of the paper assumes a noise-
free environment, Section 8 finally extends the discussion
to systems with noise.

2 Basic Idea of Structured Hypothesis Tests
When using the SHT framework, different faults are classi-
fied into differentfault modes. This is similar tobehavioral
modesas defined in (de Kleer 1989). Here we briefly intro-
duce the concept of fault modes but more formal definitions
will follow later in the paper. For an illustrative example,
consider a system consisting of a gas tank with potential
leakages. The tank is also equipped with a pressure sensor.
We decide that all leakages, regardless of their area, be-
long to the same fault mode ”leakage”. We also decide that
all faults in the pressure sensor belong to the fault mode
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”pressure sensor fault”. Further, one fault mode is always
the ”no-fault” case. Then the complete list of fault modes
is

NF ”no fault”
PSF ”pressure sensor fault”
L ”leakage”
PSF&L ”pressure sensor fault” and ”leakage”

As seen each fault mode is associated with one abbrevi-
ation. We distinguish between single fault modes:PSF
and L, and multiple fault modes:PSF&L. The set of
all fault modes is denotedΩ, and in the example,Ω =
{NF, PSF, L, PSF&L}. A convention used, is that only
one fault mode can be present at the same time. As we
will see later, this originates from the theory of hypothesis
testing.

2.1 The Diagnosis System
The diagnosis problem, and also the objective of the diag-
nosis system can be expressed as follows:

Given a set of observations, the task of the diagnosis
system is to generate adiagnosis statementS, which
contains information about which fault modes that can
explain the observations.

Note that it is assumed that the diagnosis system ispassive,
i.e. it can by no means affect the plant. We also assume that
the diagnosis system isstatic, i.e. the same observations
will always give the same diagnosis statement. In terms
of decision theory(e.g. see (Berger 1985)), the diagnosis
system is then adecision ruleδ(x), i.e. a function from the
observations to the diagnosis statement:

δ : X −→ P(Ω)

whereX is the set of all possible observations andP(Ω)
is thepower setof Ω. Here,x is used to denote the whole
measured data-set, which usually consists of all known and
measured variables of the system up to present time or a
subset of this data. One choice is to use a fixed size time
window.

Model based diagnosis is a complex task and it is there-
fore advantageous to divide the task in smaller subtasks.
Thus the whole diagnosis systemδ(x) is divided into
smaller partsδk(x), which we will assume to be hypothesis
tests. The classical, statistical or decision theoretic, defini-
tion of hypothesis testis adopted, e.g. see (Berger 1985;
Lehmann 1986; Casella & Berger 1990), which is to be dis-
tinguished from “multiple hypothesis testing” that can also
be found in literature, e.g. (Basseville & Nikiforov 1993).
This means that we use hypothesis tests that are ”binary” in
the sense that the outcome of a hypothesis test is one, out
of two possible decisions.

Each hypothesis testδk(x) generates a sub-diagnosis
statementSk, i.e. Sk = δk(x). The diagnosis statement
S is then formed by combining the information of the sub-
diagnosis statements. The procedure for this will be de-
scribed later.

The diagnosis statementsS andSk do all contain infor-
mation about which fault-modes that can explain the be-
havior of the system. In this paper, the representation and
reasoning about this information are based on sets of fault

modes, i.e.Sk ⊆ Ω. Another possibility, discussed in (Ny-
berg 1999c), is to let the diagnosis statements be expressed
by logic formulas.

A diagnosis statementS can in general contain more
than one fault mode. For exampleS = {F1, F2} means
that both fault modesF1 andF2 can explain the behavior
of the system.

Let Fp denote the present fault mode. Then for thek:th
hypothesis test, thenull hypothesisand thealternative hy-
pothesiscan with the help of a setMk be written

H0
k :Fp∈Mk ”some fault mode inMk can explain meas. data”

(1a)

H1
k :Fp∈MC

k ”no fault mode inMk can explain meas. data”
(1b)

whereMC
k denotes the complement ofMk. For the two

possible decisions of a hypothesis testδk, we use the nota-
tion S0

k andS1
k. This means that

Sk =
{

S1
k = MC

k if H0
k is rejected (H1

k accepted)
S0

k ⊆ Ω if H0
k is not rejected

The convention used here and also commonly used in hy-
pothesis testing literature, is that whenH0

k is rejected, we
assumethatH1

k is true. This implies that the present fault
mode can not belong toMk, and thereforeS1

k = MC
k .

