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Abstract

Fault isolability plays a significant role and could
be critical with respect to many aspects such as
safety and maintenance for a process to be diag-
nosed. In the development of processes including
diagnosis, design decisions are taken, e.g. sen-
sor configuration selection, which affects the fault
isolability possibilities. In this paper an algorithm
for predicting fault isolability possibilities using a
structural model describing the process is proposed.
Since only a structural model is needed as input, the
algorithm can easily predict fault isolability possi-
bilities of different design concepts. In contrast to
previous algorithms using structural models no as-
sumption is imposed on the model. The algorithm
computes faults that cannot be distinguished from
other faults, which can be used to exclude design
alternatives with insufficient isolability possibility.

1 Introduction

Fault isolability refers to the question of which faults that are
possible to distinguish from other faults, given the knowledge
of available sensor and actuator signals. This information is
important when designing diagnostic systems but also when
designing the process to be diagnosed.

In the development of processes, different design decisions
are taken, e.g. how different parts are connected, which ac-
tuators to use, and which sensors to use. All these design
decisions may influence the isolability possibilities. In addi-
tion, when designing the diagnostic system, there is a choice
of different fault modeling strategies and which diagnostic
tests to include. As a guidance when taking these design de-
cisions, it is desirable to know exactly how different design
choices affect the isolability possibilities.

To find the isolability of a given model of a process is a
difficult problem in general since it is related to the problem
of solving large systems of non-linear differential equations.
In this paper we attack the problem by an algorithm that takes
a structural model of a process as input and computes faults
that are not isolable from other faults. Since only a structural
model is used, no precise analytical equations are needed.
This implies that the algorithm can be used early in the de-
sign phase and thus serve as a guidance when taking different
design decisions. However, if we need to know exactly which
faults that are isolable from others, the algorithm also helps
braking down the large problem into smaller and easier prob-
lems to analyze.

Isolability analysis has previously been studied
in [O. Dressler, 2003], but only for qualitative models.
Furthermore, a structural method for computing the isola-
bility of different sensor configurations was presented
in [Travé-Massuy`es et al., 2003]. This and other earlier
works using structural models for diagnosis, e.g.[Pulido and
Alonso, 2002], [Frisket al., 2003], [Cassar and Staroswiecki,
1997], and [Blanke et al., 2003], have imposed analytical
assumptions on the systems, e.g. that only subsystem with
more equations than unknowns, i.e. only over-constrained
subsystems, can be invalidated and therefore contribute to
detection and isolation. However these assumptions are
difficult to verify in most larger models. If these assumptions
are not satisfied, faults that are predicted to be isolable from
other faults can be not isolable and vice verse. In contrast,
the method presented in this paper does not require any
analytical assumptions.

In Section 2 a modeling framework for model based di-
agnosis is recapitulated. In Section 3 the central concepts
detectability and isolability are recalled. These concepts are
related to structural properties of the model through the new
concept ofchecking modelpresented in Section 4. We de-
scribe how checking models can be computed by using a
structural model. By combining the algorithm for finding
checking models with the results relating checking models
and isolability, an algorithm for isolability prediction is de-
veloped in Section 5. An example shows how the obtained
isolability prediction can be interpreted. Furthermore, in Sec-
tion 6 illustrative examples show how isolability prediction
can be used to identify additional fault modeling and support
sensor selection to meet given isolability requirements.

2 Example Introduction and Models
Throughout the paper, we will exemplify concepts and tech-
niques on the same example, i.e. the water-tank process de-
picted in Figure 1. The water-tank process consists of a pump,
a tank, a water-level sensor, and a flow sensor. These compo-
nents are denotedP , T , W , andQ respectively and are il-
lustrated in the figure by the four dashed boxes. The pump
is pumping water into the top of the tank. The water flows
out of the tank through a pipe connected to the bottom of the
tank. The pump is controlled by a control signalu, the water-
level in the tank is measured with the sensor signalyw, and
the outflow from the tank is measured with the sensor signal
yq. The true flows into and out of the tank are denotedqi, and
the actual water level in the tank is denotedw.

A physical model of the process is shown in Table 1.
The model is organized according to the modeling princi-
ples given in[Dressleret al., 1993; Nyberg and Krysander,
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Figure 1: The process to be diagnosed. The location of pos-
sible faults are denoted with a red flash.

