
FlexDx: A Reconfigurable Diagnosis Framework

Fredrik Heintz†, Mattias Krysander∗, Jacob Roll∗, Erik Frisk∗

† Dept. of Computer and Information Science, Linköping University, SE-581 83 Linköping, Sweden
Email: frehe@ida.liu.se

∗ Dept. of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden
Email: {matkr,roll,frisk}@isy.liu.se

Abstract
Detecting and isolating multiple faults is a com-
putationally intense task which typically consists
of computing a set of tests, and then computing
the diagnoses based on the test results. This pa-
per describes FlexDx, a reconfigurable diagnosis
framework which reduces the computational bur-
den by only running the tests that are currently
needed. The method selects tests such that the
isolation performance of the diagnostic system is
maintained. Special attention is given to the practi-
cal issues introduced by a reconfigurable diagnosis
framework such as FlexDx. For example, tests are
added and removed dynamically, tests are partially
performed on historic data, and synchronous and
asynchronous processing are combined. To handle
these issues FlexDx uses DyKnow, a stream-based
knowledge processing middleware framework. The
approach is exemplified on a relatively small dy-
namical system, which still illustrates the computa-
tional gain with the proposed approach.1

1 Introduction
Detection and isolation of multiple faults in a dynamic pro-
cess is a computationally expensive task, and the cost in-
creases rapidly with the number of faults and the model com-
plexity. A real-time, model-based diagnosis system that su-
pervises a dynamic system with non-linear behavior often
consists of a set of precompiled diagnostic tests together with
a fault isolation module [3; 14]. The diagnostic tests are based
on a formal description of the process, often in the form of
differential or difference equations. For this type of system,
pre-compiled test is an attractive solution compared to e.g.
solutions based on propagating values like GDE.

The computational complexity of such a diagnosis system
mainly originates from two sources: complexity of the pro-
cess model and the number of behavioral modes that are con-
sidered. A high capability of distinguishing between faults,
especially when multiple faults are considered, requires a

1This work is partially supported by grants from the Swedish
Aeronautics Research Council (NFFP4-S4203) and the Swedish
Foundation for Strategic Research (SSF) Strategic Research Center
MOVIII.

large number of diagnostic tests [9]. Also, the more com-
plex the process model is, the more computationally intense
is the task of executing the diagnostic tests. In this paper we
develop a reconfiguration scheme to handle computational is-
sues while still being able to handle multiple faults. A related
approach is presented in [17] although the models and diag-
nosis techniques are different. Recently, works on on-line
reconfiguration of the diagnosis system have appeared. For a
related work, see e.g. [2], where Kalman-filters are reconfig-
ured based on diagnosis decisions.

The main idea of this work is to utilize the observation that
all tests are not needed at all times, which can be used to
reduce the overall computational burden. For example, when
starting a fault free system, there is no need to run tests that
are designed with the sole purpose of distinguishing between
faults. In such a case, only tests that are able to detect faults
are needed, which may be significantly fewer compared to the
complete set of tests. When a test triggers an alarm and a fault
is detected, appropriate tests are started to make it possible
to compute a refined diagnosis decision. Such an approach
requires a flexible and reconfigurable framework where tests
can be added and removed on-line in a controlled fashion, and
also be run on historical data.

The objective of this paper is to illustrate how such a dy-
namic approach to diagnosis can be designed and imple-
mented using linear dynamical process models. In particu-
lar, the implementation issues introduced by a reconfigurable
diagnosis framework are discussed and a solution using Dy-
Know [7; 8], a stream-based knowledge processing middle-
ware framework, is described. It will also be shown how such
an approach requires controlled ways of initializing the dy-
namic diagnostic tests, and how to select the new tests to be
started when a set of diagnostic tests has generated an alarm.

The reconfigurable diagnosis framework proposed in this
paper, named FlexDx, is introduced in Section 2, and the
theoretical diagnosis background needed is presented in Sec-
tion 3. Methods how to determine, in a specific situation,
which tests should be started next are treated in Section 4. A
proper initialization procedure for dynamic tests is described
in Section 5. The complete approach is exemplified on a small
dynamic system in Section 6, which, in spite of the relatively
small size of the example, clearly illustrates the complexity of
the problem and the possible computational gain with the pro-
posed approach. The software framework which facilitates
the implementation of FlexDx, DyKnow, is briefly described
in Section 7, and finally a summary is given in Section 8.



2 FlexDx: A Reconfigurable Diagnosis
Framework

As mentioned in the introduction, a framework like FlexDx
must be capable of adding and removing tests dynamically
while refining the set of diagnoses. This is done in an iterative
manner by the following procedure:

1. Initiate the set of diagnoses.
2. Based on the set of diagnoses, compute the set of tests

to be performed.
3. Compute the initial state of the selected tests.
4. Run the tests until an alarm is triggered.
5. Compute the current set of diagnoses based on the test

results, then go to step 2.
When dealing with multiple fault diagnosis, it has been

shown useful to represent all diagnoses with the minimal di-
agnoses [5]. This representation will also be used here. When
FlexDx is started, there are no conflicts and the only mini-
mal diagnosis is the no-fault mode NF, i.e. the set of min-
imal diagnoses D is set to {NF} in step 1. Step 2 uses a
function that given a set of diagnoses D returns the set of
tests T to be performed to monitor whether a fault has oc-
curred or to further explore the possible diagnoses. Step 3
initiates each of the tests in T . A test includes a residual gen-
erator given in state-space form. This means that the start-
up of such a residual generator involves the estimation of
its initial condition. In step 4, the tests are performed until
at least one triggers an alarm and a test result is generated
in the form of a set of conflicts [4; 16]. Step 5 computes
the new set of diagnoses D, given the previous set of diag-
noses and the generated set of conflicts. This step can be per-
formed by algorithms handling multiple fault diagnoses [4;
11].