What we can assume whenH0
k is not rejected depends on

the actual hypothesis tests, and will be discussed in Sec-
tions 5 and 8. However, it always holds thatMk ⊆ S0

k ⊆
Ω.

How the hypothesis tests are used to diagnose and isolate
faults is illustrated by the following example.

Example 1 Assume thatΩ = {NF, F1, F2, F3} and that
the diagnosis system contains the following set of three hy-
pothesis tests:

H0
1 : Fp ∈M1 = {NF, F1} S0

1 = Ω

H1
1 : Fp ∈MC

1 = {F2, F3} S1
1 = {F2, F3}

H0
2 : Fp ∈M2 = {NF, F2} S0

2 = Ω

H1
2 : Fp ∈MC

2 = {F1, F3} S1
2 = {F1, F3}

H0
3 : Fp ∈M3 = {NF, F3} S0

3 = Ω

H1
3 : Fp ∈MC

3 = {F1, F2} S1
3 = {F1, F2}

Then if onlyH0
1 is rejected, we draw the conclusions that

Fp ∈ S1
1 , Fp ∈ S0

2 , Fp ∈ S0
3 . That is,Fp ∈ S1

1∩S0
2 ∩S0

3 =
{F2, F3}∩Ω∩Ω = {F2, F3}, i.e. the present fault mode is
eitherF2 or F3. If bothH0

1 andH0
2 are rejected, we draw

the conclusion thatFp ∈ {F2, F3}∩{F1, F3}∩Ω = {F3},
i.e. the present fault mode isF3.

From the example above, it is clear that the diagnosis state-
mentS can in general be expressed asS =

⋂
k Sk.

3 Fault Modeling and Fault Modes
The plant to be diagnosed is modeled with a modelM(θ).
The parameter vectorθ is called thefault stateand repre-
sents the true but unknown fault situation of the plant. The
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modelM(θ) consists of differential and algebraic equa-
tions. In this paper we assume that no disturbances affect
the plant and that there are no unknown parameters. How-
ever, the general case, including disturbances, unknown pa-
rameters, and also stochastic models, is described in (Ny-
berg 1999c). The effect of noise is included in this paper
but will be handled later in Section 8.

One or possibly several fault statesθ always corresponds
to the fault-free case. Thefault-state space, i.e. the param-
eter space ofθ, will be denotedΘ. Note that we have cho-
sen the convention thatθ is not dependent on time which
corresponds to an assumption that the fault state of the sys-
tem never changes. Even though this may seem to be a
limitation, this is not the case since we will be quite lib-
eral regarding the definition of the parameter vectorθ, e.g.
elements are allowed to be functions.

The modelM(θ) can now formally be defined as

M : Θ −→ P(X ) (2)

That is, for a fixed value ofθ, the model specifies the set of
observations that are possible to observe.

3.1 Fault Modeling Principles

Many different principles for fault modeling have been
used in the automatic-control literature. One of the most
common is to model faults by unrestricted arbitrary fault
signals. When fault signals are used, a specific fault is usu-
ally modeled as a scalar fault signal. For example consider
an adder described by the equation

y(t) = u1(t) + u2(t) + f(t) (3)

The fault free case can be represented byf(t) ≡ 0 and then
any fault can be modeled by anf(t) 6≡ 0. Obviously, fault
modeling by signals is very general and can in principle
describe all types of faults, but as has been noted in e.g.
(Blanke 1999; Dinget al. 1999), this can cause problems
with the isolation. In the formalism described above, a fault
signal f(t) can be an element in theθ-vector, i.e. θi =
f(t). Note thatθi is still constant but its value is the whole
signalf(t).

Another common fault modeling principle is to model
faults by deviations in constant parameters. For an exam-
ple of how this can be described with the parameterθ, see
Example 2. One further, also common, fault model is to
consider abrupt changes of variables, e.g. see (Basseville &
Nikiforov 1993). More discussions on how the here men-
tioned fault modeling principles, and also other, can be for-
mulated using the parameterθ is found in (Nyberg 1999c;
1999b).