2003]. The equatione1 describes the pump;e2 the conserva-
tion of volume in the tank;e3 ande4 the outflow from the tank
caused by the gravity and with a possible clogging faultft;
e5 a fault model for the clogging fault;e6 the no-fault value
for fault variableft; e7 ande8 the fault free water-level mea-
surement;e9 ande10 the outflow measurement with a possi-
ble bias faultfq; ande11 ande12 the outflow-measurement
fault fq. Note that both arbitrary faults, e.g. the water-level
sensor fault, and faults modeled by fault parameters, e.g. the
bias fault of the outflow measurement, can be handled by this
modeling principle.

By including analytically differentiated equations, i.e.e4,
e8, ande10 in the example, the derivatives of the unknowns
can be replaced with new algebraic variables. Thus a deriva-
tive ẋ is eliminated by substituting a so calleddummy deriva-
tivex′ [Mattson and S¨oderlind, 1993] for ẋ wherever it occurs
in the model. Although we assume thatx′ = ẋ, this is not
true by definition, instead this relationship should be implied
by the augmented algebraic model containing differentiated
equations. For examplew′ is an algebraic variable, i.e. it is
not defined as the derivativėw of w, but should be equal tȯw.
The algebraic equationse7 ande8 together with the differen-
tial equationẏw = dyw/dt imply thatw′ = dw/dt = ẇ. In
this way it is possible to transform an over-constrainedsystem
of differential-algebraic equations into an algebraic system.
The price paid for converting a differential algebraic model
into an algebraic model is that the number of equations grows.
The conversion from a differential algebraic model to an al-
gebraic model can be done using an algorithm in[Krysander
and Nyberg, 2002].

The assumption of the first equation, i.e.P = NF, means
that u = q1 is valid if the behavioral modeof component
P is in the no-fault mode, which is abbreviatedNF. For the
water-tank example all components are assumed to be either
in no-fault modeNF or in faulty modeF. Equations with no
assumptions are always true. A mode assignment for all com-
ponents of a process is called asystem behavioral-mode. The
no-fault system behavioral-mode for the water-tank process
will be denotedNF and fault modes will be denoted by their
faulty components, e.g.PT for the behavioral mode where
componentsP andT are in faulty mode andW andQ are in
no-fault mode.

The set of equations that are valid in a given system
behavioral-modeb, i.e. itsbehavioral modeldenotedMb, de-
fines the behavior of process in system behavioral-modeb.
For an example, the set of all equations excepte7 ande8 is
the behavioral model of behavioral-modeW.

Table 1: A model for the water-tank process in Figure 1.

Assumption Equation Expression
Pump

P = NF e1 u = q1
Tank

e2 w′ = q1 − q2
e3 w = (1 − ft)q

2
2

e4 w′ = 2 (1 − ft) q2q′2 − f ′
t q2

2
e5 f ′

t = 0
T = NF e6 ft = 0

Water-level sensor
W = NF e7 yw = w
W = NF e8 ẏw = w′

Flow sensor
e9 yq = q2 + fq

e10 ẏq = q′2 + f ′
q

e11 f ′
q = 0

Q = NF e12 fq = 0

3 Detectability and Isolability Prediction
First some definitions are briefly introduced. Anobservation
is here considered to be a snap-shot of all known variables
and possibly also some derivatives of known variables. For
the water-tank process an observation is a value of the vec-
tor [u(t), yw(t), ẏw(t), yq(t), ẏq(t)] at timet. A diagnosisat
time t is a system behavioral-mode such that its behavioral
model is consistent with the observation at timet. A system
behavioral-modebi is said to beisolable from another sys-
tem behavioral-modebj if there exists some observation such
that bi is a diagnosis butbj is not. A fault bi is said to be
detectableif it is isolable from the no-fault system behavioral
mode.

It could be argued that the proposed definition of de-
tectability is relatively weak in the sense that a fault is de-
tectable if there exists only one single observation that distin-
guish the fault from the no-fault mode. However, by using
this relatively weak definition, a non-detectable fault would
also be non-detectable with any stronger definition of de-
tectability.