Step 4 and 5 are standard steps used in diagnosis systems
and will not be described in further detail. Step 2 and 3 are
new steps, needed for dynamically changing the test set T ,
the details are given in Section 4 and 5 respectively.

To implement an instance of the FlexDx framework, a
number of issues have to be managed besides implement-
ing the algorithms and integrating them to a system. When
a potential fault is detected, FlexDx computes the last known
fault free time tf and the new set of residual generators to
be started at time tf . To implement this, three issues have to
be solved. First, the FlexDx instance must be reconfigured to
replace the set of residual generators and their monitors. Sec-
ond, the computation of the residuals must begin at time tf
which will be in the past. Third, at the same time as FlexDx
is computing residuals and performing tests on the historic
data, system observations will keep coming at their normal
rate. How these issues are solved is described in Section 7.

3 Theoretical Background
The diagnosis systems considered in this paper consist of a
set of tests. Each test consists of a residual r(t) that is thresh-
olded such that it triggers an alarm if |r(t)| > 1. Note that
the threshold can be set to one without of loss of generality. It
is assumed that the residuals are normalized such that a given
false alarm probability pFA is obtained, i.e.

P (|r(t)| > 1|NF) = pFA (1)

The residuals are designed using a model of the process to be
diagnosed.

3.1 The Model
The model class considered here is linear differential-
algebraic models. It is worth noting that even if the presen-
tation here in the paper relies on results for linear systems,
the basic idea is equally applicable also to non-linear model
descriptions.

There are several ways to formulate differential-algebraic
models. Here, a polynomial approach is adopted, but any
model description is possible, e.g. standard state-space or de-
scriptor models. The model is given by the expression

H(q)x + L(q)w + F (q)f = V (q)v (2)

where x(t) ∈ Rmx , w(t) ∈ Rmw , f(t) ∈ Rmf , and
v(t) ∈ Rmv . The matrices H(q), L(q), F (q), and V (q) are
polynomial matrices in the time-shift operator q. The vector x
contains all unknown signals, which include internal system
states and unknown inputs. The vector w contains all known
signals such as control signals and measured signals, the vec-
tor f contains the fault-signals, and the vector v is white, pos-
sibly multidimensional, zero mean, unit covariance Gaussian
distributed noise.

To guarantee that the model is well formed, it is assumed
that the polynomial matrix [H(z) L(z)] has full column rank
for some z ∈ C. This assumption assures that for any noise
realization v(t) and any fault signal f(t) there exists a solu-
tion to the model equations (2).

3.2 Residual Generation
Residuals are used both to detect and isolate faults. This task
can be formulated in a hypothesis testing setting. For this, let
fi denote both the fault signal and the corresponding behav-
ioral mode of a single fault. Let F be the set of faults.

A pair of hypotheses associated with a residual can then be
stated as

H0 : fi = 0 for all fi ∈ F0

H1 : fi 6= 0 for some fi ∈ F0

where F0 ⊆ F is the set of faults the residual is designed
to detect. This means that the residual is not supposed to
detect all faults, only the faults in F0. By generating a set of
such residuals, each sensitive to different subsetsF0 of faults,
fault isolation is possible. This isolation procedure is briefly
described in Section 3.3.

In the literature there exists several different ways to for-
mally introduce residuals. In this paper an adapted version of
the innovation filter defined in [10] is used. For this, it will
be convenient to consider the nominal model under a specific
hypothesis. The nominal model under hypothesis H0 above
is given by (2) with V (q) = 0 and fi = 0 for all fi ∈ F0.
With this notion, a nominal residual generator is a linear time-
invariant filter r = R(q)w where for all observations w, con-
sistent with the nominal model (2) under hypothesis H0, it
holds that limt→∞ r(t) = 0.

Now, consider again the stochastic model (2) where it is
clear that a residual generated with a nominal residual gen-
erator will be subject to a noise component from the process
noise v. A nominal residual generator under H0 is then said



to be a residual generator for the stochastic model (2) if the
noise component in the residual r is white Gaussian noise.

It can be shown [6] that all residual generators R(q), as
defined above, for the stochastic model (2) can be written as

R(q) = Q(q)L(q)

where the matrix operator Q(q) satisfies the condition
Q(q)H(q) = 0. This means that the residual is computed
by r = Q(q)L(q)w and it is immediate that the internal form
of the residual is given by

r = Q(q)L(q)w = −Q(q)F (q)f + Q(q)V (q)v (3)

Thus, the fault sensitivity is given by

r = −Q(q)F (q)f (4)

and the statistical properties of the residual under H0 by

r = Q(q)V (q)v (5)

A complete design procedure is given in e.g. [10] for state-
space models and in [6] for models on the form (2). The
objective here is not to describe a full design procedure, but it
is worth mentioning that a design algorithm can be made fully
automatic, that the main computational steps involve a null-
space computation and a spectral factorization, and that the
resulting residual generator is a basic dynamic linear filter.