Note that although we in SHT have the possibility to uti-
lize fault models, there is nomustthat all faults are enumer-
ated and precisely modeled. It is always possible to use a
fault mode ”unknown fault”, either alone together with the
NF fault mode or together with other fault modes repre-
senting more detailed fault models. For an example, con-
sider the adder in (3). There can for example be three fault
modes:NF (no fault),S0 (stuck at zero), andAF (arbi-
trary fault). The model forS0 is obviouslyy(t) ≡ 0, and
the model forAF can be writteny(t) = fa(t), wherefa(t)

is an unknown arbitrary signal. To represent this with the
θ-vector, we can for example assume the following model:

y(t) = g1

(
u1(t) + u2(t)

)
+ g2fa(t)

whereθ = [g1, g2]. Then the model forNF is obtained
with θ = [1, 0], the model forS0 with θ = [0, 0], and the
model forAF with θ = [0, 1]. Note that in contrast to
the fault model in (3), the fault in fault modeAF is not
assumed to always affect the adder. The assumption that
a fault always affect a system is calledfault exoneration
(Cordieret al. 2000). As was seen in the adder example,
we can with the help of choosing fault models, chose to
assumefault exonerationor not.

3.2 Fault Modes
The classification of different faults into fault modes corre-
sponds to apartition of the fault-state spaceΘ. Each fault
modeγ is associated with a subsetΘγ of Θ. Thus all sets
Θγ are pairwise disjoint andΘ = ∪γ∈ΩΘγ . If fault mode
γ is present in the system, then we know thatθ ∈ Θγ . The
fact that all setsΘγ are pairwise disjoint reflects the fact
that only one fault mode can be present at the same time.
Note however that, even though two different fault modes
always have disjointΘγ-sets, they can result in identical
observations. With the model (2), each fault modeγ can
now be seen as a model of the process, namely the model
M(θ), whereθ ∈ Θγ .

Example 2 Consider a system described by the following
equations:

ẋ(t) =f(x(t), u(t))
y1(t) =h1(x(t)) + b1

y2(t) =h2(x(t)) + b2

The constantsb1 andb2 represents sensor bias faults and it
is assumed that only positive biases can occur. It is natural
to letθ1 = b1 andθ2 = b2, and thusθ = [θ1 θ2] = [b1 b2].
Four fault modes are considered: “no fault”NF, “bias
in sensor 1”B1, “bias in sensor 2” B2, “bias in both
sensor 1 and sensor 2”B1&B2. The setsΘ, ΘNF, ΘB1,
ΘB2, andΘB1&B2 become

Θ ={[b1 b2]; b1 ≥ 0, b2 ≥ 0}
ΘNF ={[0 0]}
ΘB1 ={[b1 0]; b1 > 0}
ΘB2 ={[0 b2]; b2 > 0}

ΘB1&B2 ={[b1 b2]; b1 > 0, b2 > 0}
3.3 Component Fault Modes
So far, we have only considered fault modes and models on
a ”system level”. Sometimes it is desirable to have a more
component-oriented view of the system. Assume that the
system is separated into a number ofcomponents. For each
of these components a number of faults can occur. Each of
these faults can be classified into differentcomponent fault
modes. To avoid confusion, the fault modes on the system
level can then be denotedsystem fault-modes.

LetF i
j be thej:th component fault-mode of thei:th com-

ponent. Further, letNF i denote the no-fault fault-mode
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of the i:th component. A system fault-mode can then be
composed by a vector of component fault-modes. Some
examples of system fault-modes are

NF =[NF 1, NF 2, . . . NF p]

F1
1 =[F 1

1 , NF 2, . . . NF p]

F2
1 =[NF 1, F 2

1 , NF 3, . . . NF p]

F1
2&F2

1 =[F 1
2 , F 2

1 , NF 3, . . . NF p]

Note the strong relationship with how failure/behavioral
modes are treated in (de Kleer, Mackworth, & Reiter
1992). Here we have shortly discussed a representation
based on component fault modes instead of system fault-
modes, and also the relation between the two. Actually also
the complete logical reasoning can be done using only the
component fault modes. This topic will not be discussed
here but is further investigated in (Nyberg 1999c).