3.1 Predicting Detectability
In this section we will describe how detectability information
can be derived without knowing the exact analytical equations
of a model like the one in Table 1. It can be realized that
b is not detectable ifMNF ⊆ Mb. However detectability
analysis by this naive idea comparing behavioral models is
not particularly powerful. Here a refinement of this idea will
be presented.

Consider first the no-fault system behavioral-model. As
in [Blankeet al., 2003], a fault canviolate some equations
in the no-fault system-behavioral model, i.e. some equations
in no-fault system-behavioral model can be false for variable
values consistent with the behavioral model of the fault. For
example the fault of the outflow sensorQ in the water-tank
example can violatee12 in the no-fault system behavioral-
modelMNF.

Even if a fault can violate an equation in a model, it is not
sure that the fault is detectable as the next small illustrative
example shows. Consider a no-fault behavioral modelMNF

defined as

u = x1 (1a)

y = x1 (1b)

0 = x1 + x2 (1c)

whereu andy are known variables andx1 andx2 are un-
knowns. The set of observations consistent with (1a)-(1c),
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Figure 2: Venn-diagram representation of equation sets.

i.e. MNF is
{(u, y) ∈ R

2|u = y} (2)

which will be called theobservation setfor MNF and denoted
O(MNF). A fault violating either (1a) or (1b) is detectable,
becauseu 6= y if either (1a) or (1b) is violated, i.e.(u, y)
belongs not to the observation set (2). A fault which only
violates (1c) cannot be detected because a violation of (1c)
leads to different values ofx2 but u = y still holds. Equa-
tion (1c) is therefore said to benon-monitorablein [Blankeet
al., 2003].

A difference between the first two equations where a fault
can be detected and (1c) where a fault can not be detected
is that the first two equations define the observation set (2)
and (1c) is not needed to define (2). Observation set is next
defined to formalize this discussion. IfM is a set of equa-
tions,x a vector of unknowns, andz a vector of known vari-
ables, then the observation set forM is defined byO(M) =
{z|∃x ∧e∈M e(x, z)}. The following definition will be used
to formalize in which equations violations can be detected.

Definition 1 (Cb, Checking Model ofb) A model Cb is a
checking model ofb if Cb is a subset of the behavioral model
Mb andO(Cb) = O(Mb).

Note that behavioral models trivially are checking models.
Note also that checking models need not be over-constrained.
As examples of checking models, the two checking models of
NF in (1) are the sets{(1a), (1b)} and{(1a),(1b), (1c)}. A
detectable fault violates at least one equation in every check-
ing modelCNF for the no-fault behavioral mode. A de-
tectable fault must therefore violate (1a) or (1b) in (1), be-
cause{(1a), (1b)} is a checking model ofNF.

An illustration of the equation sets involved in the discus-
sion is shown in Figure 2 as a Venn diagram. The rectan-
gle represents the set of all equations in the no-fault behav-
ioral modelMNF, i.e. (1a)-(1c) in the small example. The
right circle contains a checking modelCNF of the no-fault
behavioral mode, i.e. (1a)-(1b) in the example. The left cir-
cle contains the behavioral modelMb for some behavioral
modeb. The grey-shaded area represents the set of equations
which can be violated in behavioral modeb, i.e. the equations
that render detection of behavioral modeb possible. Hence if
the grey-shaded area is empty, thenb is not detectable. If
Mb = {(1a),(1b)} in the example withMNF equal to (1)
thenb is not detectable, because both (1a) and (1b) hold in
b. From this discussion the next theorem follows which sum-
marizes how checking models will be used for detectability
analysis.

Theorem 1 A system behavioral-modeb is not detectable if
there exists a checking modelCNF of NF such thatCNF ⊆
Mb.

The proof of Theorem 1 and the proofs of all following the-
orems can be found in[Krysander and Nyberg, 2005]. How
to find checking models will be described in Section 4.

3.2 Predicting Isolability
Since detectability is a special case of isolability, the results
of Theorem 1 concerning detectability can be generalized to
isolability as follows. A behavioral modebi, that is isolable
from a behavioral modebj, violates some equations in a
checking modelCbj of the behavioral modebj. Figure 2
could represent this situation as well ifNF is changed tobj

andb to bi. Then it can be seen that if all equations in a check-
ing modelCbj hold in behavioral modebi then it follows that
bi is not isolable frombj. Hence by computing a checking
model ofCbj , it can be concluded which behavioral modes
that are not isolable frombj .