3.3 Computing the Diagnoses
The fault sensitivity of the residual r in (3) is given by (4).
Here, r is sensitive to the faults with non-zero transfer func-
tions. Let C be the set of faults that a residual r is sensitive to.
Then, if residual r triggers an alarm, at least one of the faults
in C must have occurred and the conflict [16] C is generated.

Now we can relate the test results to a diagnosis. Let
a set b ⊆ F represent a system behavioral mode with the
meaning that fi 6= 0 for all fi ∈ b ⊆ F and fj = 0
for all fj /∈ b. In short, see [16] for details, the behav-
ioral mode b is then a diagnosis if it can explain all gener-
ated conflicts, i.e. if b has a non-empty intersection with each
generated conflict. Algorithms to compute all minimal di-
agnoses for a given set of conflicts, which is equivalent to
the so called hitting set problem, can be found in e.g. [4;
16]. The following example illustrates the main principle.
Example 1 Let an X in position (i, j) in the table below in-
dicate that residual ri is sensitive to fault fj

f1 f2 f3

r1 X X
r2 X X
r3 X X

If residuals r1 and r2 trigger alarms, then conflicts C1 =
{f2, f3} and C2 = {f1, f3} are generated. For C1 this means
that both f2 and f3 can not be 0. Thus, for a set of faults to
be a diagnosis it must then explain both these conflicts. It is
straightforward to verify that the minimal diagnoses in this
case are b1 = {f3} and b2 = {f1, f2}. �

4 Test Selection
This section describes step 2 in the FlexDx procedure given
in Section 2, i.e. how the set of tests T is selected given a set

D of minimal diagnoses. There are many possible ways how
this can be done. The method that will be described here is
based on the deterministic properties of (2) only and relies on
basic principles in consistency-based diagnosis.

A fundamental task in consistency-based diagnosis is to
compute the set of consistent modes [4] given a model, a set
of possible behavioral modes, and observations. The design
goal of the test selection algorithm will be to perform tests
such that the set of consistent modes is equal to the set of
diagnoses computed by the diagnosis system.

4.1 Consistent Behavioral Modes
The deterministic behavior in a behavioral mode b is de-
scribed by (2) when v = 0 and fj = 0 for all fj /∈ b, and the
set of observations consistent with b is consequently given by

O(b) = {w|∃x∃f (∀j : fj /∈ b → fj = 0)∧
H(q)x + L(q)w + F (q)f = 0} (6)

This means that a mode b is consistent with the determin-
istic part of model (2) and an observation w if w ∈ O(b).
Hence, to achieve the goal the set of diagnoses should, given
an observation w, be equal to {b ∈ B|w ∈ O(b)} where
B denotes the set of all behavioral modes. As mentioned in
Section 2, we will use minimal diagnoses to represent all di-
agnoses. This is possible since (6) implies that O(b′) ⊆ O(b)
if b′ ⊆ b. Hence, if b′ is consistent it follows that b is con-
sistent and therefore it is sufficient to check if the minimal
consistent modes remain consistent when new observations
are processed.

4.2 Tests for Checking Model Consistency
Next, we will describe how tests can be used to detect if w /∈
O(b). Let T be the set of all available tests and let ri =
Qi(q)L(q)w be the residual corresponding to test ti.

A residual generator checks the consistency of a part of the
complete model. To determine which part, only the determin-
istic model needs to be considered. It can be shown [12] that
residual ri checks the consistency of ξi(q)w = 0 where ξi(q)
is a polynomial in the time-shift operator q. By defining the
set of consistent observations for tests in a similar way as for
models, we define

O(ti) = {w|ξi(q)w = 0} (7)

Now, we can characterize all test sets T that are capable
of detecting any inconsistency between an observation w and
the assumption that w ∈ O(b). For this purpose, only tests ti
with the property that O(b) ⊆ O(ti) can be used. For such a
test, an alarm implies that w /∈ O(ti) which further implies
that w /∈ O(b). This means that a test set T is capable of
detecting any inconsistency of w ∈ O(b) if and only if

O(b) =
⋂

∀t∈{ti∈T |O(b)⊆O(ti)}

O(t) (8)

A trivial solution to (8) is T = {t} where O(t) = O(b).