4 Construction of the Hypothesis Tests
To develop the actual hypothesis tests, we first need to de-
cide the set of hypotheses to test. We will here assume that
the set of hypothesis tests is already specified with the help
of setsMk.

By using the setsΘγ , an alternative representation of the
hypothesis test (1) can be written as

H0
k : θ ∈

⋃
γ∈Mk

Θγ

H1
k : θ /∈

⋃
γ∈Mk

Θγ

This is the representation commonly used in statistical hy-
pothesis testing literature. For each hypothesis testδk, we
then need to find arejection region, i.e. a subset ofX where
the null-hypothesis is rejected. This is usually done via a
test quantity(often also called test statistic). The test quan-
tity is a functionTk(x) from thesample datax (i.e. the
observations), to a scalar value which is to be compared
with a thresholdJk. Typically if Tk(x) ≥ Jk, thenH0

k is
rejected and otherwise not rejected. The rejection region of
each test is thereby implicitly defined.

4.1 Construction of the Test Quantities
According to what has been said above, we need to design
a test quantityTk(x) such that it is low or at least below
the threshold if the datax matches the hypothesisH0

k , i.e.
a fault mode inMk can explain the data. Also if the data
come from a fault mode not inMk, Tk(x) should be large
or at least above the threshold.

Design of test quantities, primarily from a statistical
point of view, has been extensively discussed in general hy-
pothesis testing literature, e.g. see (Lehmann 1986). Many
of these ideas are applicable to fault diagnosis. In addition
it can be useful to view the test quantity as amodel validity
measure. From the text above it should be realized that the
test quantity is a model validity measure for the the model

M(θ), θ ∈
⋃

γ∈Mk

Θγ

i.e. the model defined by the null hypothesis. Below, we
will exemplify such a model validity measure based on us-
ing theprediction error. Another example of a commonly
used model validity measure is the likelihood function. For
further discussions about different model validity measures
useful for fault diagnosis, see (Nyberg 1999c).

4.2 Test Quantities based on Prediction Errors
Here we will assume that the observations can be divided
into inputsu and outputsy. The calculation of the test
quantity is then based on a comparison between the mea-
sured and predicted outputy, over a time window of length
N :

Vk(θ,x) =
1
N

N∑
t=1

(
y(t)− ŷ(t|θ,x)

)2
(4)

whereŷ(t|θ,x) is the prediction of the outputy(t), derived
from an assumption of a specificθ and the measured datax.
The functionVk(θ,x), whereθ is fixed, is then a measure
of the validity of the modelM(θ), for a fixedθ, in respect
to the measurement datax.

The test quantity can then be calculated as

Tk(x) = min
θ∈Θ0

k

Vk(θ,x) (5)

Note that although the model validity measureVk(θ,x)
in (5) is indexed byk, meaning that it is specific for the
hypothesis testδk, it is often possible (and also quite ele-
gant) to use the sameV (θ,x) for all hypothesis tests. In
that case, the only thing that differs test quantities in differ-
ent tests, is the setΘ0

k over which the minimization is per-
formed. This approach is demonstrated in (Nyberg 1999b).

5 Representing the Diagnosis System Using
an Incidence Structure

A standard approach in the fault diagnosis literature within
the automatic control community, e.g. (Gertler 1998;
Chen & Patton 1999), is to use the principle ofstructured
residualsto achieve fault isolation. In this section, we will
see that structured hypothesis tests can actually be seen
as a generalization and formalization of structured residu-
als. When using structured residuals, theresidual structure
(also called e.g.fault-signature matrix, incidence matrix)
is an important concept. A consequence of formalizing the
diagnosis procedure, as is done in structured hypothesis
tests, is that the concept of residual structure must be modi-
fied. The solution here is to introduce a distinction between
anincidence structure, describing how the faults ideally af-
fect the test quantities, and adecision structure, describing
how the diagnosisS is formed from the thresholded test
quantities. This section primarily describes the incidence
structure but later in Section 8, also the decision structure
will be discussed. However, we will already here see that
representing a diagnosis system with a decision structure,
is equivalent to a representation using the setsMk, S0

k, and
S1

k.
To get an overview of how faults in different fault modes

ideally affect the test quantities, it is useful to set up an
incidence structure. With ideally, we mean that the sys-
tem behaves exactly in accordance with the model and all
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stochastic parts have been neglected, e.g. no unmodeled
disturbances exists and there is no measurement noise. The
incidence structure is derived by studying the equations
describing the process model and how the test quantities
Tk(x) are calculated.