Theorem 2 A system behavioral-modebi is not isolable from
a system behavioral modebj if there exists a checking model
Cbj of bj such that

Cbj ⊆ Mbi (3)

In conclusion, by computing a checking model for each
system behavioral-mode, Theorem 1 and Theorem 2 give an
explicit method to compute if a faulty behavioral mode is not
detectable and if a behavioral mode is not isolable from an-
other behavioral mode. The algorithm presented later will be
based on these results.

3.3 Isolability and Checking Models
There might exist several checking models of a system
behavioral-modebj as seen previously. Assume that one
checking modelC1

bj
is a proper subset of another check-

ing model C2
bj

, i.e. C1
bj

⊂ C2
bj

. If C2
bj

⊆ Mbi then

C1
bj

⊆ Mbi but the opposite does not hold. This and The-

orem 2 imply that if checking modelC2
bj

implies thatbi is
not isolable frombj thenC1

bj
does that too. Now assume that

C1
bj

⊂ Mbi ⊂ C2
bj

. By usingC1
bj

as checking model forbj , it
is concluded from Theorem 2 thatbi is not isolable frombj.
However ifC2

bj
is used as checking model then no conclusion

can be drawn. Hence the strongest conclusion is given by the
smallest checking model. By finding smaller checking mod-
els thanMb more faults can be concluded to not be isolable
from others.

4 Finding Checking Models
The minimal checking models of a system behavioral-mode
are unknown and depends on the analytical expressions of the
equations in the model. A brute-force approach to compute
the minimal checking models would be to compute observa-
tion sets for subsets of equations and compare it to the obser-
vation set of the behavioral model. Even for models of the
size and complexity like the water-tank example, automatic
computation of observation sets by using computer algebra,
like for example Mathematica, is computationally demand-
ing. For a large industrial example this approach would be
computationally intractable. Instead of requiring an exact de-
termination of all minimal checking models ofb, we propose
to compute the smallest checking model ofb, that can be
obtained with the structural method to be presented in Sec-
tion 4.3. This model will in the continuation be called the
smallest checking model forb. The strategy to find the small-
est checking model ofb will be to start with the corresponding
behavioral model and remove equations which are not needed
to define the observation set for the behavioral model, i.e. to
remove non-monitorable equations.



4.1 Excluding Non-monitorable Equations
If X is any set of variables, thenx will denote the vector of
the variables inX . If M is a set of equations with variables
X thenM(x) will denote the conjunction of the analytical
equations inM where the values of the variablesX are set to
x. Consider a set of equationsM with unknown variablesX
and known variablesZ. If X is partitioned intoX1 andX2

and
∀z∀x2∃x1 : M(x1,x2, z) (4)

then the setM of equations is said to beX1-satisfiable. For
example, letM = {e3} andX1 = {w}. For arbitrary values
of ft andq2 there exists a valuew = (1 − ft)q2

2 such thate3

is true, i.e.{e3} is {w}-satisfiable.

Theorem 3 If a modelM ⊆ Mb is X1-satisfiableand no
variable in X1 is contained inMb\M , then Mb\M is a
checking model ofb.

An alternative formulation of Theorem 3 is that ifM isX1-
satisfiableand no variable inX1 is contained inMb\M , then
M is non-monitorable. This means that a checking model
smaller than the behavioral model can be computed by re-
moving equation setM from the behavioral modelMb. To
give an example of how this is done, consider the behavioral
modeW for the water-tank example. Since{e3} is {w}-
satisfiable ande3 is the only equation inMW wherew is
included,MW\{e3} is a checking model ofW according
to Theorem 3. In[Blanke et al., 2003; Frisket al., 2003;
Pulido and Alonso, 2002] analytical assumptions imply that
the minimal checking model for a behavioral modeb is
equal to the equations included in the vertical tailM+

b of
the Dulmage-Mendelsohn decomposition of the behavioral
modelMb. The smallest checking model that can be derived
using Theorem 3 is not related toM+

b .