4.3 The Set of All Available Tests
If T is not capable of checking the consistency of b, then no
subset of tests will be capable of doing this either. Hence,
this approach sets requirements on the entire set of tests T . If
such set of tests is difficult to obtain for a particular model,



any set of tests will do. By applying the approach to a model
consisting of the considered set of tests, a diagnosis system
with the same diagnosis capability as the considered set of
tests will be the result. In this paper, we will use two different
types of test sets T fulfilling (8) for all modes b ∈ B. These
are introduced by the following example.
Example 2 Consider the model

x1(t + 1) = αx1(t) + w1(t) + f1(t)
x2(t) = x1(t) + f2(t)
w2(t) = x1(t) + f3(t)
w3(t) = x2(t) + f4(t)

(9)

where xi are unknowns, wi known variables, α a known pa-
rameter, and fi the faults. There are 24 modes and the set of
observations consistent with each mode is

O(∅) = {w|
[
w1(t) + αw2(t)− w2(t + 1)

−w2(t) + w3(t)

]
= 0}

O({f1}) = {w| − w2(t) + w3(t) = 0}
O({f2}) = O({f4}) = O({f2, f4}) =

= {w|w1(t) + αw2(t)− w2(t + 1) = 0}
O({f3}) = {w|w1(t) + αw3(t)− w3(t + 1) = 0}

The behavioral models for the 10 remaining modes b do not
contain any redundancy and the observations are therefore
not restricted, i.e. O(b) = R3. In contrast to (6), the sets of
consistent observations are here expressed in the same form
as for tests, that is with linear differential equations in the
known variables only. Any set described as in (6) can be writ-
ten in this form [15]. �

The first type of test set T1 will be to design one test
for each distinct behavioral model containing redundancy,
i.e., for the example T1 consists of four tests ti such that
O(t1) = O(∅), O(t2) = O({f1}), O(t3) = O({f2}), and
O(t4) = O({f3}). To check the consistency of w ∈ O(∅),
two linear residuals are needed, which is the degree of redun-
dancy of a model. These two residuals can be combined in a
positive definite quadratic form to obtain a scalar test quan-
tity. When stochastic properties are considered, the quadratic
form is chosen such that the test quantity conforms to a χ2-
distribution.

Tests for models with a high degree of redundancy can be
complex, and the second type of test set T2 includes only the
tests for the behavioral models with degree of redundancy 1.
For the example, T2 = {t2, t3, t4} and by noting that O(∅) =
O(ti) ∩ O(tj) for any i 6= j where i, j ∈ {2, 3, 4}, any two
tests can be used to check the consistency of w ∈ O(∅). In [9]
it has been shown under some general conditions that T2 ful-
fills (8) for all modes b ∈ B.

4.4 Test Selection Methods
We will exemplify methods that given a set of minimal diag-
noses D select a test set T ⊆ T such that (8) is fulfilled for
all b ∈ D. An optional requirement that might be desirable
is to select such a test set T with minimum cardinality. The
reason for not requiring minimum cardinality is that the com-
putational complexity of computing a minimum cardinality
solution is generally much higher than to find any solution.

A straightforward method is to use the first type of tests and
not require minimum cardinality solutions. Since this type of

test set includes a trivial test O(ti) = O(b) for all modes b
with model redundancy, it follows that a strategy is to start
the tests corresponding to the minimal diagnoses in D.

Example 3 Consider Example 2 and assume that the set of
minimal diagnoses is D = {∅}. Then it is sufficient to per-
form test t1, i.e. T = {t1}. If the set of minimal diagnoses
are D = {{f2}, {f3}, {f4}}, then t3 is used to check the
consistency of both {f2} and {f4} and the total set of tests
is T = {t3, t4}. For this example, this strategy produces the
minimum cardinality solutions, but this is not true in general.

A second method is to use the second type of tests and for
example require a minimum cardinality solution. The dis-
cussion of the method will be given in Section 6 where this
method has been applied to a larger example.

5 Initialization
When a new test selection has been made, new tests have to be
initialized. Since information about faults sometimes are only
visible in the residuals for a short time-period after a fault
occurrence, we would like a new test to start running before
the currently considered fault occurred; otherwise valuable
information would be missed. It is also important that the
state of the new test gets properly initialized, such that the
fault sensitivity is appropriate already from the start, and the
residuals can deliver test results immediately. Therefore, the
initialization following a new test selection consists of:

1. Estimate the time of the fault from the alarming test(s).
2. Estimate the initial condition for each new test.

Both these steps require the use of historical data, which
therefore have to be stored. The fault time estimation will
use the historical residuals from the triggered test, while the
initial condition estimation uses the measured data from the
process before the fault occurred.

5.1 Estimating the Fault Time
There are many possibilities to estimate the fault time. See for
example [13; 1] for standard approaches based on likelihood
ratios. Here, a window-based test has been chosen. It should
be noted, however, that for the given framework, what is im-
portant is not really to find the exact fault time, but rather to
find a time-point before the fault has occurred. The estimated
time-point will be denoted by tf .

Given a number of residuals from an alarming test,
r(1), . . . , r(k), let us compute the sum of the squared residu-
als over a sliding window, i.e.,

S(t) =
1
σ2

∑̀
j=1

r2(t + j), t = 0, . . . , k − ` (10)

If the residual generator is designed such that, under the null
hypothesis that no fault has occurred, (r(j))k

j=1 are white
and Gaussian with variance σ2, then S(t) ∼ χ2(`) in the
fault free case. Hence, S(t) can be used to test whether this
null hypothesis has been rejected at different time-points, by
a simple χ2-test. Since it is preferable to get an estimated
time-point that occurs before the actual fault time, rather than
after, the threshold of the χ2-test should be chosen such that
the null hypothesis is fairly easily rejected. The estimate tf is



then set to the time-point of the last non-rejected test. Also,
in order not to risk a too late estimate, the time-point at the
beginning of the sliding window is used.