An incidence structure is a table or matrix containing 0:s,
1:s, and X:s. The X:s will be calleddon’t care. An example
of an incidence structure is

NF F1 F2 F3

T1(x) 0 0 1 0
T2(x) 0 0 X 1
T3(x) 0 X 0 X

(6)

A 0 in the k:th row and thej:th column means that if
the fault mode present in the system, is equal to the fault
mode of thej:th column, then the test quantityTk(x) will
not be affected, i.e. it will be exactly zero. A 1 in thek:th
row and thej:th column means that forall faults belonging
to the fault mode of thej:th column,Tk(x) will always be
affected, i.e. it will be non-zero. An X in thek:th row and
thej:th column means that forsomefaults belonging to the
fault mode of thej:th column,Tk(x) will under someop-
erating conditions be affected, i.e. it will be non-zero. The
dependence on operating condition typically arise in non-
linear systems. Another reason for X:s is multiple fault
modes, where the individual faults may compensate out
each other. Compared to previous works involving resid-
ual structures (or fault-signature matrices etc.), the major
difference is that we have here added the use ofdon’t care.

Let skj denote the entry in thek:th row and thej:th col-
umn of an incidence structure. Then the interpretation of
0:s, 1:s, and X:s can be formally written as

Fp = Fj → Tk(x) = 0 if skj = 0 (7a)

Fp = Fj → Tk(x) 6= 0 if skj = 1 (7b)

whereFp, as before, denotes the present fault mode. Note
that the interpretation of X is implicitly contained in these
formulas, since ifskj = X then none of the two formulas
are valid.

These ”local” interpretations of 1:s, 0:s, and X:s, to-
gether with an incidence structure, is enough to define the
isolation functionality of the whole diagnosis system. For
example the interpretation of the incidence structure (6) be-
comes

T1 = 0↔Fp ∈{NF, F1, F3}
T2=0←Fp ∈{NF, F1}
T2 6= 0←Fp = F3

T3=0←Fp ∈{NF, F2}}
or equivalently

T1 6= 0↔Fp = F2

T2 6=0→Fp ∈{F2, F3}
T2 = 0→Fp ∈{NF, F1, F2}
T3 6=0→Fp ∈{F1, F3}

This interpretation of the incidence structure (6) can now
be used to derive the diagnosis statementS. For example if
T1 = 0, T2 6= 0, andT3 6= 0, we know by using the rules,

thatFp ∈ {F2, F3} andFp ∈ {F1, F3}. This means that
F3 must be the present fault mode.

It can be realized that there is a one-to-one relationship
between this procedure, i.e. formingS by using the in-
cidence structure, and howS is formed via the individual
sub-diagnoses statementsSk. For example, the setsS0

k and
S1

k for the incidence structure (6), are

S0
1 ={NF, F1, F3} S1

1 ={F2}
S0

2 ={NF, F1, F2} S1
2 ={F2, F3}

S0
3 ={NF, F1, F2, F3} S1

3 ={F1, F3}
That is, the setS0

k contains all fault modes which have 0
or X in the k:th row of the incidence structure. AlsoS1

k
contains all fault modes which have 1 or X in the same
row. When assuming ideal conditions, the incidence struc-
ture can in this way be seen as an overview of a diagnosis
system based on structured hypothesis tests.

6 Relations Between Fault Modes
It turns out that some fault modes are related to other fault
modes such that in some cases they are impossible to sepa-
rate. Consider for example a system modeled as

y = abu (8)

where one fault modeFa corresponds to thata 6= 1 and
fault modeFb corresponds to thatb 6= 1. It is obvious
that bothFa andFb can equally well describe the system,
and that it is impossible to isolate between these two fault
modes.

For both analysis and design of diagnosis systems, this
kind of relations play a fundamental role. They tell us for
example when isolation is possible, and also controls how
it is possible to chose the null-hypothesis, i.e. the setMk.