4.2 Structural Method
A structural method will be used to compute non-monitorable
equation sets for a behavioral model. The structure of a model
is an abstraction of the model in the sense that it includes
which variables that are included in each equation[Cassar
and Staroswiecki, 1997]. The structure of the water-tank
model in Table 1 is shown in Table 2 as abiadjacency ma-
trix [Asratianet al., 1998]. An “X” or an “O” in row e and
columnx means thatx is included ine. An entry correspond-
ing to equatione and variablex is marked “X” if {e} is {x}-
satisfiable and otherwise “O”. Insights of the physics can be
used to specify where to put “X”:s.

By using this additional information together with the
structure it is possible to find non-monitorable equation sets
with cardinality one as follows. Ife is the only equation in
Mb that contains a variablex and this variable is marked with
an “X” in the biadjacency matrix, then{e} satisfies the con-
ditions in Theorem 3, i.e.{e} is non-monitorable. The next
theorem will give theoretical results needed for computing
non-monitorable equation set with cardinality greater than 1.

Theorem 4 Let M1 and M2 be disjoint sets of equations.
If M1 is X1-satisfiable,M2 is X2-satisfiable, and does not
contain any variable inX1, then it follows thatM1 ∪ M2 is
(X1 ∪ X2)-satisfiable.

This theorem provides a recursive computation of a non-
monitorable set of equationsM that satisfies Theorem 3. To
exemplify Theorem 3 consider the behavioral modelMb =
MPW in the water-tank example. The modelMPW con-
sists of all equations in Table 1 except fore1, e7, ande8.

The modelM1 = {e2} is {q1}-satisfiable andM2 = {e4}
is {w′}-satisfiable. Now, since{e4} and {e2} are dis-
joint and q1 is not included ine4, Theorem 4 implies that
{e2, e4} is {q1, w

′}-satisfiable. Furthermore, the variables
in {q1, w

′} are not included inMPW\{e2, e4} which means
thatMPW\{e2, e4} is a checking model ofPW, according
to Theorem 3. In this way, it is possible to find the smallest
checking model by finding a non-monitorable equation and
remove them from the model.

Table 2: The structure of the model in Table 1.

Equation Unknowns Knowns
q1ww′q2q

′
2ftf

′
tfqf

′
q uywẏwyqẏq

e1 X X
e2 X XX
e3 X O O
e4 X OOOO
e5 X
e6 X
e7 X X
e8 X X
e9 X X X
e10 X X X
e11 X
e12 X

4.3 Algorithm
Next we will present a recursive algorithm for computing
the smallest possible checking model of a behavioral mode
b given the type of information given in Table 2. The input to
the algorithm is a structure as the one shown in Table 2 with
“O”:s and “X”:s.

Algorithm 1 FindCheckingModel
input: The structure ofMb.

if there exists ane ∈ Mb with an unknownx only in e
and the entry(e, x) is marked “X” do

Mb = FindCheckingModel(Mb\{e});
end if

return: The checking modelMb.

The correctness of the algorithm is implied by Theorem 3
and Theorem 4. For a checking modelCb obtained by Algo-
rithm 1, it holds thatM+

b ⊆ Cb ⊆ Mb. Note that the output
model of Algorithm 1 contains all algebraic loops contained
in the input model. However, by deriving a checking model
using Theorem 3 and Theorem 4 directly, not all equations
containing algebraic loops need to be contained in the check-
ing model.

Consider for the water-tank example the behavioral mode
PW. The structure is seen in Table 2.FindCheckingModel
is first called with inputMb = MPW. The variableq1 is
among the equations inMPW only included ine2 and the
corresponding entry is marked “X”, i.e. the if-condition
is satisfied andFindCheckingModel is called with input
MPW\{e2}. Now the if-condition is also satisfied, because
w is only included ine3 and(e3, w) is marked “X”. Contin-
uing the recursion in this wayFindCheckingModel(MPW)
returns the empty set∅ which is the checking model ofPW
to be used in the isolability computation later. This means
thatPW is always a diagnosis.



5 Isolability Prediction Algorithm

Algorithm 1 computes the smallest checking modelCbj of
a behavioral modebj given the structure of the behavioral
modelMbj . If (3) is true for the computed checking model
Cbj and a behavioral modelMbi of another behavioral mode
bi, Theorem 2 implies thatbi is not isolable frombj. This is
the idea used in the next algorithm for computing behavioral
modes that are not isolable from other behavioral modes. Let
B be the set of all system behavioral-modes and letI ⊆ B ×
B be a set of pairs of behavioral modes(bi, bj) such that if
(bi, bj) ∈ I thenbi is not isolable frombj.