5.2 Estimating the Initial Condition
Having found tf , the next step is to initialize the state of the
new residual generator. The method used here considers a
time-window of samples of w(tf − k), . . . , w(tf ) as input to
find a good initial state x(tf ) of the filter at the last time point
of the window.

Consider the following residual generator:

x(t + 1) = Ax(t) + Bw(t) (11)
r(t) = Cx(t) + Dw(t) (12)

Assume that w(t) = w0(t)+Nv(t) where w0(t) is the noise-
free data (inputs and outputs) from the process model and
v(t) is Gaussian noise. In fault free operation, there is a state
sequence x0(t), such that the output r(t) = 0 if v(t) = 0,

x0(t + 1) = Ax0(t) + Bw0(t) (13)
0 = Cx0(t) + Dw0(t) (14)

Given w(t), t = tf − k, . . . , tf , we would like to estimate
x0(tf ). This will be done by first estimating x0(tf − k).

From (13) and w(t) = w0(t) + Nv(t) we get

0 = Rxx0(tf − k) + RwW0

⇔ Rxx0(tf − k) + RwW = RwDV V (15)

where

Rx =


C

CA
...

CAk

 Rw =


D 0 0 . . .

CB D 0 . . .
CAB CB D . . .
. . .

CAk−1B . . . D


W =

w(tf − k)
...

w(tf )

 W0 =

w0(tf − k)
...

w0(tf )



V =

v(tf − k)
...

v(tf )

 DV =


N 0 . . . 0
0 N . . . 0
...

...
. . .

...
0 0 . . . N


Assuming that the distribution of V is known, say,
V ∼ N(0,ΣV ), (15) means that Rxx0(tf − k) + RwW
is a zero-mean stochastic vector with covariance matrix
RwDV ΣV DT

V RT
W . Note that the expression above cor-

responds to the actual residuals obtained when starting in
x0(tf −k). Due to the design of the residual generator giving
white residuals, this means that RwDV ΣV DT

V RT
w ≈ σ2I .

Hence, a reasonable estimate of x0(tf − k) is given by the
regular least-squares estimate,

x̂0(tf − k) = −(RT
x Rx)−1RT

x RwW (16)

From this, x̂0(tf ) can be computed as

x̂0(tf ) = Akx̂0(tf − k)+[
Ak−1B Ak−2B . . . AB B 0

]
W

u

J2

θ2

Ms

θ1

J1

Figure 1: Illustration of the example process; a DC-servo
connected to an inertia with a spring.

The choice of k is made in advance, based on the computed
variance of the initial residuals given x̂0(tf ). The larger k is,
the closer this variance comes to the stationary case. Hence, k
can be chosen via a trade-off between the minimizing the ad-
ditional overhead that the above computations represent, and
minimizing the maximum probability of false alarms during
the initial time steps.

6 Example
To illustrate the FlexDx framework, let us consider the simu-
lated example system shown in Figure 1, where a DC-servo is
connected to a flywheel through a rotational (damped) spring.
The system dynamics can be described by:

J1θ̈1(t) = ku(t)− α1θ̇1(t)−Ms(t)

Ms(t) = α2(θ1(t)− θ2(t)) + α3(θ̇1(t)− θ̇2(t))

J2θ̈2(t) = −α4θ̇2(t) + Ms(t)

where u(t) is an input signal controlling the torque from the
motor (with a scaling coefficient k = 1.1), θ1(t) and θ2(t) are
the angles of the motor axis and the flywheel, respectively,
and Ms(t) is the torque of the spring. The moments of inertia
in the motor is J1 = 1 and for the flywheel J2 = 0.5. The pa-
rameters α1 = 1 and α4 = 0.1 determine the viscous friction
at the motor and flywheel respectively, while α2 = 0.05 is the
spring constant and α3 = 0.1 the viscous damping coefficient
of the spring.

As outputs, the motor axis angle and velocity, and the angle
of the flywheel are measured. We will design the diagnosis
system for six possible single faults f1(t), . . . , f6(t); one for
each equation. The augmented system model becomes

J1θ̈1(t) = k(u(t) + f1(t))− α1θ̇1(t)−Ms(t)

Ms(t) = α2(θ1(t)− θ2(t)) + α3(θ̇1(t)− θ̇2(t)) + f2(t)

J2θ̈2(t) = −α4θ̇2(t) + Ms(t) + f3(t)
y1(t) = θ1(t) + f4(t) + v1(t)

y2(t) = θ̇1(t) + f5(t) + v2(t)
y3(t) = θ2(t) + f6(t) + v3(t)

Here, vi(t), for i = 1, 2, 3, are measurement noise terms.
Since the diagnosis framework will work on sampled data,

the model is discretized before designing the tests, using a
zero-order hold assumption. The noise is implemented as
i.i.d. Gaussian noise with variance 10−3. By using the sec-
ond type of tests described in Section 4.3 for the discretized
system, a set of 13 tests were needed and their fault sensitivity



Table 1: The fault sensitivity of the residuals.

f1 f2 f3 f4 f5 f6

r1 X X X
r2 X X X X
r3 X X X X
r4 X X X X
r5 X X X X
r6 X X X X
r7 X X X X
r8 X X X X
r9 X X X X
r10 X X X X
r11 X X X X
r12 X X X X
r13 X X X X

is shown in Table 1. These tests will in the following simu-
lations be combined with the second test selection method
described in Section 4.4.