To investigate this relation between fault modes, let us
first formally define fault modes:

Definition 1 (Fault Mode) A fault modeFi is a function
Fi : ΘFi −→ P(X ).
Further we need the notion ofobservation set:

Definition 2 (Observation Set) The observation setof a
fault modeFi is denotedOFi and defined by

OFi =
⋃

θ∈ΘFi

Fi(θ)

Then the relations of interest are:

OF1 = OF2 (9a)

OF1 ⊆ OF2 (9b)

OF1 ∩ OF2 = ∅ (9c)

For example,OF1 ⊆ OF2 means that any fault belonging
to fault modeF1 can also be ”explained” by a fault inF2.
Further,OF1 ∩ OF2 = ∅ means that no fault inF1 can be
”explained” by a fault inF2, and vice verse.

Example 3 Consider the system (8) and the fault modes

NF : a = 1, b = 1
Fa : a 6= 1, b = 1
Fb : a = 1, b 6= 1
Fa&Fb : a 6= 1, b 6= 1
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Of the relations (9), theonly relations that hold in this ex-
ample are the following:

OFa = OFb (10a)

ONF ⊆ OFa&Fb (10b)

OFa ⊆ OFa&Fb (10c)

OFb ⊆ OFa&Fb (10d)

OFa ∩ ONF = ∅ (10e)

OFb ∩ ONF = ∅ (10f)

In a Venn-diagram, this can be illustrated as

ONF

OFaOFb

OFa&Fb

6.1 Design of the Influence Structure
The influence structure for each hypothesis test and thereby
also the setsMk are more or less determined from the re-
lations between the fault modes. To study this, we assume
that we haveideal test quantities. An ideal test quantity
is zero if the measured data can be explained by the null
hypothesis and non-zero otherwise.

Assume we want to design a hypothesis test with
the desired null-hypothesisH0

k : Fp ∈ Mk =
{Fi1, F i2, . . . , F in}. This may be possible, but depend-
ing on the relations between the fault modes, it is some-
times necessary to add some fault modes to the setMk.

The following theorem tells us the relation between the
fault mode relations and the incidence structure. It is here
assumed that the desired null hypotheses only contain one
fault modes. However the extension to more complex null
hypotheses is trivial.

Theorem 1 Given a hypothesis test with a desired null-
hypothesisH0

k : Fp = Fi, and an ideal test quantity, the
actual setMk and the influence structure are uniquely de-
termined by the knowledge of the relationsOF1 ⊆ OF2

andOF1 ∩ OF2 = ∅ as follows:
The entry in the column corresponding to fault modeFj is

0 if OFj ⊆ OFi

1 if OFi ∩OFj = ∅
X if OFi ∩OFj 6= ∅ andOFj 6⊆ OFi

PROOF. Let M ′
k = {Fi} represent the desired null hy-

pothesis. Assume thatFj is the present fault mode. There
are three principle ways the fault modeFj can be related
to Fi, as is illustrated below:

OFiOFj1 OFj2 OFj3

The ideal test quantity forM ′
k will be zero for all observa-

tions insideOFi and non-zero for all observations outside
OFi. This means that the test quantity will be zero for all
observations originating from fault modeFj1. Thus, the
influence structure should contain a 0 in the position for
Fj1.

For observations originating fromFj3, the test quantity
will be always non-zero. That is, the influence structure
should contain a 1 in the position forFj3. Finally for ob-
servations originating fromFj2, the test quantity will be
sometimes zero and sometimes non-zero. Therefore, the
influence structure should contain an X in the position for
Fj2.

�

Example 4 Consider again the system in Example 3. As-
sume that we can use ideal test quantities and want to con-
struct four hypothesis tests with the desired setsM ′

1 =
{NF}, M ′

2 = {Fa}, M ′
3 = {Fb}, andM ′

4 = {Fa&Fb}.
Using the relations (10) and Theorem 1, the influence
structure becomes

NF Fa Fb Fa&Fb
T1 0 1 1 X
T2 1 0 0 X
T3 1 0 0 X
T4 0 0 0 0

By using the relations between the incidence structure and
the setsS1

k andS0
k, we realize that also the setsMk, re-

lated asMk = S1
k

C
, are determined from Theorem 1. For

example, in the example, we haveM2 = {Fa, Fb}.