Algorithm 2 IsolabilityPrediction
input: The structure of a diagnostic model and a set of system
behavioral-modesB.

I = ∅;

for all bj ∈ B do

Cbj = FindCheckingModel(Mbj );
for all bi ∈ B do

if Cbj ⊆ Mbi do

I = I ∪ {(bi, bj)};
end if

end for

end for

return: I
Algorithm 2 computes the largest setI that can be derived

using only the type of information given in Table 2. The in-
terpretation of the output of the algorithm is discussed in the
next section. The purpose of Algorithm 2, as stated here,
is to illustrate the idea and not to explain additional features
that can lower the computational complexity. However one
such improvement is to use the fact thatMbi ⊆ Mbj implies
Cbi ⊆ Cbj and in each step compute a checking model for a
maximal behavioral model.

5.1 Isolability Prediction Interpretation

The isolability property can be seen as a partial order on the
set of equivalence classes generated by mutually not isolable
behavioral modes. Two equivalence classes of behavioral
modesBi andBj are related as≤ when for allbi ∈ Bi and
for all bj ∈ Bj , bi is not isolable frombj. Figure 3 shows
the partial order computed by Algorithm 2 when all multiple
faults of the water-tank process are considered. For example
the four behavioral modes in the top are an equivalence class
and are therefore not isolable from each other. In Figure 3
it can also be seen that no fault is isolable from faults with a
superset of faulty components. This is not surprising since no
equation in the model holds only in a faulty behavioral mode.
Furthermore, since the top element is an upper bound for all
behavioral modes, it means that these faults will always be di-
agnoses, in fact they all have the empty set as their checking
models.

6 Illustrative Examples

Previous sections have described Algorithm 2 that predicts
the isolability. Here, two examples illustrate how Algorithm 2
can be used.

NF

P T Q W

PT PQ TQ TW WQ

PTQ TWQ

PW, PTW, PWQ, PTWQ

Figure 3: An isolability prediction of the water-tank process.

6.1 Fault Modeling Specification
Assume safety or legislative requirements state demands on
the fault isolability. Given a diagnostic model including fault
models, it can be determined by applying Algorithm 2 to the
diagnostic model if the proposed fault modeling is insufficient
for the fault isolability demands.

Assume that all double faults must be isolable from each
other in the water-tank process. The result shown in Figure 3
implies that the isolability demands cannot be fulfilled with
the proposed model in Table 1. For example no double fault
is isolable fromPW. To make any behavioral mode isolable
from PW the behavioral modelMPW must be improved for
example by additional fault modeling. The faulty components
in PW are the pumpP and the water-level sensorW and non
of these components have fault models.

Assume that it is reasonable to use a constant bias fault
model for the water-level sensor. Letfw be the size of the
bias fault. Equatione7 can now be replaced byyw = w + fw

and e8 by ẏw = w′ + f ′
w which both hold in any system

behavioral-mode. Furthermore, the new equationse13 : fw =
0 which holds whenW = NF ande14 : f ′

w = 0 which always
is true are added to the model in Table 1. By applying Algo-
rithm 2 to the model including the new fault model, a smaller
setI is obtained. This means that some faults that were not
isolable from some other faults without the fault model, now
might be isolable. The result with the additional fault model
is that it might be possible to isolate all double faults from
all other double faults. For this example it is also possi-
ble to analyze the true isolability using the analytical expres-
sions. For example consider the behavioral modesPW and
PT. Without the additional fault model,PT was not isolable
from PW. When including the fault model the observation
setO(MPW) for PW is defined byẏw − 2 yq ẏq = 0 and
O(MPT) is defined byẏw yq − 2 yw ẏq = 0 and if yq = 0
thenyw = ẏw = 0. Both these expressions can be computed
by elimination of all unknowns in their corresponding check-
ing models respectively. Since these checking models are
smaller than the corresponding behavioral model, the elim-
ination problem is reduced. The modePT is isolable from
PW if O(MPT) \ O(MPW) 6= ∅. An example of observa-
tions inO(MPT) \ O(MPW) is yq 6= 0, ẏq 6= 0, yw 6= y2

q ,
andẏw = 2yw ẏq/yq. HenceO(MPT) \O(MPW) 6= ∅, i.e.
PT is isolable fromPW. According to the result of Algo-
rithm 2, it is possible that all double faults are isolable from
all other double faults and it can be shown to be so.