6.1 Test Reconfiguration
To show how the diagnosis system is reconfigured during a
fault transient, we will describe what happens when the fault
f1 occurs at t = 100 in a simulated scenario. The course of
events is described in Table 2.

Each row in the table gives the most important properties
of one iteration in the FlexDx procedure given in Section 2.
In one such iteration, the set of active tests are executed on
observations collected from time tf to ta. The column mini-
mal diagnoses shows a simplified representation of the mini-
mal diagnoses during the corresponding phase. Each iteration
ends when one or several of the active tests trigger an alarm,
these are shown in bold type.

Let us take a closer look at the steps of the FlexDx pro-
cedure. Step 1 initiates the set of minimal diagnoses to
D = {NF}, which is shown in row 1. The degree of redun-
dancy of the behavioral model for NF is 3, and therefore 3
tests are needed to check if w ∈ O(NF) is consistent. Step 2
computes the first, in lexicographical ordering, minimum car-
dinality solution to (8), which is the test set T = {1, 2, 5}
given in row 1. Step 3 initiates the tests T and test 5 triggers
an alarm at time ta = 102.6. From the fault sensitivity of
residual r5 given in Table 1, C = {f1, f3, f5, f6} becomes a
conflict which is the output of step 4. The new set of minimal
diagnoses, computed in step 5, are shown in the second row.
Returning to step 2, the degree of redundancy for each of the
behavioral models corresponding to minimal diagnoses are 2,
and therefore at least two tests are needed to check the con-
sistency of each of them. The minimum cardinality test set
computed in step 2 is T = {1, 3, 10, 13}. This set is shown
in row 2. Tests 1 and 3 check the consistency of {f1}, 1 and
10 the consistency of {f3}, 3 and 13 the consistency of {f5},
and 10 and 13 the consistency of {f6}. In step 3, the last
fault free time is estimated to tf = 98.9 by using the alarm-
ing residual r5. The initial states of the residuals used in the
tests T are estimated using observations sampled in a time in-
terval ending at tf . Proceeding in this way, FlexDx finds in
row 4 that {f1} is the only consistent single fault and then the
multiple fault diagnoses are further refined.

0 100 200 300

−2

0

2

r 1

0 100 200 300

−2

0

2

r 2

0 100 200 300

−2

0

2

r 3

0 100 200 300

−2

0

2

r 4

0 100 200 300

−2

0

2

r 5

0 100 200 300

−2

0

2

r 6

0 100 200 300

−2

0

2

r 7

0 100 200 300

−2

0

2

r 8

0 100 200 300

−2

0

2

r 9

0 100 200 300

−2

0

2

r 10

0 100 200 300

−2

0

2

r 11

0 100 200 300

−2

0

2

r 12

0 100 200 300

−2

0

2

r 13

Figure 2: Residuals computed by FlexDx.

Table 2: Diagnosis events

tf ta Minimal Diagnoses Active Tests
1 0 102.6 NF 1, 2,5
2 98.9 102.7 1, 3, 5, 6 1, 3, 10,13
3 98.9 102.2 1, 3, 25, 26, 45, 46 1, 2, 6, 7,8, 11,12
4 98.9 102.3 1, 23, 25, 26, 35, 36, 45 1, 2,6, 7, 9, 10, 11
5 98.9 102.6 1, 23, 26, 35, 36, 45 1, 2, 7,9, 10, 11
6 98.9 105.2 1, 23, 26, 36, 45 1, 2, 7, 10,11
7 100.6 − 1, 23, 26, 36, 245, 345, 456 1, 2, 7, 10

6.2 Reduction of the Computational Burden
In a simulated scenario, the system is started in the fault-free
mode. At t = 100, f1 is set to 0.2, and at t = 200, f5 is set
to 0.1. The residuals computed by the diagnosis system are
shown in Figure 2. It is noteworthy that the residuals have not
been computed for all time-points. By comparing the number
of residuals computed for a diagnosis system running all tests
at all times with the number of residuals computed with the
proposed system, a 78.3% reduction in the number of com-
puted residuals is obtained for the simulated scenario. This
number is in itself not an indication of expected computa-
tional gain in a typical application. For systems with low fail-
ure rate, more redundancy, or more complex system model
the reduction will typically be much larger. The key point is
that not all tests are run at all times, and during fault free oper-
ation, typically only a few tests are needed. The largest num-
ber of tests is performed during the fault transitions which
lasts only a short period of time.

7 DyKnow
To implement an instance of the FlexDx framework, a num-
ber of issues have to be managed besides implementing the
algorithms and integrating them to a system. When a poten-
tial fault is detected, FlexDx computes the last known fault
free time tf and the new set of residual generators to be mon-
itored starting at time tf . To implement this, three issues have
to be solved. First, the FlexDx instance must be reconfigured
to replace the set of residual generators and their monitors.