7 Completeness and Soundness of
Structured Hypothesis Tests

It is desirable that a diagnosis system produces diagnosis
statements that arecompleteand logically sound. That is,
all fault modes that can explain the observations are con-
tained inS (completeness), and all fault modes inS can
explain the observations (logical soundness). The follow-
ing theorem contains a sufficient condition for producing
such diagnosis statements when using structured hypothe-
sis tests.

Theorem 2 Let a diagnosis system be constructed with
one hypothesis test for each fault modeFi, i.e. the de-
sired null hypotheses areH0

k : Fp = Fi. Assume that
ideal test quantities are used and let the incidence/decision
structure be chosen according to Theorem 1. Then the di-
agnosis statementS will always be complete and logically
sound.

PROOF. We need to prove thatFi ∈ S if and only if some
fault state inFi can explain the measured data. Complete-
ness, i.e. the if-part of the proof, follows from the fact that
ideal test quantities are used and that the incidence/decision
structure is constructed with Theorem 1.

For the only-if part of the proof, assume that no fault
state belonging toFi can explain the measured data. Con-
sider now the hypothesis test with desired null hypothesis
H0

k : Fp = Fi. Because of Theorem 1, the actualMk will
look like Mk = {Fi, F1, F2 . . . }, where for allFj ∈ Mk

it holds thatOFj ⊆ OFi. This means that no fault states
belonging to any of the fault modes inMk can explain the
data. This further means thatTk 6= 0 andSk = S1

k = MC
k ,

and thereforeFi 6∈ Sk. This also implies thatFi 6∈ S which
concludes the proof. �
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Remark A diagnosis system based on the framework of
structured residuals uses a residual structure (i.e. an inci-
dence/decision structure) with only 0:s and 1:s, and no X:s.
This has the effect that in the general case, the diagnosis
statement will not be complete.

8 Diagnosis in a Noisy Environment
So far, only noise-free systems have been considered.
However, most real systems are in fact affected by noise
and model uncertainties. Since hypothesis testing theory
is primarily developed for making decisions in a noisy and
uncertain environment, it is quite easy to extend the discus-
sion to the noisy case. Basically, instead of checking if the
test quantities are equal to zero, as was done in Section 6
to 7, we have to use thresholds.

Consider the following system with noise:

y = θ + n

Here, y is measured andn is a stochastic term with
some probability distribution function. There are two fault
modes:θ = 0 (NF ) andθ > 0 (F ), i.e. Ω = {NF, F}.
For diagnosing this system, we use a hypothesis test with
the following hypotheses:

H0 : Fp = NF (θ = 0)

H1 : Fp = F (θ > 0)

Assume that the test quantity is chosen asT = y. In a
noise-free environment (i.e.n ≡ 0), we could easily draw
the conclusion thatFp = NF if T = 0 andFp = F if
T 6= 0.

T

NF F

J

(a)

T

NF

F

J1 J2

(b)

Figure 1: Probability distribution functions for a large fault
and a small fault.

Now consider the noisy case but assume that when the
fault modeF is present,θ is always large. Then the prob-
ability distribution functions forNF andF would look as
is illustrated in Figure 1(a). Then by placing a thresholdJ
in the middle between the two distributions, the following
conclusions can be drawn:

T < J ⇒ S = {NF}
T > J ⇒ S = {F}

The tails of the distributions (on the wrong side ofJ) will
cause errors in the decisions. However the probability of
making errors will in the example be very small.

Assume now that faults with also smallθ must be han-
dled. The probability distribution functions forNF and
F would look as is illustrated in Figure 1(b). If we use a
thresholdJ1 in the middle of the distributions, we would
make errors with a high probability. The only possibility to
avoid errors is to only consider the distribution ofNF and
therefore use the thresholdJ2. The following conclusions
can then be made:

T < J2 ⇒ S = {NF, F} (11a)

T > J2 ⇒ S = {F} (11b)

That is, when theT < J2 we do not draw any conclusion
sinceS = Ω.