6.2 Design Alternative Selection
Suppose there are different design alternatives, e.g. different
possible sensor configurations. Since only a course model



is needed as input to Algorithm 2, the isolability aspects of
different design alternatives can easily be evaluated.

Let the isolability demands be the same as in the previ-
ous section and assume that there are two design alternatives
for the water-tank process, one as described in Section 2 and
one with an additional flow sensorQextrameasuringq1. We
know from the previous discussion that it is not possible to
isolate all double faults from each other by using the model
in Figure 1. The result of applying Algorithm 2 to an ex-
tended model including the additional sensorQextraanswers
the question if the model with the additional sensor can be
sufficient to meet the isolability demands.

The extended model is obtained by adding the equation
e13 : y = q1 with the assumptionQextra = NF. Note that
an extra sensor will change the set of all system behavioral
modes. In this example the number of components is 5 and
the original model has only 4 components. By including the
additional sensor, all double faults, including the new once
introduced byQextra, might be isolable from any other dou-
ble fault according to the result of Algorithm 2. Analytical
analysis can be done as in Section 6.1 to conclude that all
double faults are isolable from all other double faults.

To summarize the results of the examples, without any fault
model or any additional sensor, this analysis shows that there
are double faults which are not isolable from other double
faults. However, by adding the proposed fault model or the
water-level sensor it can be shown that all double faults are
isolable from all other double faults.

7 Conclusions
In the development of processes including diagnosis, design
decisions are taken, e.g. sensor configuration selection, which
affects the fault isolability possibilities. This paper has pre-
sented an algorithm and a methodology that easily can be ap-
plied to different design alternatives and evaluate their isola-
bility limitations.

The framework from[Dressleret al., 1993; Nyberg and
Krysander, 2003], which handles general fault models, has
been used. In[Travé-Massuy`es et al., 2003; Frisket al.,
2003], and[Blankeet al., 2003] assumptions are made such
that all detectable faults violate the over-constrained subsys-
tem. Here a more careful assumption is made. The advantage
of being careful is that in contrast to the results in[Travé-
Massuyèset al., 2003], [Frisk et al., 2003], and[Blankeet
al., 2003] no analytical assumptions need to be satisfied to
draw the conclusions about the detectability or the isolability.

Algorithm 2 computes faults that are not isolable from oth-
ers by using the structure of a diagnostic model as the one
in Table 2. This was done by combining Algorithm 1, which
computes the smallest checking models that can be computed
by using structural models as the one in Table 2, and the
link between checking models and isolability stated in Theo-
rem 2. Furthermore, in Section 6.1 it was shown how Algo-
rithm 2 could detect insufficient fault modeling. The analysis
revealed faults not isolable from other faults and by the exam-
ple a methodology was proposed to locate required additional
fault modeling. Section 6.2 showed how Algorithm 2 could
be used to find the isolability limitations of different design
alternative for a process to be diagnosed.

In conclusion, it is believed that structural methods for
isolability analysis have an advantage of analytical methods
to support decisions early in the design process. The pro-
posed algorithm is the only structural algorithm which com-

putes faults that are not isolable from others without any ana-
lytical assumptions.
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Roland Häggkvist. Bipartite Graphs and their Applica-
tions. Cambridge University Press, 1998.

[Blankeet al., 2003] M. Blanke, M. Kinnert, J. Lunze, and
M. Staroswiecki. Diagnosis and Fault-Tolerant Control.
Springer-Verlag, 2003.

[Cassar and Staroswiecki, 1997] J. P. Cassar and
M. Staroswiecki. A structural approach for the de-
sign of failure detection and identification systems. In
IFAC Control of Industrial Systems, Belford, France,
1997.

[Dressleret al., 1993] O. Dressler, C. B¨ottcher, M. Montag,
and A. Brinkop. Qualitative and quantitative models in a
model-based diagnosis system for ballast tank systems. In
Int. Conf. on Fault Diagnosis (TOOLDIAG), pages 397–
405, Toulouse, France, 1993.

[Frisket al., 2003] Erik Frisk, Dilek Dştegör, Mattias
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