Second, the computation of the residuals must begin at time
tf in the past. Third, at the same time as FlexDx is comput-
ing residuals and performing tests on the historic data, system
observations will keep coming at their normal rate.

To manage these issues, FlexDx is implemented using
DyKnow, a stream-based knowledge processing middleware
framework for implementing applications processing asyn-
chronous streams of information [7; 8].

DyKnow provides both a conceptual framework and an im-
plementation infrastructure for integrating a wide variety of
components and managing the information that needs to flow
between them. It allows a system to incrementally process
low-level sensor data and generate a coherent view of the en-
vironment at increasing levels of abstraction. Due to the need
for incremental refinement of information at different levels
of abstraction, we model computations and processes within
the knowledge processing framework as active and sustained
knowledge processes. The complexity of such processes may
vary greatly, ranging from simple adaptation of raw sensor
data to controllers to diagnosis algorithms.

The system being diagnosed by FlexDx is assumed to be
synchronous. At the same time the diagnosis procedure is
asynchronous, jumping back and forth in time trying to figure
out which fault has occurred. This requires knowledge pro-
cesses to be decoupled and asynchronous to a certain degree.
In DyKnow, this is achieved by allowing a knowledge pro-
cess to declare a set of stream generators, each of which can
be subscribed to by an arbitrary number of processes. A sub-
scription can be viewed as a continuous query, which creates
a distinct asynchronous stream onto which new data is pushed
as it is generated. Each stream is described by a declarative
policy which defines both which generator it comes from and
the constraints on the stream. These constraints can for exam-
ple specify the maximum delay, how to approximate missing
values or that the stream should contain samples added with
a regular sample period. Each stream created by a stream
generator can have different properties and a stream genera-
tor only has to process data if it produces any streams. The
contents of a stream may be seen by the receiver as data, in-
formation or knowledge.

A stream-based system pushing information easily lends
itself to “on-availability” processing, i.e. processing data as
soon as it is available. This minimizes the processing delays,
compared to a query-based system where polling introduces
unnecessary delays in processing and the risk of missing po-
tentially essential updates as well as wastes resources. This
is a highly desired feature in a diagnostic system where faults
should be detected as soon as possible.

For the purpose of modeling, DyKnow provides four dis-
tinct types of knowledge processes: Primitive processes, re-
finement processes, configuration processes and mediation
processes. To introduce these processes and to describe how
the three issues introduced by FlexDx are solved, we will use
a concrete FlexDx instance as an example. An overview of
the processes and streams is shown in Figure 3.

Primitive processes serve as an interface to the outside
world, connecting to sensors, databases or other informa-
tion sources that in themselves have no explicit support for
stream-based knowledge processing. Such processes have no
stream inputs but provide a non-empty set of stream genera-
tors. In general, they tend to be quite simple, mainly adapting

system observations residuals

Residual Test
Residual Test

ResidualGenerator ResidualMonitor
System

last fault free time

CreateTests ConflictSetMediator

test set
conflict set

DiagnosesTestSet

test set

diagnoses

initial diagnosis

conflict set

initial diagnosis

Figure 3: An overview of the components of the FlexDx im-
plementation. The boxes are knowledge processes and the
arrows are streams.

data in a multitude of external representations to the stream-
based framework. For example, in FlexDx the initial diagno-
sis and the stream of observations of the system being diag-
nosed are seen as a primitive processes System.

The second process type to be considered is the refinement
process, which takes a set of streams as input and provides
one or more stream generators producing refined, abstracted
or otherwise processed values. In FlexDx there are four re-
finement processes, as seen in Figure 3:

• ResidualGenerator – Computes the residual for a partic-
ular test from system observations. The residual is ini-
tialized as described in Section 5.

• ResidualMonitor – Monitors a residual and checks
whether it has triggered a test. This can either be a
simple threshold check or a more elaborate test which
checks properties of the residual over time, such as if it
has been above or below the threshold for more than five
consecutive samples. If a test has been triggered the pro-
cess computes the last known fault free time; this is the
output of the process.

• Diagnosis – Computes the new set of diagnoses each
time a test has been triggered.

• TestSet – Computes the new set of residual generators to
be monitored when the set of diagnoses changes.

The third type of process, the configuration process, takes
a set of streams as input but produces no new streams. In-
stead, it enables dynamic reconfiguration by adding or remov-
ing streams and processes. In FlexDx a configuration process
is required to handle the first issues, to be able to reconfigure
the set of residuals and tests that are computed.

• CreateTests – Updates the set of residual generators and
monitors as the set of tests changes. Each test consists
of two refinement processes, one to compute the residual
and one to monitor the test on the residual. In order to
manage the second issue, that residuals are computed
starting at the last known fault free time, the input to a
residual is a stream which begins at this time-point. This
is part of the policy the configuration process uses to set
up the new residual generator process. Creating streams
partially consisting of historic data is a DyKnow feature.