8.1 Hypothesis Tests in a Noisy Environment

The solution of using an ”asymmetric” test, such as (11),
is a standard solution in hypothesis testing. Therefore a
hypothesis test in a noisy environment normally becomes:

not rejectH0
k ⇒ Sk = S0

k = Ω

rejectH0
k (=acceptH1)⇒ Sk = S1

k = MC
k

This means that a fault mode is either an element in onlyS0
k

or an element in bothS0
k andS1

k. In terms of the incidence
structure, this means that all 1:s must be replaced with X:s.

Remember that the incidence structure corresponds to
the case where ideal conditions holds. In a more realistic
case, the model is not perfect; unmodeled disturbances af-
fects the process, and there is measurement noise. All this
means that the formulas (7) are not valid and the incidence
structure can therefore not be used to form the diagnosisS.
That is, the structure used for deriving the diagnosis deci-
sion should not be the incidence structure, but instead the
decision structure. The decision structure is in most cases
the incidence structure but with all 1:s replaced with X:s.

In the noise-free case, the decisionsSk made by the hy-
pothesis tests were always true. In the noisy case, even
though we use a good threshold andS0

k chosen asS0
k = Ω,

the decisionsSk can not be guaranteed to be true. To be
able to make the assumption thatH1

k is true whenH0
k is re-

jected, we need to design the hypothesis test such that the
so calledsignificance levelαk = P (rejectH0

k |H0
k true) is

small.
Sometimes, it is also in a noisy environment reason-

able to make the assumption thatH0
k is true when it is

not rejected. This is controlled by thepower function
βk(θ) = P (rejectH0

k | θ). For example, if it actually holds
thatP (rejectH0

k | θ) is large for allθ ∈ ΘFi , then we do
not take any large risk if we assume thatFi is not present
whenH0

k is not rejected. If this is the case,Fi should be
excluded fromS0

k. In other words, given a hypothesis test,
it is the power function that determines the choices of the
setsS0

k andS1
k (i.e. the choices of 0, 1, and X in the de-

cision structure). The relation between the power function
and the decisionsS0

k andS1
k is further investigated in (Ny-

berg 1999c).
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9 Conclusions
In this paper, we have seen how statistical hypothesis test-
ing and decision theory can be used to form a general
framework for fault diagnosis. One advantage of using
these existing theories is that all already developed theory
for design and also evaluation of hypothesis tests and gen-
eral decision functions can quite easily be applied to the
diagnosis problem. This advantage can clearly be seen in
(Nyberg 1999a; 2000a) which use methods from hypothe-
sis testing and decision theory for evaluations and compar-
isons of diagnosis systems.

Two consequences of using hypothesis testing are that
X:s must be used in the incidence/decision structure, and
that the reasoning to produce the diagnosis statement is
aboutmodels. The X:s (don’t care) are necessary to get
a completediagnosis statement. Interesting is that the es-
tablished frameworkstructured residualsin the area of au-
tomatic control, does not use X:s and can therefore not
produce complete diagnosis statements. The reasons to in-
clude X:s are nonlinearities, noise, and multiple fault com-
pensation. Also in (Cordieret al. 2000), it is argued that
X:s are needed. The reason there is to handle multiple fault
compensation and to relax thefault exoneration assump-
tion, i.e. the assumption that a fault always affects the
system. In the SHT framework, relaxing of the fault ex-
oneration assumption is not directly a reason to use X:s.
Instead, we choose if we want to make the fault exonera-
tion assumption or not, by using different fault modeling
approaches.

To work with fault models is a powerful tool to handle
in principle all types of faults. Thus, in the SHT frame-
work we can for example diagnose faults that are mod-
eled as deviations in constant parameters, arbitrary signals,
abrupt changes, a change in signal variance, and also a
mix between different types. Another reason to work with
fault models is the increased possibility to isolate different
faults. For example, by knowing that two different faults
are acting in a different way, we can distinguish between
the two even though they are acting on the same compo-
nent.

In this paper, the SHT framework has only been exempli-
fied on small toy examples. A more complete, and AI ori-
ented example, can be found in (Nyberg 2000b) which in-
vestigates the well known polybox example from (de Kleer
& Williams 1987). However the theory has also been suc-
cessfully applied to real applications: diagnosis of the air
intake system of different kinds of automotive engines (Ny-
berg 1999b; 1999a; 2000a; Nyberg & Stutte 2001). These
works have shown that the theory has practical relevance
for both design and analysis of diagnosis systems.
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