Finally, a mediation process generates streams by select-
ing or collecting information from other streams. Here, one
or more of the inputs can be a stream of labels identifying
other streams to which the mediation process may subscribe.
This allows a different type of dynamic reconfiguration in the
case where not all potential inputs to a process are known in
advance or where one does not want to simultaneously sub-
scribe to all potential inputs due to processing cost. FlexDx
uses a mediation process to collect the detected conflicts:

• ConflictSetMediator – Subscribes to the output of each of
the tests and aggregates these to a single stream. When
tests are added or removed the current set of subscrip-
tions is updated accordingly. The output of this process
is a stream of pairs, each pair containing the identifier of
the test that was triggered and the last known fault free
time for the corresponding residual.

FlexDx will continue to add new tests until there is exactly
one consistent single fault or all tests have been added.

To give a concrete example of a run of the system, consider
the example from Section 6 as described in Table 2. When the
system is started, tests 1, 2 and 5 are created by CreateTests.
These are computing the residuals and performing tests from
time 0 to 102.6, when test 5 is triggered. Then the refinement
process for test 5 computes the last known fault free time to
98.9. Using this information Diagnosis computes the set of
minimal diagnosis to {1, 3, 5, 6} and TestSet the new set of
tests to {1, 3, 10, 13}. The old tests 1, 2 and 5 are removed
and the new tests are added by CreateTests. All of the tests
are computed from time 98.9 until time 102.7 when test 13 is
triggered, which means that they are computed from historic
data until time 102.6. In this manner the set of tests is updated
one more time before concluding that f1 is the only consistent
single fault. If there are no consistent single faults FlexDx
will continue to add tests until all have been evaluated.

8 Summary
An implemented reconfigurable diagnosis framework FlexDx
is proposed. It reduces the computational burden of perform-
ing multiple fault diagnosis by only running the tests that are
currently needed. This involves a method for dynamically
starting new tests. An important contribution is a method
to select tests such that the computational burden is reduced
while maintaining the isolation performance of the diagnos-
tic system. Key components in the approach are test selection
and test initialization. Specific algorithms for diagnosing lin-
ear dynamical systems have been developed to illustrate the
diagnosis framework, but the framework itself is general.

Implementing a reconfigurable diagnosis framework such
as FlexDx introduces a number of interesting issues. First,
FlexDx must be reconfigured to compute the new set of tests
each time the set changes. Second, these computations must
begin at the last known fault free time, which will be in the
past. Third, at the same time as FlexDx is performing tests on
historic data, system observations will keep coming at their
normal rate. To handle these issues FlexDx is implemented
using DyKnow, a stream-based knowledge processing mid-
dleware framework.

In the given example, the proposed approach has shown a
significant reduction of the computational burden for a rel-

atively small dynamical system, and for larger systems the
reduction is expected to be higher.

References
[1] M. Basseville and I.V. Nikiforov. Detection of Abrupt

Changes. PTR Prentice-Hall, Inc, 1993.
[2] E. Benazera and L. Travé-Massuyès. A diagnosis driven

self-reconfigurable filter. In Proc. DX’07, 2007.
[3] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.

Diagnosis and Fault-Tolerant Control. Springer, 2003.
[4] J. de Kleer. Diagnosing multiple faults. Artificial Intel-

ligence, 32(1):97–130, 1987.
[5] J. de Kleer, A. Mackworth, and R. Reiter. Characteriz-

ing diagnoses and systems. Artificial Intelligence, 56,
1992.

[6] Erik Frisk. Residual generation in linear stochastic sys-
tems - a polynomial approach. In Proc. of the 40th IEEE
Conference on Decision and Control, 2001.

[7] Fredrik Heintz and Patrick Doherty. DyKnow: An
approach to middleware for knowledge processing.
Journal of Intelligent and Fuzzy Systems, 15(1):3–13,
November 2004.

[8] Fredrik Heintz and Patrick Doherty. A knowledge pro-
cessing middleware framework and its relation to the
JDL data fusion model. Journal of Intelligent and Fuzzy
Systems, 17(4):335–351, 2006.

[9] Mattias Krysander. Design and Analysis of Diagno-
sis Systems Using Structural Methods. PhD thesis,
Linköpings universitet, June 2006.

[10] R. Nikoukhah. Innovations generation in the presence of
unknown inputs: Application to robust failure detection.
Automatica, 30(12):1851–1867, 1994.

[11] Mattias Nyberg. A fault isolation algorithm for the case
of multiple faults and multiple fault types. In Proceed-
ings of IFAC Safeprocess’06, 2006.

[12] Mattias Nyberg and Erik Frisk. Residual genera-
tion for fault diagnosis of systems described by linear
differential-algebraic equations. IEEE Transactions on
Automatic Control, 51(12), 2006.

[13] E.S. Page. Continuous inspection schemes. Biometrika,
41:100–115, 1954.

[14] R. J. Patton, P. M. Frank, and R. N. Clark, editors. Is-
sues of Fault Diagnosis for Dynamic Systems. Springer,
2000.

[15] J. W. Polderman and J. C. Willems. Introduction to
Mathematical Systems Theory: A Behavioral Approach.
Springer-Verlag, 1998.

[16] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57–95, 1987.

[17] Peter Struss. Testing for discrimination of diagnoses. In
Proc. of DX’94, 1994.


